最新反比例函数-反比例函数系数k的几何意义
- 格式:doc
- 大小:691.50 KB
- 文档页数:40
反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。
1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。
当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。
2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。
当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。
3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。
4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。
5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。
总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。
它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。
因此,k在反比例函
数绘制中发挥着重要的作用。
反比例函数中k的几何意义是什么
反比例函数中k的几何意义是什么
发现学生对反比例函数中K的几何意义理解的不好,造成在面对一些反比例函数与几何图形相结合的问题时的束手无策,要想解决好这个问题,这就要求我们老师在辅导学生时要敢于花大力气帮助学生深刻理解K的几何意义,下面是店铺给大家整理的反比例函数中k的几何意义简介,希望能帮到大家!
反比例函数中k的几何意义
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的`垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k 有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x 轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
K的几何意义与三角形相似知识的关联
【反比例函数中k的几何意义是什么】。
反比例函数系数k 的几何意义(复习讲义)01一、知识点回顾1..反比例函数的图像是双曲线,故也称双曲线y=(k ≠0).其解析式有三种表示方法: ①xk y = (0≠k );②1-=kx y (0≠k );③k xy = 2.反比例函数y=(k ≠0)的性质 (1)当k>0时函数图像的两个分支分别在第一,三象限内在每一象限内,y 随x 的增大而减小.(2)当k<0时函数图像的两个分支分别在第二,四象限内在每一象限内,y 随x 的增大而增大.(3)在反比例函数y=中,其解析式变形为xy=k ,故要求k 的值(也就是求其图像上一点横坐标与纵坐标之积).(4)若双曲线y=图像上一点(a ,b )满足a ,b 是方程Z 2-4Z -2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k ,∴k=-2,故双曲线的解析式是y=. (5)由于反比例函数中自变量x 和函数y 的值都不能为零,所以图像和x 轴,y 轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.二、新知讲解与例题训练模型一:如图,点A 为反比例函数xk y =图象上的任意一点,且AB 垂直于x 轴,则有2||k S OAB =∆【例1】如图ABC Rt ∆的锐角顶点是直线y=x+m 与双曲线y=xm 在第一象限的交点,且3=∆AOB S , (1)求m 的值(2)(2)求ABC ∆的面积 k x k x ⇔⇔⇔⇔k x k x2x -变式题1、如图所示,点1A ,2A ,3A 在x 轴上,且O 1A =21A A =32A A ,分别过1A ,2A ,3A 作y 轴平行线,与反比例函数y=x 8(x>0)的图像交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连结321,,OB OB OB ,那么图中阴影部分的面积之和为__________2、 如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .模型二: 如图:点A 、B 是双曲线)0(≠=k xk y 任意不重合的两点,直线AB 交x 轴于M 点,交y 轴于N 点,再过A 、B 两点分别作y AD ⊥轴于D 点,x BF ⊥轴于F 点,再连结DF 两点,则有:AB DF ||且BM =AND FABD F M N xyO【例2】如图,一次函数的图象与轴,轴交于A ,B 两点,与反比例函数的图象相交于C ,D 两点,分别过C ,D 两点作轴,轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①DEF CEF SS ∆∆=;②AOB ∆相似于FOE ∆;③△DCE ≌△CDF ;④其中正确的结论是 .(把你认为正确结论的序号都填上)【例3】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接. (1)若点在反比例函数的图象的同一分支上,如图1,试证明: ①;②.(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论.