当前位置:文档之家› 摩托车发动机图解∶发动机的基本构造

摩托车发动机图解∶发动机的基本构造

摩托车发动机图解∶发动机的基本构造
摩托车发动机图解∶发动机的基本构造

从本章开始,准备介绍一下摩托车发动机的具体结构。但是发动机和摩托车的性能密切相关,如果不从摩托车整车来考虑,很难掌握好发动机的结构知识。下面首先讲解一下发动机的基本构造,这部分内容和一般汽车用发动机大体相同。摩托车是一种精美的交通工具,高度重视乘坐时的各种细微感觉,而这一切都来源于各部分的技术水平,其中发动机的影响尤其巨大。

发动机的基本构造

●发动机的基本概念

产生动力的装置叫发动机。我们日常接触最多的是汽油机。此外还有许多其它种类的发动机,如火箭发动机,原子发动机等等。发动机这一术语最早来源于英语,正确的译意应是“产生动力的机械装置”。但没有人把电动机叫做发动机。一般来说,发动机通常定义为:使用某种燃料产生动力的机械装置。

从燃料燃烧的角度,可以把发动机分为以下二大类。其一为外燃机,这种发动机的特点是燃料是在发动机外部燃烧,发动机利用其热能产生动力,蒸气机就是一种典型的外燃机,火车曾广泛使用过蒸气机作为动力源。另一种是内燃机,这种发动机的特点是燃料在发动机内部燃烧,发动机利用其燃烧压力产生动力。

内燃机的种类也十分繁多,例如火箭发动机和喷气发动机。这二种发动机,都是利用燃料燃烧后产生的强大喷气来产生推力。汽车和摩托车不能使用这种发动机,因为这种发动机的动力不能直接传递给车轮。当然有些汽车为了创造世界汽车车速新纪录,也装用过这种发动机,但这总是极其特殊的例子。此外,还有燃气轮机,这种发动机的工作特点是燃料在其内部燃烧,燃气产生的压力推动燃气轮机的叶片旋转,从而输出动力。燃气轮机使用范围很广,但由于很难精细地调节输出的功率,所以汽车和摩托车很少使用燃气轮机,只有部分赛车装用过燃气轮机。

人类在不断地发明各种各样的发动机,现在人们也在不断地研制各种新型发动机。遗憾的是,能在汽车和摩托车上应用的发动机十分有限。特别是摩托车,由于各种条件的限制只能装用往复式发动机。

●往复式发动机

往复式发动机的重要零件有气缸、活塞和曲轴。气缸呈圆筒形状,活塞在气缸内往复运

动,这和活塞泵极其相似。实际上,往复式发动机也的确是从活塞泵演变过来的。发动机工作时,使用一些机构把混合气吸进汽缸,然后采用某种方法点燃混合气,使混合气燃烧、膨胀,利用燃气的压力推动活塞下行,通过连杆,把活塞的力传递给曲轴,并把活塞的往复力转化成曲轴的旋转扭矩。以上就是往复式发动机的工作原理。

往复式发动机尺寸紧凑、重量轻、输出的转速和功率容易控制。其中特别是汽油机输出功率高、尺寸小、重量轻,十分适用于摩托车。此外,柴油机热能转换效率高,优点较多。但由于柴油机排量功率低,转速控制较迟钝,所以摩托车不装用柴油机。

按工作循环分类,可将汽油机分为二冲程汽油机和四冲程汽油机,有关其具体工作原理将在有关章节中进行介绍。在汽车上,很少使用二冲程汽油机,所以在汽车发动机普及读物中,只介绍四冲程发动机。摩托车则不同,摩托车大量采用二冲程汽油机,所以本书也将详细地介绍一下二冲程汽油机。

转子发动机

转子发动机也是一种汽油机,但转子发动机不是往复发动机。转子发动机的主要零件有转子壳体、转子和偏心轴。转子壳体断面成椭圆形状,三角形的转子在转子壳体内做旋转运动。但转子并不是围绕固定轴心做旋转运动,所以转子的放置中心始终是变化的。偏心轴的作用是给转子提供合理的旋转中心,使转子的三个尖角始终能与缸壁接触。转子发动机工作时,转子每转一周产生三次燃烧过程,同时在偏心轴上获得三次扭动扭矩。

转子发动机的工作原理比较复杂,只是通过例图和文字讲解很难理解,这一点我有深切的体会,接下来有机会见到实物之后才真正的弄懂了,在本书中也不想过多地介绍转子发动机。过去五十铃公司曾生产过转子发动机的摩托车,现在英国的诺顿摩托车仍然装用转子发动机,松田公司在汽车上也采用了转子发动机,但从总的趋势来看,今后摩托车仍然不会广泛地使用转子发动机。

在摩托车上为什么很少使用转子发动机呢?原因是转子发动机的转速控制迟钝,在这一点上,二冲程汽油机存在着同样的问题,但二冲程汽油机的情况和转子发动机又完全不同。由于转子发动机生产厂家很少,这种发动机的改进工作很慢,技术进步迟缓,这直接影响了转子发动机今后应用的前景。我不是发动机的设计人员,但从我们日常接触的摩托车来看,根本见不到转子发动机的摩托车。

●发动机和变速器的一体化结构

一般,人们常把发动机叫做动力装置,由于发动机是产生动力的装置,所以这种称呼完全正确。特别是把摩托车的发动机叫做动力装置,更是恰当极了。

为什么这么说呢?原因也十分简单。发动机本身是摩托车的动力源,为了使用发动机与摩托车的行驶条件相互匹配,必须装用变速器和离合器,以便改变发动机的转速和输出扭矩。一般把变速器叫做一次减速装置。为了减轻摩托车的重量,缩小摩托车的尺寸,往往把发动机和其传动机构布置在一个壳体内,这就是发动机和变速器的组合结构。由于发动机和传动机构一体化了,所以人们在谈论某某摩托车发动机的时候,多数也包括了一部分传动机构。