模型三:如图,已知反比例函数k y x=(k ≠0,x>0)上任意两点P 、C ,过P 做PA ⊥x 轴,交x 轴于点A ,过C 做CD ⊥x 轴,交x 轴于点D ,则OPC PADC S S ∆=梯形.y a x b =+x y k y x=y x A C B D=y ax b =+x y ,M N k y x=,A B A AC x ⊥AE y ⊥,C E B BF x ⊥BD y ⊥F D ,,AC BD K CD A B ,k y x=AEDK CFBK S S =四边形四边形AN BM =A B ,k y x=AN BM yx D CA BOF E 图1 图2【例4】如图,在直角坐标系中,一次函数y =k 1x+b 的图象与反比例函数2k y x=的图象交于A (1,4)、B (4,1)两点,则△AOB 的面积是______.【例5】如图,在直角坐标系中,一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于A (1,4)、B (3,m )两点,则△AOB 的面积是______.【例6】如图1,已知直线12y x =与双曲线(0)k y k x =>交于A 、B 两点,且点A 的横坐标为4. (1)求k 的值;(2)如图2,过原点O 的另一条直线l 交双曲线(0)k y k x=>于C 、D 两点(点C 在第一象限且在点A 的左边),当四边形ACBD 的面积为24时,求点C 的坐标.模型四:在矩形AOBC 中,OB =a ,OA =b ,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数(0)k y x x=>的图象与AC 边交于点E ,则CE a CF b=.【例7】两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k y x=的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 _________(把你认为正确结论的序号都填上).课堂练习:一、选择题1、已知m<0,则函数mx y =1与xm y -=2的图像如图,大致是( )A. B. C. Dx2、如图,点A 在双曲线xy 6=上,且OA=4,过点A 作AC ⊥x 轴,垂足为c ,OA 的垂直平分线交OC 于B,则ABC ∆的周长为( ) A.72 B.5 C.74 D.223、如图,双曲线xk y =(k>0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为( )A.x y 1=B. x y 2=C. x y 3=D. xy 6= 4、如图,A,B 是函数x y 2=的图像上关于原点对称的任意两点,BC//x 轴,AC//y 轴,ABC ∆的面积记为S ,则S ( )A.S=2B.S=4C.2<S<4D.S>45、如图所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,若双曲线y=(k ≠0)与△ABC 有交点,则k 的取值范围是( )k xA .1<k<2B .1≤k ≤3C .1≤k ≤4D .1≤k<4二、填空题1、如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .2、如图,双曲线)0(2 x xy =经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .3、如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线为y = k x,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′.(1)当点O ′与点A 重合时,点P 的坐标是 . (2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是 .4、如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 .5、双曲线1y 、2y 在第一象限的图像如图,14y x =,过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 .课后习练一、填空题 1、如图,直线y=kx (k>0)与双曲线y=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1的值等于_______.2、反比例函数y=的图像上有一点P (a ,b ),且a ,b 是方程t 2-4t -2=0的两个根,则k=_______;点P 到原点的距离OP=_______.3、已知双曲线xy=1与直线y=-x+无交点,则b 的取值范围是______.4、反比例函数y=的图像经过点P (a ,b ),其中a ,b 是一元二次方程x 2+kx+4=0的两个根,那么点P 的坐标是_______.5、如图,已知双曲线)0k (x k y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =___.DB AyxO C4xk xb k x A B CDE yx O6、如图,已知点A 是一次函数y=x 的图像与反比例函数y=的图像在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2 BC.7、已知P 为函数y=的图像上一点,且P ,则符合条件的P 点数为() A .0个 B .2个 C .4个 D .无数个2x2x。
反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。
它
是用来确定两个变量之间反比关系的重要参数。
反比例函数的一般形式为:y=K/x,其中K表示比例系数。
K的几何意义可以通过分析反比例函数的图像得出。
反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。
下面将详细讨论K的几
何意义。
1.K的符号对于曲线的位置以及开口方向具有重要影响。
如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。
如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。
2.K的绝对值越大,曲线就越“陡峭”。