由于发动机和变速器一体化了,所以把摩托车发动机叫做动力装置是最恰当不过了。当然,一体化的结构优点很多,它能使整个动力装置小型轻量化。

汽车大都采用独立结构的发动机和变速器。因为汽车的变型车十分繁多,往往需要用一种发动机和不同变速器匹配,装用在各种变型车上。此外发动机研制的费用十分高昂,研制的霎时间也非常长。所以能汽车发动机来说,当然应该采用独立结构的发动机了。一般,汽车发动机曲轴和变速器纵向布置,这种结构十分简单明了。但是从小型轻量化观点来看,汽车发动机和变速器的独立结构还是十分不利的。摩托车则不同,摩托车本身就是一种小巧轻量的交通工具,所以其小型轻量化工作十分有意义,在设计时应采取各种结构设计手段,努力使摩托车尽可能地小型轻量化。

在过去的摩托车上,发动机和变速器大都为独立式结构。现在美国哈利戴维森摩托车也还是如此,此外宝马公司的摩托车也是这样,即把变速器纵向布置在曲轴后端。但随着技术的进步,在大多数摩托车上,发动机和变速器都一体化了。

●发动机转速

发动机的转速单位是r/min,它表示在1分钟时间内曲轴转动多少次。转速是发动机的基本参数之一。

按使用条件分类,可将发动机分为固定式发动机和车用发动机。使用发动机驱动发电机组发电,这种发动机是典型的固定式发动机,固定式发动机工作时转速始终不变。而车用发动机则不同,其工作期间转速时时刻刻都在变化着。这一点十分重要,如果不能充分地

理解车用发动机的这个特点,就很难理解车用发动机的其它各项参数了,例如马力和扭矩等。

●扭矩

马力和扭矩是发动机的重要参数,在各公司的产品目录上,都标明了各种发动机的最大马力和扭矩。下面首先介绍一下扭矩。

扭矩又叫转矩,是使轴旋转的力矩。在日本,扭矩的常用单位是kg.m,国际标准单位是N.m。为了更好地理解扭矩的概念,下面举几个例子。例如用扭力板手拧紧螺钉,,如果扭扳手的长度为1m的话,在扭力扳手一端加上1kg的力,则螺钉的拧紧扭矩为1kg.m。如果扭手扳手的长度为0.5m的话,为了得到1kg.m的扭矩,必须施加2kg的力。反过来也是一样,如果驱动扭矩相同,距离旋转中心越远的位置,产生的力越小。

扭矩这一术语用于各种场合,在技术文件上常常可以看到一些规定,如“本螺钉的拧紧扭矩应为XXkg.m”。在摩托车上,常使用扭矩来表示曲轴的驱动力矩大小,曲轴的扭矩是摩托车驱动力的源泉。

在各种转速下,发动机产生的扭矩都各不一样。在发动机运转过程中,发动机输出扭矩和发动机的各个参数有关,如进气效率燃烧情况、排气效率、配气相位、化油器尺寸等。而这些参数大都与发动机的转速有关,所以发动机的扭矩和转速关系十分密切。在摩托车转变时,许多技术熟练的摩托车骑手,都能利用身体感受到的发动机扭矩变化,巧妙回事并使摩托车后轮适当地打滑,从而减小摩托车的转弯半径。

在发动机实际运转过程中,使发动机转速变化能相应地引起扭矩的变化,并使输出的扭矩值产生变化。发动机型号不同,发动机扭矩和转速的相互关系也各不相同,一般常把扭矩和转速的关系叫做发动机的扭矩特性。

●最大扭矩

在油门全开时,发动机能产生最大扭矩。

当然,在汽车和摩托车发动机油门全开时,发动机根本不可能保持某一固定转速。例如在油门全开加速时,发动机的转速将不断上升。从整车来看,这相当于摩托车从正常行驶转为加速超车,当然,这时发动机的运转工况因具体条件而异,也不一定是从最大扭矩的转速开始加速。在摩托车起步加速时,开始加速的转速将更低。

扭矩特性曲线大体可分为如下二大类,一种是平坦型,一种是陡峭型。如果在很大的转速范围内,发动机的扭矩变化不大,则这种发动机的扭矩特性比较平坦,最大扭矩值相对较低。如果发动机最大扭矩的转速越高,与发动机最大功率点的转速越近,则这种发动机的功率转速范围就越窄,转速一旦下降,输出功率也随之而急剧下降,这种发动机的扭矩特性比较陡峭。当然,大量的发动机在各种转速都能获得很高的扭矩,排量越小的发动机扭矩越小,而且只能在进排气效率最高的转速条件下得到最大扭矩。也就是说,小排量发动机的扭矩特性比较第三,扭矩的转速特性比较陡峭。

和汽车发动机相比,摩托车发动机排量较小,低速扭矩偏小。在小排量的条件下,为了获得较大的马力,必须提高最大扭矩的转速,所以摩托车扭矩特性往往比较陡峭。当然,尽管摩托车的低速扭矩较低,但由于摩托车重量很轻,所以其加速性能大部分十分优异。

当然,油门开度不同发动机的扭矩也不同。在转速相同的条件下,油门开度越大,发动机的扭矩也越大。实际上,油门开度变化之后,发动机的扭矩并不能立刻发生变化,二者之间总有一个时间差,这个时间差越大,说明该摩托车的油门响应性越差。和汽车不同,摩托车是一种趣味性交通工具,所以对油门的响应性要求极高。如果油门响应性过低,超过了人们习惯的水平,就会感到摩托车操纵性极差。对赛车来说,由于这是胜负的关键所在,所以要求更高。

从结构上来看,曲轴的扭矩不能直接驱动后轮,还必须通过齿轮减速才能驱动后轮。如果减速比为2的话,那么后轮得到的驱动扭矩就相应增加一倍。有关这部分内容请参见变速器的有关内容。

功率

功率是发动机的一个重要参数。许多人可能并不了解这个词的含意,但在日常生活中都经常碰到这个术语。功率表示了发动机单位时间做功能力的大小,即功率越大,发动机单位时间所做的功越多,反之亦然。

在摩托车行驶过程中,驾驶者拧动油门手柄,通过油门拉线控制化湍器的节气阀开度,从而控制了进入气缸的混合气量,结果使驱动摩托车前进的扭矩发生变化。但,只用扭矩一个参数来评价发动机的性能是不够的。这个原因也十分简单,因为扭矩的概念是属于力的范围,由于扭矩使摩托车产生驱动力,驱使摩托车,在摩托车前进过程中,还会产生以

下若干术语,即摩托车移动的距离、时间、速度等。

从表面上看,扭矩的单位和物理书的“功”的单位相同,但二者是十个完全不同的概念,请务必予以充分注意。对于直线运动的摩托车来说,其功率和驱动力、移动距离及时间有关,对于转动的发动机来说,其功率和扭矩及转速有关。

当把1kg重的物体举起1m高时,对该物体所做的功为1kg.m。功的概念和时间无关,例如无论是用1秒还是用1小时完成上述工作,二者所做的功都是相同的。对于摩托车来说,如果用一个月时间登上某个坡道也没关系的话,那么只用扭矩一个参数就能充分表示摩托车的性能。实际上当然不是这么一回事儿,因为同时也应表示摩托车的速度和加速性,所以必须使用功率这一术语。

最早提出功率概念的是英国人瓦特,他因发明了蒸气机而享有盛名。在使用蒸气机排出煤矿坑道中的积水时,他在马的动力为标准提出了功率的单位――马力,即在1秒的时间内,把550磅的水提高1尺所消耗的功率为1马力。这是英制马力,其代号为Hp.

目前,世界通用的功率单位是千瓦。但在日本仍然使用法制马力,所以本书也采用法制马力单位。法制马力单位使用范围较广,其代号为ps。标准规定1ps=75kg.m/s,即在1秒的时间内,把75公斤的重物提高1米所消耗的功率为1马力。同样可使用下式,用扭矩和转速来计算发动机的功率,马力(ps)=扭矩(kg.m)×转速(r/min)/716。下面再详细地介绍一下马力和扭矩的关系,以供诸位参考。

在教科书上,大都使用M来代表扭矩,用r代表作用力的作用距离,用F代表使物体转动的作用力。当作用力推动物体转动一周时,受力点的移动距离为2πr,则作用力所做的功为2πrF。如果在作用力的作用下,物体的转速为N,则该物体每秒的转速应为N/60。使用作用力所做的功乘以转速就是功率,为了得到马力,该结果还应除以75。

即马力(ps)=2πrF×N/(75×60)

考虑到扭矩为M=r×F

则马力(ps)=2πMN/(75×60)=MN/716

由上式可知,发动机的功率和扭矩及转速成正比。

假设有一台摩托车,其发动机的扭矩为5kg.m,转速为5000r/min,通过变速器减速之后驱动摩托车后轮旋转。如果减速比为5的话,则后轮的转速为1000r/min,同时后轮的驱动

扭矩也扩大五倍,变为25kg.m。

设该发动机的扭矩仍为5kg.m,而转速升高为10000r/min,则后轮的转速相应地变为2000r/min,而驱动扭矩不变。其结果使摩托车的车速增加了一倍。

假设该摩托车的减速比为2.5,这时只要发动机转速为5000r/min,后轮的转速就能达到2000r/min,摩托车也能高速行驶。但由于此时后轮的驱动扭矩减小了一半,当摩托车的行驶阻力过大时,将使发动机的转速下降,摩托车不能达到所要求的车速。为什么会出现这种现象呢,因为这二种情况下的发动机功率不同。5000r/min的发动机功率为35ps,10000r/min的发动机功率为70ps。

上面讲的都是极端简化的例子,但它所指出的原则十分重要。总之,为了提高摩托车的加速性,为了获得更高的车速,必须采用大功率的发动机。为了提高发动机的功率,只有二个途径,即提高发动机的扭矩和转速。

在摩托车行驶过程中,发动机并不能一直在最大功率点的转速上工作。例如摩托车处于某一变速档位,在发动机油门全开加速时,发动机转速急速上升,其变化幅度往往达到2000r/min或4000r/min。转速的变化幅度越小,说明该摩托车的加速性不好,摩托车速度不能提高。上面讲解了功率对发动机加速性的影响。除此之外,由于发动机的功率和转速有关,这就是常说的功率特性曲线(实际上也就是扭矩特性曲线),所以即使是二台最大功率相同的发动机,由于二者的功率特性曲线不同,这二台发动机的加速性也会大不一样。当然,如果发动机过分地追求大功率,必然强调高转速的扭矩,从而使低转速的扭矩变小,并使大扭矩的转速范围变窄,在小排量的摩托车发动机上,这种倾向十分明显。如上所述,对于摩托车的加速性来说,最大功率固然重要,功率特性曲线的走势也十分重要。

最大功率

最大功率又叫发动机的额定功率。在油门全开的条件下,随着转速的变化,实测的扭矩值也在不断地变化。和最大扭矩的转速相比,最大功率的转速要高得多。因为随着转速的提高,扭矩虽然有所下降,但转速高得多,所以功率仍然比扭矩点的功率高。一般,最大功率的转速比最大扭矩的转速越高,说明该发动机的扭矩特性曲线越平坦,扭矩随转速的提高下降得较慢。当然,排量越大的发动机,其最大功率也越高。

在日本为了减少交通事故,各摩托车生产厂家都对发动机的最大功率和升功率主动进行

限制,具体限制规定如下。例如不论发动机排量多大,摩托车发动机的最大功率均不得超过97马力。一般将运动摩托车分为二档,过去规定250摩托车最大功率的上限为45马力,现在降为40马力,过去规定400摩托车最大功率的上限为59马力,现在降为53马力。由上述限制规定的变化,可以清楚地看到摩托车生产厂家承受的社会压力。

从摩托车爱好者角度来看,大都认为摩托车功率大小和危险性无关。但从厂家,为了减少交通事故必须降低最大功率。就目前的技术水平而论,250ml的二冲程发动机很容易达到70马力,但由于限制规定只能降为40马力,不得不说是一件极为遗憾的事。在上述最大功率的限制下,各生产厂家开始研制新的车型,以满足人们对摩托车的各种休闲要求。实际上,在驾驶摩托车时很少使用最大马力,而且只是高车速也不能使人产生多大的乐趣。