当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。
反之,当K变小时,曲
线将更加平缓,斜率将减小。
3.K决定了特定坐标点的函数值。
例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。
4.K还决定了曲线相对于坐标轴的位置。
具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。
总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。
通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。
反比例函数几何意义公式摘要:1.反比例函数的定义和几何意义2.反比例函数的几何意义公式3.反比例函数图形与系数的关系4.反比例函数在实际生活中的应用5.总结正文:在我们学习数学的时候,反比例函数是一个重要的知识点。
它不仅具有丰富的理论意义,还在实际生活中有着广泛的应用。
本文将介绍反比例函数的几何意义公式,以及反比例函数图形与系数的关系,帮助大家更好地理解和应用反比例函数。
首先,我们来回顾一下反比例函数的定义。
反比例函数是指形如y = k/x (其中k为常数,x≠0)的函数。
在这个定义中,x和y分别代表自变量和因变量,k为比例系数。
那么,反比例函数的几何意义是什么呢?反比例函数的几何意义在于,它表示了平面上一点到原点的距离与该点到另一固定点的距离的比值。
换句话说,反比例函数描述了平面上一点与原点及另一固定点之间距离的比例关系。
接下来,我们来看一下反比例函数的几何意义公式。
设点P(x,y)到原点O的距离为PO,到固定点A的距离为PA,那么反比例函数的几何意义公式可以表示为:PO / PA = k其中k为反比例函数的比例系数。
根据这个公式,我们可以看出反比例函数图形的几何意义:在平面直角坐标系中,点P(x,y)与原点O和固定点A 的距离比例为k。
反比例函数图形与系数的关系也非常明显。
当k>0时,反比例函数图形为第一、三象限;当k<0时,反比例函数图形为第二、四象限。
此外,反比例函数图形的分支数量与k有关。
当k>1时,反比例函数图形有两个分支;当0<k<1时,反比例函数图形有四个分支;当k=1时,反比例函数图形为一个点;当k<0时,反比例函数图形无分支。
最后,我们来看一下反比例函数在实际生活中的应用。
反比例函数在实际生活中有很多应用,比如物理中的电磁学、力学等领域,经济学中的成本与收益分析等。
通过了解反比例函数的几何意义和公式,我们可以更好地解决实际问题。
总之,反比例函数是一个既有理论意义又有实际应用的数学知识点。
反比例函数比例系数k 的几何意义知识梳理:如图所示,过双曲线)0(k≠=k xy 上任一点),(y x P 作x 轴、y 轴的垂线PM 、PN,垂足为M 、N ,所得矩形PMON 的面积S=PM •PN=|y|•|x|.,y xk=∴||k S k xy ==,。
反比例函数图像上任意一点“对应的直角三角形的面积”S=21│k │ 反比例函数图像上任意一点“对应的矩形的面积”S=│k │这就说明,过双曲线上任意一点作x 轴、y 轴的垂线,所得到的矩形的面积为常数|k|。
这是系数k 几何意义,明确了k 的几何意义,会给解题带来许多方便。
典例精析专题一 K 值与面积直接应用 例1:已知如图,A 是反比例函数ky x=的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A 、3B 、﹣3C 、6D 、﹣6变式练习1:如图,点P 是反比例函数6y x=图象上的一点,则矩形PEOF 的面积是 .变式练习2: 如图:点A 在双曲线 ky x=上,AB 丄x 轴于B ,且△AOB 的面积S △AOB =2,则k= .变式练习3:如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上:△ABP的面积为2,则这个反比例函数的解析式为______________.OABxy:变式练习4:如图反比例函数4y x=-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) A .8 B .6C .4D .2B 为双曲线x12-y =上的点,AD ⊥x 轴于D,BC ⊥y 轴于点C ,则四边形ABCD 的面积为 。
例2:如图1所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S 1,⊿BOD 的面积S 2,⊿POE 的面积S 3的大小: 。
反比例函数-反比例函数系数k的几何意义一.选择题(共30小题)1.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的=9.则k的值是()延长线交x轴于点C,若S△AOCA.9 B.6 C.5 D.42.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x 轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.123.如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF 和矩形HDBE的面积分别是1和2,则k的值为()A.B.+1 C.D.24.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另=3,则k=()一条直角边AC的中点D,S△AOCA.2 B.4 C.6 D.35.如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12 B.12 C.16 D.186.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=图象上一点,AO的延长线交函数y=的图象交于点C,CB⊥x轴,若△ABC的面积等于6,则k的值是()A.B.2 C.3 D.47.