●升功率

升功率是表征发动机强化程序的一个重要指标,它等于发动机最大功率除以排量。例如有一台500ml排量的发动机,最大功率为100ps,则该发动机的升功率为200ps/l。又如有一台1000ml排量的发动机,最大功率也为100ps,则该发动机的升功率为100ps/l。二者相比较,明显是升功率大的发动机性能高。为了提高发动机的动力性能,必须提高发动机的升功率。

一般来说,摩托车的升功率明显高于汽车,摩托车的升功率很少有低于100ps/l的。例如250摩托车的功率上限为40ps,其升功率高达160ps/l。赛车的升功率更高,某些500赛车的升功率竟接近400ps/l。一般,无增压的汽车发动机升功率都比较低,大都不到100ps/l。所以会产生这样大的差异,主要是由于摩托车十分重视体育比赛的运动性。此外摩托车发动机排量较小,容易提高动力性也是重要原因之一。

●提高功率

●高速大功率发动机

发动机扭矩相同时,转速愈高发动机功率愈大。发动机的高速化有利于提高发动机的功率,这种发动机叫高速大功率发动机。

在一定的排量条件下,为了提高发动机的功率,必须尽可能地提高发动机的转速,同时相应地提高发动机的扭矩。但从进气效率,燃烧过程来看,提高发动机热效率有一个不可逾越的界限。而且随着转速的提高,发动机的磨擦损失也要大幅度地提高。以前,由于技

术水平所限,一些转速并不很高的发动机往往也有许多问题,使其中低速性能大幅度下降。装用这种发动机的车辆在公路上表现十分不好,不仅容易出现故障,而且车速也较低。

最近,技术进步十分迅速,例如某四冲程4缸250的汽油机,其最大功率转速高达15000r/min,而且在19000r/min时,也运转得十分平稳。该发动机中低速性能也十分良好,可以从2000r/min圆滑地加速到高转速。从汽车的角度来看这简直是一台神乎其神的发动机。如果能自制一台这样的发动机,想来真是十分令人神往。

●磨擦损失

如果能降低发动机的磨擦损失,也就能相应地提高发动机的功率。对于某一特定发动机来说,只要用心,降低2-3ps的磨擦损失是很容易的。磨擦损失小的发动机优点很多,不但能提高功率,降低油耗,而且能提高发动机的油门响应性,提高油门精细控制发动机的能力。为此,必须采取各种结构设计手段,努力降低磨擦损失,此外,也必须选择合适材料,不断地提高加工精度。摩托车功率比较小,略有改善对整车性能影响很大,所以从古至今,大都把减小磨擦损失作为一个重要课题进行研究。

●功率区域

功率区域是摩托车爱好者经常使用的一个术语,它的概念十分含糊不清,一般是指功率较大的区域。在怠速时发动机功率很低,当发动机转速过高时,功率又将下降,只有在中高转速时,摩托车的功率才比较大,驾驶者才感到发动机有劲。所以功率区域大都是指这一区域,在这一区域内,摩托车可以在道路上高速行驶,车辆的加速性能也十分好。

●大功率区域

大功率区域,基本是指发动机的额定转速附近,但其上限和下限转速范围并不十分明确。其上限转速实际是发动机的超速区域,在此区域内,发动机的功率开始明显下降。

在汽车上,人们往往使用低速、中速、高速等一系列概念,这些概念也是界限十分含混不清的。而且发动机不同,各区域界限差别很大。例如,对于额定转速6000r/min的发动机来说,5000r/min附近应为高速,1500r/min应为低速。

如上所述,这些概念往往因人而异,到底哪个转速属于哪个区域实在令人莫衷一是。此外,许多摩托车骑手在交谈时,往往用这些概念表达自己的身心感受,其差异恐怕更大了,而且摩托车各类不同,其感觉的差异完全没有可比性。

油门的响应性必须符合人的感觉

●响应性

摩托车的响应性包括各个方面。对发动机来说,大都是指发动机转速是否跟上油门的变化,这就是发动机的油门响应性。摩托车骑手挑选摩托车时,十分重视摩托车的响应性,这一性能比功率还重要。

在摩托车骑手用右手加大油门时,希望后轮能跟右手动作共同变化,这样才能使车随人意。为了提高车辆的响应性,首先需要骑手具有较高的技巧,能摸透摩托车各部的性能。此外,摩托车的结构设计也十分重要,例如气缸内的燃烧状态,曲轴平衡重的大小和重量,化油器的性能等等。最后,摩托车的响应性也和轮胎的地面附着力有关,和传动系以有前后悬挂有关。

除了发动机之外,方向把的响应性也是一个重要参数。

●动态特性

在各部状态变化时,车辆的瞬态过渡特性叫摩托车的动态特性。

例如,当骑手拧动油门手柄不断加大供油量时,发动机的转速不断上升,从而改变了发动机的扭矩和马力。当然,骑手并不是按着理论计算去加大油门的,而是随心所欲地进行操作。在这个过程中,发动机的运转状态不断地处于动态变化之中。

当油门一定时,改变摩托车的行驶阻力,可以获得各种转速变化。这也是一种非稳定运转工况。

以上是发动机的动态特性。此外,方向把的动态特性也十分重要。

在摩托车骑手之间,往往使用一些拟声词来表达对摩托车动态特性的感觉,这样的交流直观明了,因为有些感觉很难用语言来描述。

●部分油门

部分油门是摩托车骑手中的一个常用术语,它指油门开度适中时摩托车的运动状态。当然,这种状态即不是加速,也不是制动,因为加速时油门近乎全开,制动时油门近乎全关。部分油门主要是指以下状态,即传动链传递力矩给后轮,但摩托车车速并没提高。实际上,这是摩托车等速行驶时的油门开度。在转弯时,摩托车的油门必须能从全关圆滑地过渡到部分油门,这一点十分重要,因为它和发动机的响应性密切相关。

发动机的性能曲线和摩托车的行驶性能曲线

●发动机性能曲线

如上图所示,发动机性能曲线的横坐标是转速,纵坐标是功率、扭矩和比油耗。发动机性能曲线共有三条曲线,每个曲线的单位各不相同,各曲线之间的交点也没有特殊意义。其中较平坦的是扭矩曲线。扭矩曲线和功率曲线又叫扭矩特性曲线和功率特性曲线。

在低转速时,扭矩曲线有一段下凹开关,它说明在这个转速区域内发动机的燃烧不好。这种情况,在功率曲线上也有表现,但现象不十分明显。在实际乘用摩托车时,能清楚地感到这一区域。

当摩托车骑手连续加大油门加速时,发动机转速不断上升,马力不断提高。其中有一段时间ps突然提高,加速性极好。这段状态不发生在扭矩曲线下降区段,而发生在扭矩曲线上升区段。特别是在通过扭矩下凹区段期间,摩托车的加速性最好。有些发动机为了提高摩托车的加速性,往往在适当地转速范围内,有意地使扭矩曲线部分地下凹。

上面介绍的发动机性能曲线,是在油门全开时得到的,一般叫总功率特性曲线,也叫外特性曲线。在摩托车实际行驶过程中,油门开度时大时小,只在发动机部分负荷条件下工作。上述发动机的性能曲线不能反映这时的发动机工作情况。

在发动机性能曲线的最下部,是比油耗曲线,它表示发动机单位马力小时内所消耗的燃油量,其单位是g/ps.h。该曲线表示了发动机的经济性,也表示了发动机的燃烧效率高低。

在比油耗曲线上,哪部分的曲线越低,说明在该转速范围内发动机最省油,燃烧效率最高,用最少的汽油能产生较大的功率。比油耗曲线的最低点,大都出现在最大扭矩的转速附件。当然,上述的比油耗曲线也是油门全开时的性能曲线。

●行驶性能曲线

摩托车行驶性能曲线表示了摩托车的各种行驶工况。在该曲线上,一组曲线表示了发动机转速和车辆速度之间的关系,由这组曲线,可以清楚地了解各档位所覆盖的车速范围,也可以了解到换档时发动机转速的变化情况。

图中有一组弯弯曲曲的曲线,这是后轮驱动力曲线,如图所示共六条,它表示了在不同变速档位时后轮驱动力的差异。在油门全开时,可以从发动机性能曲线上,求得各转速时的扭矩,利用这一扭矩和变速器各档减速比,就能方便地计算出各种条件下的后轮驱动力,

从而得出这一组曲线。最后,在曲线图最下部也有一组曲线,这是摩托车的行驶阻力曲线,在这组曲线边上标出道路坡度,例如0%,它表示平坦路面的道路阻力曲线。该曲线和6档的后轮驱动力曲线有一个交点,该交点在横坐标上的投影就是摩托车的最大车速,如图所示,该摩托车在平坦路面上的最大车速为180km/h,10%坡道上的最大车速为140km/h。

目前,人们已经不再这么麻烦地求车速了,因为日本法律规定,摩托车最大车速不得超过180km/h,一般高性能摩托车最大车速大都为180km/h左右,所以这样求取车速已经毫无意义了。

●行程

行程这一术语应用范围十分广泛。例如往复式发动机的工作循环常使用行程这一术语,此外悬挂装置上也常使用这一术语,在变速器上,也常听人说变速杆行程太小等等。

在发动机上,经常使用行程来描述活塞的运动状态。活塞在气缸内做往复直线运动。每做一次直线运动就叫一个行程。

●上死点和下死点

在发动机上,气缸大都布置在曲轴上的上部。活塞在气缸内做往复直线运动,当活塞上升到最高点之后,将开始向下运行。一般把活塞到达最高点的时刻叫上死点,在上死点时,活塞运动速度为零,所以才叫上死点。同理,把活塞到达最低点的时刻叫下死点。

发动机的布置形式有多种多样。有的曲轴成水平布置,有的曲轴成垂直布置,但不管曲轴如何布置,习惯上把活塞位于离曲轴最远的位置叫上死点,反之叫下死点。所以上下死点并无上下的含意,只是表达活塞与曲轴的相对位置。

当活塞位于上下死点时,相对曲轴有二个固定转角,习惯上把曲轴的这二个转角也叫上死点和下死点。从而也可以用曲轴的转角来表示活塞的位置,例如活塞做一次往复运动,曲轴转过360°,活塞顺时针转过30°,叫上死点后30°,活塞反时针转过30°,叫上死点前30°,等等。

●缸径和行程

在发动机上,活塞在气缸内做往复直线运动,其中气缸的直径简称为缸径,活塞从上死点运动到下死点所走过的距离叫活塞行程,简称为行程。以上二个尺寸大都用毫米表示。发动机的缸径和行程是发动机的重要尺寸参数,是计算排量的基本数据。此外,常把缸径

和行程的比值叫缸径行程比。缸径行程比也是发动机的一个重要尺寸参数,该比值对发动机的性能影响十分大。

一般把缸径行程比大于1的发动机叫短行程发动机,把缸径和行程相等的发动机叫做等行程发动机。同理,把行程大于缸径的发动机叫做长行程发动机。其中短行程发动机很有特色,在排量和转速相等的条件下,短行程发动机的活塞速度较低,活塞直径较大,所以进排气门尺寸可以布置得大一些,由于有以上这些特点,短行程发动机是一种高速大功率发动机。

在四冲程发动机上,通过缸径比的选择,可以改变发动机的外形尺寸,使之适合整车布置的各种要求。例如采用短行程发动机,可降低发动机高度尺寸,缺点是增加了发动机的宽度尺寸。在二冲程发动机上,不能过大地改变缸径行程比,因为在这种发动机的缸壁上,需要布置各种换气口,所以缸径行程比改变的自由度很小。

●排量

单缸排量等于发动机的行程容积,其计算方法是气缸断面积乘以行程,一般,用毫升或升做计量单位。对于单缸机来说,这也是该发动机的排量,对于多缸机来说,还应乘以气缸数。一般在谈到发动机排量时,大都指发动机的总排量。

发动机排量越大,发动机每次吸进的混合气也越多,这有利于提高发动机的扭矩和功率,其缺点是将使发动机过大过重。这一点对摩托车来说十分重要,因为发动机是摩托车上最大最重的一个装置,过大过重的发动机,往往给摩托车造成很大的问题。