如图,平面直角坐标系中,点M是x轴负半轴上一定点,点P是函数y=﹣,(x<0)上一动点,PN⊥y轴于点N,当点P的横坐标在逐渐增大时,四边形PMON的面积将会()A.逐渐增大B.始终不变C.逐渐减小D.先增后减8.如图,已知A(﹣3,0),B(0,﹣4),P为反比例函数y=(x>0)图象上的动点,PC⊥x轴于C,PD⊥y轴于D,则四边形ABCD面积的最小值为()A.12 B.13 C.24 D.269.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x 正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k 的值为()A.16 B.20 C.24 D.2810.如图,过原点O的直线与双曲线y=交于A、B两点,过点B作BC⊥x轴,=5,则k的值是()垂足为C,连接AC,若S△ABCA.B.C.5 D.1011.如图,A点在y=(x<0)的图象上,A点坐标为(﹣4,2),B是y=(x <0)的图象上的任意一点,以B为圆心,BO长为半径画弧交x轴于C点,则△BCO面积为()A.4 B.6 C.8 D.1212.如图,点A是反比例函数y=图象上一点,AB垂直于x轴,垂足为点B,AC垂直于y轴,垂足为点C,若矩形ABOC的面积为5,则k的值为()A.5 B.2.5 C.D.1013.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为()A.8 B.12 C.16 D.2014.如图,四边形OABC是矩形,四边形CDEF是正方形,点C,D在x轴的正半轴上,点A在y轴的正半轴上,点F在BC上,点B,E在反比例函数y=的图象上,OA=2,OC=1,则正方形CDEF的面积为()A.4 B.1 C.3 D.215.如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为()A.1 B.2 C.4 D.16.如图,点A是反比例函数y=(x>0)图象上一点,AB⊥x轴于点B,点C 在x轴上,且OB=OC,若△ABC的面积等于6,则k的值等于()A.3 B.6 C.8 D.1217.已知,A是反比例函数y=的图象上的一点,AB⊥x轴于点B,O是坐标原点,且△ABO的面积是3,则k的值是()A.3 B.±3 C.6 D.±618.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB=2,则k2﹣k1的值是()∥x轴,并分别交两条曲于A、B两点,若S△AOBA.1 B.2 C.4 D.819.如图,已知反比例函数y=的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为4+2,AD=2,则△ACO的面积为()A.B.C.1 D.220.Rt△ABC在平面坐标系中摆放如图,顶点A在x轴上,∠ACB=90°,CB∥x=4,则k的值为()轴,双曲线经过CD点及AB的中点D,S△BCDA.8 B.﹣8 C.﹣10 D.1021.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.422.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.1323.如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.24.如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S=2,则k的值是()△ABMA.2 B.m﹣2 C.m D.425.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S326.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1 B.2 C.3 D.427.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC ⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④28.如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1 B.3 C.6 D.1229.如图,已知双曲线y1=(x>0),y2=(x>0),点P为双曲线y2=上的一点,且PA⊥x轴于点A,PA,PO分别交双曲线y1=于B,C两点,则△PAC的面积为()A.1 B.1.5 C.2 D.330.如图,已知矩形OABC的面积为25,它的对角线OB与双曲线y=(k>0)相交于点G,且OG:GB=3:2,则k的值为()A.15 B.C. D.9反比例函数-反比例函数系数k的几何意义参考答案与试题解析一.选择题(共30小题)1.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的=9.则k的值是()延长线交x轴于点C,若S△AOCA.9 B.6 C.5 D.4【分析】作AD⊥x轴于D,BE⊥x轴于E,设反比例函数解析式为y=(k>0),根据反比例函数图象上点的坐标特征得A、B两点的纵坐标分别是、,再证明△CEB∽△CDA,利用相似比得到===,则DE=CE,由OD:OE=a:2a=1:2,则OD=DE,所以OD=OC,根据三角形面积公式得到S△AOD=S△AOC=×9=3,然后利用反比例函数y=(k≠0)系数k的几何意义得|k|=3,易得k=6.【解答】解:作AD⊥x轴于D,BE⊥x轴于E,如图,设反比例函数解析式为y=(k>0),∵A、B两点的横坐标分别是a、2a,∴A、B两点的纵坐标分别是、,∵AD∥BE,∴△CEB∽△CDA,∴===,∴DE=CE ,∵OD :OE=a :2a=1:2,∴OD=DE ,∴OD=OC ,∴S △AOD =S △AOC =×9=3,∴|k |=3,而k >0,∴k=6.