一般常用排量来划分摩托车的等级,有关这一部分内容,已经在前面介绍过了。过去,各生产厂家在各等级内努力提高功率,以便应付日益激烈的市场竞争。现在,日本各厂家被功率限制规定所束缚,努力提高功率的竞争已经过去了。

四冲程发动机的工作原理

●四冲程发动机

四冲程发动机使用范围十分广泛。四冲程发动机的特点是活塞每做四次往复运动,气缸内点火一次。

下面,具体地介绍一下四冲程发动机的工作原理。

1、进气行程:此时进气门开启,活塞下行。由于活塞从上死点向下运动,在气缸内产

生较大的真空度。在真空度的作用下,把汽油和空气的混合所吸进气缸。

2、压缩行程:此时进排气门关闭,活塞从下死点向上运动,使气缸内的混合气被活塞压缩。

3、燃烧行程:在混合气压缩终了时,火花塞跳火引燃混合气,同时产生大量的热和很高的压力。燃气的压力推动活塞下行并驱动曲轴旋转。

4、排气行程:活塞被缸内高压气体推动继续下行,在到达下死点之前排气门开启,废气从气缸里喷射出去,此后随着活塞继续上行,把残留的废气挤出气缸。

在四冲程发动机上,上述四个行程反复循环,从而使发动机持续运转。在上述四个行程之中,进排气行程都是靠气体的压力差进行的。在进气行程时,由于气缸内产生很大的真空度,和外气的压力差变大,新鲜混合气才被吸进气缸。这一原理和注射器抽水的原理一样。在排气行程初期,由于气缸内压力很大,所以废气以很高的速度喷出气缸。当然,活塞上行也有利于排出残留的废气,但和压力差产生的排气相比,所占份额相对较小。有关进排气过程,还将在后面的配气相位章节中进行详细介绍。

有些人将燃烧行程叫做爆炸行程,所以使用爆炸这一术语,主要是强调气缸内的燃烧和一般的燃烧差别很大,燃烧速度十分高。实际上,当火花塞跳火之后,气缸内的混合气迅速点燃,火焰传播速度高达20m-30m/s,但最高也不到50m/s。火药的爆炸则不同,在火药发生爆炸时,其火焰传播速度高达2000-8000m/s,二者燃烧速度的数量级差别很大。如果气缸内的燃烧是爆炸的话,发动机必然受到严重破坏。所以本书把这一行程称为燃烧行程。

综上所述,在四冲程发动机上,在活塞的四个行程当中,只有一个行程燃烧做功。所以和二冲程发动机相比,优点是燃料消耗量较低,经济性好,大功率的转速范围较宽,运转圆滑平稳,非稳定工况的过渡性好,其缺点是重量重、结构复杂,升功率较低。

在车辆上最早实用化的发动机是四冲程发动机,这种发动机广泛应用在各个领域内。由于大量的技术人员和企业做了相当多的研究工作,投入了大量科研经费,这种发动机的技术已经十分成熟,是目前技术水平最高的一种发动机。

二冲程和四冲程发动机

●二冲程发动机的特点

●二冲程发动机

在二冲程发动机上,活塞上下运动二个行程,发动机点火一次。

二冲程发动机的进气过程比四冲程发动机复杂。四冲程发动机的混合气直接进入气缸,二冲程发动机则不同。在二冲程发动机上,混合气先后流经曲轴箱和气缸,并在这二个腔室内进行压缩。

下面,先讲解一下曲轴箱的进气和压缩过程。

1、当活塞从下死点向上运动时,在曲轴箱内产生较大的真空度,在真空度的作用下,由化油器来的混合气从进气口流进曲轴箱。

2、当活塞从上死点向下运动时,进气口关闭,曲轴箱内的压力随活塞下行而升高,混合气被压缩。为了和气缸内的压缩相区别,一般把曲轴箱内的压缩过程叫做一次压缩。当活塞运动到一定位置时,扫气口开启,在曲轴箱内被压缩的混合气从扫口流进气缸。

扫气口和排气口都布置在气缸壁上,随着活塞的上下运动,自动地打开和关闭这二个换气口。

下面,再介绍一下气缸的进气和压缩过程。

3、随着曲轴的旋转,活塞再次从下死点向上运动,并适时地关闭扫气口,随后排气口也被活塞关闭了。随着活塞的上升,混合气再次被压缩。当活塞到达上死点附近时,火花塞跳火点燃混合气。

4、混合气迅速燃烧,同时产生大量的热和很高的压力,在高压气体的推动下,活塞下行。活塞下行到一定位置之后,首先打开排气口,燃烧后的废气高速喷出排气口。此后接头打开扫气口,新鲜的混合气被压进气缸中,并把残留的废气挤出气缸。由于是利用压缩的混合气清扫排气,所以这个换气口叫做扫气口。

此后随着活塞的上升,气缸内的混合气再次被压缩,同时在曲轴箱内产生很大的真空度,曲轴箱再一次处于进气状态。

如上所述,当活塞下行时只有半个行程是燃烧过程,另半个行程是排气过程和扫气过程。当然在活塞通过下死点之后,排气和扫气过程仍持续进行一段时间。

在排气和扫气过程中,必须充分地利用排气和扫气的气流能量,当然,为了组织好排气和扫气过程,需要有较高的技术水平。此外由于这二个过程互相重叠,使混合气和废气在气缸内混杂,并使一部分混合气无效地从排气口逸出,所以二冲程发动机的燃烧效率较差。

在相同的转速条件下,和四冲程发动机相比,二冲程发动机的燃烧次数多一倍,所以这种发动机的功率高。二冲程发动机的优点很多,例如结构简单,没有气门和凸轮轴,而且尺寸小、重量轻、加工成本低。

在赛车上,和四冲程发动机相比,二冲程发动机具有压倒性的优势。所以往往把二冲程赛车和四冲程赛车分开来比赛。一般而论,二冲程赛车只能参加比赛,不能用于正常行驶,而且经济性不好,十分费油。