故选B .【点评】本题考查了反比例函数y=(k ≠0)系数k 的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k |.也考查了三角形相似的判定与性质.2.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数y=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k=( )A .B .C .D .12【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE =S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选C.【点评】此题考查了反比例函数的综合知识,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.3.如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF 和矩形HDBE的面积分别是1和2,则k的值为()A.B.+1 C.D.2【分析】设D(t,),由矩形OGHF的面积为1得到HF=,于是根据反比例函数图象上点的坐标特征可表示出E点坐标为(kt,),接着利用矩形面积公式得到(kt﹣t)•(﹣)=2,然后解关于k的方程即可得到满足条件的k的值.【解答】解:设D(t,),∵矩形OGHF的面积为1,DF⊥x轴于点F,∴HF=,而EG⊥y轴于点G,∴E点的纵坐标为,当y=时,=,解得x=kt,∴E(kt,),∵矩形HDBE的面积为2,∴(kt﹣t)•(﹣)=2,整理得(k﹣1)2=2,而k>0,∴k=+1.故选B.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.4.如图,Rt △AOC 的直角边OC 在x 轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC 的中点D ,S △AOC =3,则k=( )A .2B .4C .6D .3【分析】由直角边AC 的中点是D ,S △AOC =3,于是得到S △CDO =S △AOC =,由于反比例函数y=经过另一条直角边AC 的中点D ,CD ⊥x 轴,即可得到结论. 【解答】解:∵直角边AC 的中点是D ,S △AOC =3,∴S △CDO =S △AOC =,∵反比例函数y=经过另一条直角边AC 的中点D ,CD ⊥x 轴,∴k=2S △CDO =3,故选D .【点评】本题考查了反比例函数系数k 的几何意义,求得D 点的坐标是解题的关键.5.如图,正方形OABC 的边长为6,A ,C 分别位于x 轴、y 轴上,点P 在AB 上,CP 交OB 于点Q ,函数y=的图象经过点Q ,若S △BPQ =S △OQC ,则k 的值为( )A .﹣12B .12C .16D .18【分析】由PB ∥OC 可得出△PBQ ∽△COQ ,结合三角形面积比等于相似比的平方可得出PB=PA=OC,结合正方形OABC的边长为6可得出点C、点P的坐标,利用待定系数法即可求出直线CP的函数解析式,联立直线OB与直线CP的函数解析式即可得出点Q的坐标,利用待定系数法即可求出k值.【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=PA=OC=3.∵正方形OABC的边长为6,∴点C(0,6),点P(6,3),直线OB的解析式为y=x①,∴设直线CP的解析式为y=ax+6,∵点P(6,3)在直线CP上,∴3=6a+6,解得:a=﹣,故直线CP的解析式为y=﹣x+6②.联立①②得:,解得:,∴点Q的坐标为(4,4).将点Q(4,4)代入y=中,得:4=,解得:k=16.故选C.【点评】本题考查了反比例函数系数k的几何意义以及待定系数法求函数解析式,解题的关键是求出点Q的坐标.本题属于基础题,难度不大,解决该题型题目时,根据相似三角形的面积比等于相似比的平方结合给定条件求出点Q的坐标,再利用待定系数法求出反比例函数解析式即可.6.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=图象上一点,AO的延长线交函数y=的图象交于点C,CB⊥x轴,若△ABC的面积等于6,则k的值是()A.B.2 C.3 D.4【分析】设点A的坐标为(m,),直线AC经过点A,可求得直线AC的表达式为y=x.直线AC与函数y=一个交点为点C,则可求得点C的坐标当k>0时C为(﹣mk,﹣),故×(﹣)(﹣mk+|m|)=6,求出k的值即可.【解答】解:设A(m,)(m<0),直线AC的解析式为y=ax(k≠0),∵A(m,),∴ma=,解得a=,∴直线AC的解析式为y=x.∵AO的延长线交函数y=的图象交于点C,∴C(﹣mk,﹣),∵△ABC的面积等于6,CB⊥x轴,∴×(﹣)(﹣mk+|m|)=6,解得k1=﹣4(舍去),k2=3.故选C.【点评】本题考查的是反比例函数系数k的几何意义,根据题意得出直线AC的解析式,再用m表示出C点坐标是解答此题的关键.7.如图,平面直角坐标系中,点M是x轴负半轴上一定点,点P是函数y=﹣,(x<0)上一动点,PN⊥y轴于点N,当点P的横坐标在逐渐增大时,四边形PMON 的面积将会()A.逐渐增大B.始终不变C.逐渐减小D.先增后减【分析】由双曲线y=﹣(x<0)设出点P的坐标,运用坐标表示出四边形ONPM 的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,﹣),∵PN⊥y轴于点N,点M是x轴负半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形ONPM的面积=(PN+MO)•NO=(﹣x+MO)•﹣=,∵MO是定值,∴四边形ONPM的面积是个增函数,即点P的横坐标逐渐增大时四边形ONPM 的面积逐渐增大.故选A.【点评】本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.8.