二冲程发动机是一种较新的机种,其发展历史比四冲程发动机短得多。一般二冲程发动机的单缸排量都很小,如果单缸排量过大,将使缸内各处的温度分布不均匀,使排气和扫气效果变差。在汽车上,四冲程发动机占据着统治地位。由于二冲程发动机工作不稳定,很难应用在轿车上。过去在一些微型汽车上,曾广泛使用过二冲程发动机,近来随着排放法规限制越来越严,汽车已经不再装用二冲程发动机了。但是二冲程发动机升功率大、小型轻量化、具有很大的优点。基于上述考虑,最近一些厂家开始积极地研制汽车用二冲程发动机,希望有朝一日能在汽车上装用二冲程发动机。

综上所述,和四冲程发动机相比,二冲程发动机的研制历史较短,技术水平较低。特别是它的排气和扫气过程还远不如人意,人们还远远没有掌握其规律性。如果能进行大规模的开发和研制,把目前经验积累的知识进一步科学化,建立较完整的理论系统,不断地开发新技术,相信二冲程发动机的技术将会有新的突破。二冲程摩托车将能充分占领市场。

在二冲程发动机进气口的开关技术方面,有许多成熟的技术,如活塞阀、转盘阀、引导阀等,有关这方面的问题,将在进排气系的有关章节中详细介绍。

图解常见汽车发动机结构图

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。 ●汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。 ●气缸数不能过多

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。 ●V型发动机结构 其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不

好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。 ●W型发动机结构 将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。 ●水平对置发动机结构

汽车构造原理图解

汽车构造(发动机,底盘,车身,电气设备) 1. 发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。 2. 底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 3. 车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。 4. 电气设备:电气设备由电源和用电设备两大部分组成。电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。 性能参数 1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。 2. 最大总质量(kg):汽车满载时的总质量。 3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。 4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。 5. 车长(mm):汽车长度方向两极端点间的距离。 6. 车宽(mm):汽车宽度方向两极端点间的距离。 7. 车高(mm):汽车最高点至地面间的距离。 8. 轴距(mm):汽车前轴中心至后轴中心的距离。 9. 轮距(mm):同一车轿左右轮胎胎面中心线间的距离。 10. 前悬(mm):汽车最前端至前轴中心的距离。 11. 后悬(mm):汽车最后端至后轴中心的距离。 12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。 13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。 14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。 15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。 16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。 17. 最大爬坡度(%):汽车满载时的最大爬坡能力。 18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。 19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m 代表驱动轮数。

汽车发动机构造课程标准

《汽车发动机构造》课程标准 课程类型理实一体课课程性质必修课程 修读学期第3学期课程学时64学时 1.课程定位与设计思路 1.1课程定位 本课程是汽车检测与维修专业的必修课程。该课程通过理实一体化的教学方式,采取案例分析、拆装练习、实操故障等教学方法使学生掌握汽车发动机构造和原理、汽车发动机新技术和简单故障的排除方法,同时,培养学生沟通、协调能力和团队合作精神。 汽车发动机构造课程开设在第三学期。通过教、学、做使学生掌握汽车发动机拆装与检测的具体操作步骤、注意事项、材料及工具的使用方法,建立汽车检修规范化、标准化、系统化的工作思维模式。 1.2设计思路 本课程的内容安排保证了汽车类专业所需的最基本、最主要的汽车结构基础知识,汽车拆装技能和简单的维修知识,同时体现了专业特点;培养学生分析问题和解决实际问题的能力。主要讲授汽车结构原理等知识,包括汽车发动机基本结构、发动机电控系统、发动机性能分析、前沿发动机技术等内容。使学生获得汽车结构的基础知识,掌握汽车拆装的一般方法,对汽车的简单故障具有初步的分析能力,为今后继续学习和应用汽车新技术打下一定的基础。同时作为本专业先开专业课程在对学生职业素养养成、职业操作规范意识的培养有着重要的作用。 2.课程目标 本课程主要讲授汽车发动机总成相关知识和维修技能,包括机械和电控两部分。通过教、学、做使学生掌握汽车发动机总成维修的具体操作步骤、注意事项、材料及工具的使用方法,建立汽车动机总成维修规范化、标准化、系统化的工作思维模式,具备按照规范的流程独立完成汽车发动机总成相关维修工作的能力。 2.1能力目标 (1) 要求学生能够对汽车的汽车发动机总成进行常规保养、初步诊断、简单维修。能够评估汽车现有的汽车发动机系统,根据客户的陈述和故障的症状,能够制定初步的

摩托车发动机图解∶发动机的基本构造

从本章开始,准备介绍一下摩托车发动机的具体结构。但是发动机和摩托车的性能密切相关,如果不从摩托车整车来考虑,很难掌握好发动机的结构知识。下面首先讲解一下发动机的基本构造,这部分内容和一般汽车用发动机大体相同。摩托车是一种精美的交通工具,高度重视乘坐时的各种细微感觉,而这一切都来源于各部分的技术水平,其中发动机的影响尤其巨大。 发动机的基本构造 ●发动机的基本概念 产生动力的装置叫发动机。我们日常接触最多的是汽油机。此外还有许多其它种类的发动机,如火箭发动机,原子发动机等等。发动机这一术语最早来源于英语,正确的译意应是“产生动力的机械装置”。但没有人把电动机叫做发动机。一般来说,发动机通常定义为:使用某种燃料产生动力的机械装置。 从燃料燃烧的角度,可以把发动机分为以下二大类。其一为外燃机,这种发动机的特点是燃料是在发动机外部燃烧,发动机利用其热能产生动力,蒸气机就是一种典型的外燃机,火车曾广泛使用过蒸气机作为动力源。另一种是内燃机,这种发动机的特点是燃料在发动机内部燃烧,发动机利用其燃烧压力产生动力。 内燃机的种类也十分繁多,例如火箭发动机和喷气发动机。这二种发动机,都是利用燃料燃烧后产生的强大喷气来产生推力。汽车和摩托车不能使用这种发动机,因为这种发动机的动力不能直接传递给车轮。当然有些汽车为了创造世界汽车车速新纪录,也装用过这种发动机,但这总是极其特殊的例子。此外,还有燃气轮机,这种发动机的工作特点是燃料在其内部燃烧,燃气产生的压力推动燃气轮机的叶片旋转,从而输出动力。燃气轮机使用范围很广,但由于很难精细地调节输出的功率,所以汽车和摩托车很少使用燃气轮机,只有部分赛车装用过燃气轮机。 人类在不断地发明各种各样的发动机,现在人们也在不断地研制各种新型发动机。遗憾的是,能在汽车和摩托车上应用的发动机十分有限。特别是摩托车,由于各种条件的限制只能装用往复式发动机。 ●往复式发动机 往复式发动机的重要零件有气缸、活塞和曲轴。气缸呈圆筒形状,活塞在气缸内往复运