如图,已知A(﹣3,0),B(0,﹣4),P为反比例函数y=(x>0)图象上的动点,PC⊥x轴于C,PD⊥y轴于D,则四边形ABCD面积的最小值为()A .12B .13C .24D .26【分析】设P 点坐标为(x ,),将四边形分割为四个三角形,四边形ABCD 面积的最小,即S △AOB +S △AOD +S △DOC +S △BOC 最小.【解答】解:设P 点坐标为(x ,),x >0, 则S △AOD =×|﹣3|×||=,S △DOC ==6, S △BOC =×|﹣4|×|x |=2x ,S △AOB =×3×4=6.∴S △AOB +S △AOD +S △DOC +S △BOC=12+2x +=12+2(x +)≥12+2×2×=24.故选C . 【点评】本题考查了反比例函数系数k 的几何意义,三角形的面积,本题借用考查四边形面积的最小值来考查反比例函数图象的应用,综合能力较强.9.如图,平面直角坐标系中,平行四边形OABC 的顶点C (3,4),边OA 落在x 正半轴上,P 为线段AC 上一点,过点P 分别作DE ∥OC ,FG ∥OA 交平行四边形各边如图.若反比例函数的图象经过点D ,四边形BCFG 的面积为8,则k的值为( )A.16 B.20 C.24 D.28【分析】根据图形可得,△CPF与△CPD的面积相等,△APE与△APG的面积相等,四边形BCFG的面积为8,点C(3,4),可以求得点D的坐标,从而可以求得k的值.【解答】解:由图可得,S▱ABCD,又∵S△FCP =S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为8,∴S▱CDEO=S▱BCFG=8,又∵点C的纵坐标是4,则▱CDOE的高是4,∴OE=CD=,∴点D的横坐标是5,即点D的坐标是(5,4),∴4=,解得k=20,故选B.【点评】本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.10.如图,过原点O的直线与双曲线y=交于A、B两点,过点B作BC⊥x轴,垂足为C,连接AC,若S△ABC=5,则k的值是()A.B.C.5 D.10【分析】由题意得:S△ABC =2S△AOC,又S△AOC=|k|,则k的值即可求出.【解答】解:设A(x,y),∵直线与双曲线y=交于A、B两点,∴B(﹣x,﹣y),∴S△BOC =|xy|,S△AOC=|xy|,∴S△BOC =S△AOC,∴S△ABC =S△AOC+S△BOC=2S△AOC=5,S△AOC=|k|=,则k=±5.又由于反比例函数位于一三象限,k>0,故k=5.故选C.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.11.如图,A点在y=(x<0)的图象上,A点坐标为(﹣4,2),B是y=(x <0)的图象上的任意一点,以B为圆心,BO长为半径画弧交x轴于C点,则△BCO面积为()A.4 B.6 C.8 D.12【分析】根据A点在y=(x<0)的图象上,A点坐标为(﹣4,2),可以求得k的值,根据B是y=(x<0)的图象上的任意一点,以B为圆心,BO长为半径画弧交x轴于C点,可知OB=BC,设出点B的坐标,即可表示出△BCO面积,本题得以解决.【解答】解:∵A点在y=(x<0)的图象上,A点坐标为(﹣4,2),∴k=(﹣4)×2=﹣8,∴,又∵B是y=(x<0)的图象上的任意一点,以B为圆心,BO长为半径画弧交x 轴于C点,∴设点B的坐标为(a,),OB=CB,∴OC=﹣2a,点B到OC的距离为,∴=8,故选C.【点评】本题考查反比例函数系数k的几何意义、反比例函数图象上点的坐标特征,解题的关键是明确反比例函数图象的特点,利用数形结合的思想解答问题.12.如图,点A是反比例函数y=图象上一点,AB垂直于x轴,垂足为点B,AC垂直于y轴,垂足为点C,若矩形ABOC的面积为5,则k的值为()A.5 B.2.5 C.D.10【分析】设点A的坐标为(x,y),用x、y表示OB、AB的长,根据矩形ABOC 的面积为5,列出算式求出k的值.【解答】解:设点A的坐标为(x,y),则OB=x,AB=y,∵矩形ABOC的面积为5,∴k=xy=5,故选:A.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.13.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为()A.8 B.12 C.16 D.20【分析】根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.【解答】解:∵△BCE的面积为8,∴BC•OE=8,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16,故选:C.【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB ∽△ABC,得到AB•OB•=BC•OE.14.如图,四边形OABC是矩形,四边形CDEF是正方形,点C,D在x轴的正半轴上,点A在y轴的正半轴上,点F在BC上,点B,E在反比例函数y=的图象上,OA=2,OC=1,则正方形CDEF的面积为()A.4 B.1 C.3 D.2【分析】先确定B点坐标(2,1),根据反比例函数图象上点的坐标特征得到k=2,则反比例函数解析式为y=,设CD=t,则OD=1+t,所以E点坐标为(1+t,t),再根据反比例函数图象上点的坐标特征得(1+t)•t=2,利用因式分解法可求出t 的值.【解答】解:∵OA=2,OC=1,∴B点坐标为(2,1),∴k=2×1=2,∴反比例函数解析式为y=,设CD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=2,整理为t2+t﹣2=0,解得t1=﹣2(舍去),t2=1,∴正方形ADEF的边长为1.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为()A.1 B.2 C.4 D.【分析】如图,过点A作AD⊥y轴于点D,结合等腰三角形的性质得到△ADO 的面积为1,根据反比例函数系数k的几何意义求得k的值.【解答】解:如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为2,=|k|=1,∴S△ADO又反比例函数的图象位于第一象限,k>0,则k=2.故选:B.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.如图,点A是反比例函数y=(x>0)图象上一点,AB⊥x轴于点B,点C 在x轴上,且OB=OC,若△ABC的面积等于6,则k的值等于()A .3B .6C .8D .12【分析】首先确定三角形AOB 的面积,然后根据反比例函数的比例系数的几何意义确定k 的值即可.【解答】解:∵OB=OC ,∴S △AOB =S △ABC =×6=3,∴|k |=2S △ABC =6,∵反比例函数的图象位于第一象限,∴k=6,故选B .【点评】本题考查了反比例函数的比例系数的几何意义,解题的关键是能够确定三角形AOB 的面积,难度不大.17.已知,A 是反比例函数y=的图象上的一点,AB ⊥x 轴于点B ,O 是坐标原点,且△ABO 的面积是3,则k 的值是( )A .3B .±3C .6D .±6【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=|k |.【解答】解:设点A 的坐标为(x ,y ),∵A 是反比例函数y=的图象上的一点,∴xy=k ,∵△ABO 的面积是3,∴S △ABO =|k |=3,解得k=±6,故选:D.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB=2,则k2﹣k1的值是()∥x轴,并分别交两条曲于A、B两点,若S△AOBA.1 B.2 C.4 D.8【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=4,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S=2,△AOB∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【点评】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd﹣ab=4是解此题的关键.19.如图,已知反比例函数y=的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为4+2,AD=2,则△ACO的面积为()A.B.C.1 D.2【分析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.【解答】解:在Rt△AOB中,AD=2,AD为斜边OB的中线,∴OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2﹣x,根据勾股定理得:AB2+OA2=OB2,即x2+(2﹣x)2=42,整理得:x2﹣2x+2=0,解得x1=+,x2=﹣,∴AB=+,OA=﹣,过D作DE⊥x轴,交x轴于点E,可得E为AO中点,∴OE=OA=(﹣)(假设OA=+,若OA=﹣,求出结果相同),在Rt△DEO中,利用勾股定理得:DE==(+),∴k=﹣DE•OE=﹣(+)×(﹣)=﹣,=DE•OE=×=,∴S△AOC故选A.【点评】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k 的几何意义,熟练掌握反比例的图象与性质是解本题关键.20.Rt △ABC 在平面坐标系中摆放如图,顶点A 在x 轴上,∠ACB=90°,CB ∥x 轴,双曲线经过CD 点及AB 的中点D ,S △BCD =4,则k 的值为( )A .8B .﹣8C .﹣10D .10 【分析】OA=a ,AE=b ,则C 点坐标(a ,),B 点坐标(b , ),根据S △BCD =S △ACD =4,得出S △ACB =10=AC•BC=•(﹣)b 得出bk=﹣20a ①,先求得D 的坐标,根据点D 在双曲线上,得出(b +a )(•)=k ,则b=2a ②,结合①②,即可求得k 的值.【解答】解:设OA=a ,AE=b ,则C 点坐标(a ,),B 点坐标(a +b , ) ∵AD=BD ,∴S △BCD =S △ACD =4,∴S △ACB =8=AC•BC=•(﹣)•b得bk=﹣16a ,∵B 点坐标(a +b , )∴点D在抛物线上,D点坐标(b+a,•)则(b+a)(•)=k,则b=2a,解,得k=﹣8.故选B.【点评】本题考查了反比例函数系数k的几何意义:三角形的面积等于|k|.21.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.4【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出k的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故选:B.【点评】本题考查的是反比例函数系数k的几何意义,熟知反比例函数y=图象中任取一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变是解答此题的关键.22.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13【分析】根据反比例函数系数k的几何意义,可得第一象限的小正方形的面积,再乘以4即可求解.【解答】解:∵双曲线y=经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.故选:C.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.23.如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.【分析】四边形PAOB的面积为矩形OCPD的面积减去三角形ODB与三角形OAC 的面积,根据反比例函数中k的几何意义,其面积为k1﹣k2.﹣S OBD﹣S OAC,【解答】解:根据题意可得四边形PAOB的面积=S矩形OCPD由反比例函数中k的几何意义,可知其面积为k1﹣k2.故选B.【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S=2,则k的值是()△ABMA.2 B.m﹣2 C.m D.4【分析】由题意得:S △ABM =2S △AOM ,又S △AOM =|k |,则k 的值即可求出.【解答】解:设A (x ,y ),∵直线y=mx 与双曲线y=交于A 、B 两点,∴B (﹣x ,﹣y ),∴S △BOM =|xy |,S △AOM =|xy |,∴S △BOM =S △AOM ,∴S △ABM =S △AOM +S △BOM =2S △AOM =2,S △AOM =|k |=1,则k=±2.又由于反比例函数位于一三象限,k >0,故k=2.故选A .【点评】本题主要考查了反比例函数中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点.25.如图,直线l 和双曲线(k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3【分析】由于点A 在y=上,可知S △AOC =k ,又由于点P 在双曲线的上方,可知S △POE >k ,而点B 在y=上,可知S △BOD =k ,进而可比较三个三角形面积的大小【解答】解:如右图,∵点A 在y=上,∴S=k,△AOC∵点P在双曲线的上方,>k,∴S△POE∵点B在y=上,=k,∴S△BOD∴S1=S2<S3.故选;D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是观察当x 不变时,双曲线上y的值与直线AB上y的值大小.26.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1 B.2 C.3 D.4【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD 的面积为1,∵点B 在双曲线y=上,且AB ∥x 轴,∴四边形BEOC 的面积为3,∴四边形ABCD 为矩形,则它的面积为3﹣1=2.故选:B .【点评】本题主要考查了反比例函数系数k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.27.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④【分析】由于A 、B 是反比函数y=上的点,可得出S △OBD =S △OAC =,故①正确;当P 的横纵坐标相等时PA=PB ,故②错误;根据反比例函数系数k 的几何意义可求出四边形PAOB 的面积为定值,故③正确;连接PO ,根据底面相同的三角形面积的比等于高的比即可得出结论.【解答】解:∵A 、B 是反比函数y=上的点,∴S △OBD =S △OAC =,故①正确;当P 的横纵坐标相等时PA=PB ,故②错误;∵P 是y=的图象上一动点,∴S 矩形PDOC =4,∴S 四边形PAOB =S 矩形PDOC ﹣S △ODB ﹣﹣S △OAC =4﹣﹣=3,故③正确;连接OP ,===4,∴AC=PC ,PA=PC , ∴=3,∴AC=AP ;故④正确;综上所述,正确的结论有①③④.故选C .【点评】本题考查的是反比例函数综合题,熟知反比例函数中系数k 的几何意义是解答此题的关键.28.如图,点A 是反比例函数(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( )A .1B .3C .6D .12【分析】作AH ⊥OB 于H ,根据平行四边形的性质得AD ∥OB ,则S 平行四边形ABCD =S 矩形AHOD ,再根据反比例函数y=(k ≠0)系数k 的几何意义得到S 矩形AHOD =6,所以有S 平行四边形ABCD =6.【解答】解:作AH ⊥OB 于H ,如图,∵四边形ABCD 是平行四边形ABCD ,∴AD ∥OB ,∴S 平行四边形ABCD =S 矩形AHOD ,∵点A 是反比例函数(x <0)的图象上的一点,∴S 矩形AHOD =|﹣6|=6,∴S 平行四边形ABCD =6. 故选:C .【点评】本题考查了反比例函数y=(k ≠0)系数k 的几何意义:从反比例函数y=kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k |.29.如图,已知双曲线y 1=(x >0),y 2=(x >0),点P 为双曲线y 2=上的一点,且PA ⊥x 轴于点A ,PA ,PO 分别交双曲线y 1=于B ,C 两点,则△PAC 的面A .1B .1.5C .2D .3【分析】作CH ⊥x 轴于H ,根据反比例函数y=(k ≠0)系数k 的几何意义得到S △OCH =,S △OPA =2,由CH ∥PA ,判断△OCH ∽△OPA ,利用相似的性质得到S △OCH :S △OPA =OH 2:OA 2=:2,则OH :OA=1:2,所以S △OCA =2S △OCH =1,然后利用△PAC 的面积=S △OPA ﹣S △OCA 进行计算.【解答】解:作CH ⊥x 轴于H ,如图,S △OCH =×1=,S △OPA =×4=2,∵CH ∥PA ,∴△OCH ∽△OPA , ∴S △OCH :S △OPA =OH 2:OA 2=:2,∴OH :OA=1:2,∴S △OCA =2S △OCH =1,∴△PAC 的面积=S △OPA ﹣S △OCA =1.故选A .【点评】本题考查了反比例函数y=(k ≠0)系数k 的几何意义:从反比例函数y=kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形。