摩托车发动机技术及工作原理

摩托车发动机技术及工作原理 (一)摩托车发动机工作原理概述 1.四冲程发动机工作原理(如图1所示) (1)第一行程-进气行程 活塞在上止点前某一规定曲柄转角时,进气门开启,可燃混合气被吸入汽缸。当活塞由上止点向下止点运动,排气阀则在上止点某一规定的曲轴转角时关闭,同时活塞上方的汽容积增大,使汽缸形成真空度,可燃混合气继续通过进气门

吸入。当活塞行至下止点后某一规定曲柄转角时,进气门关闭。此时,进气工作过程结束。 (2)第二行程-压缩行程 活塞由下止点向上止点运动,当进气工作过程终了时,进气门和排气门都处于关闭状态,此时汽缸内的可燃混台气形台被压缩。 (3)第三行程-翻烧膨胀作功行程 在压缩行程,当活塞向上行至上止点前某-规定曲柄转角时,火花塞电极间发出火花,将被压缩的可燃混合气点燃。燃烧着的可燃混合旬吏汽缸内的温度和压力急剧升高,活塞则在此高温高压气压的作用下,再由上止点向下止点运动,且通过连杆驱使曲轴旋转而做有用功。 (4)第四行程-排气行程 在燃烧膨胀行程,当活塞行至下止点前某一规定曲轴转角时,扫汽阀开启,废气即通过排气门开始排出。曲轴仍继续旋转,并推动活塞再由下止点向上止点运动,将废气推出汽缸。此排气过程直到活塞行至上止点后某一规定曲轴转角,扫汽门被关闭时终止。 2.四冲程发动机优缺点 (1)优点 进气、压缩、膨胀(爆发)、排气各过程各自单独进行,因此工作可靠效率高,稳定性好。低速至高速的转速范围大(500-1000r/min以上)。不存在二冲程发动机那样的窜气回流损失,燃油消耗率低。低速运转平稳,依靠闰渭系润滑,不易过热。进气就压缩过程时间长,容积效率及平均有效压力高。热负荷比二冲程发动机小。不用担心变形和烧蚀问题。扫漫大,可设计成大功率发动机。 (2)缺点 气门配气机构复杂,零部件多,保养困难;机械噪声大;由于曲轴旋转二圈爆发1次,所以旋转平衡不稳定。

汽车发动机的基本构造

1. 发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后 转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异,发动机的总体结构图如下所示。 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 汽油发动机 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 柴油发动机 汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。柴油机通常由两大机构和四大系统组成(无点火系)。 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 1.曲柄连杆机构 曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力。 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 2.配气机构 配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。 3.燃料供给系 由于使用的燃料不同,可分为汽油机燃料供给系和柴油机燃料供给系。 汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。 柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管和排气消声器等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后废气排出气缸。 4.冷却系

发动机的总体构造组成

1、发动机的总体构造组成: 基本构造分为2个机构曲柄连杆机构,配气机构。5个系统:燃料供给系,润滑系、冷却系、点火系和起动系。 2、气缸和发动机工作容积(排量)活塞从上止点移动到下止点所经历的容积,称为气缸的工作容积或气缸排量。 3、发动机的主要性能指标: 有动力性(包括有效转矩,有效功率如) 4、发动机的速度特性: 发动机的性能指标(Me、Pe、GT、ge)随曲轴转速变化的关系称为发动机的速度特性。 5、发动机的负荷特性: 负荷性是指发动机的转速不变,共经济指标随负荷而变化的关系。 6、活塞环组成他各自的作用是什么? 活塞环是一种环状弹性开口元件,分为气环和油环两种,气环的作用是密封气缸,防止活塞与气缸壁之间漏气,并帮助活塞散热。油环的作用是将润滑油均匀地涂布到气缸壁上,使之形成一层薄薄的油膜,并刮除气缸壁上多余的润滑油。 1、活塞销的作用是连接活塞和连杆小头,将活塞承受的气体作用力传给连杆。 2、扭振减振器的原理: 曲轴经常处于起动,加速、减速的运转状态,承受着很大的交变载荷,产生剧烈的扭转振动,容易断裂为了衰减扭振强度而设置了扭振减振器。 3、发动机异响的诊断方法: 异响是由于磨损或变形而异致运动副的尺寸或形状产生变化,使配合间隙过大或产生运动干涉,从而形成一种不正常的响声、称为异响。 4、气门间隙: 气门为一个细长杆件,在高温下会产生伸长,为确保气门能正常地打开和关闭气门杆端面与摇臂工作面必须留有一定的间隙否则气门便无法关闭而造成漏气。 5、配气相位: 进排气门的实际开、闭时刻用曲轴转角来表。 空燃比: 可燃混合气中燃料与空气的质量之比称为空燃比。 过量空气系数: 是指燃烧过程中实际供给空气质量与理论上完全燃烧所需的空气质量比,用a表示。 3、机油压力低原因: ①机油量不足,在机油尺油面最低限制刻线之下。 ②使用中,机油突然严重泄漏,甚至机油漏光。 ③机油泵磨损严重或突然失效。 ④机油泵限压阀失效或卡滞。 ⑤机油泵集滤器网堵塞,机油滤清器堵塞。 ⑥曲轴主轴承和连杆承严重磨损。 4、机油压力过高压力过高原因: ①机油滤清器堵塞,旁通阀打不开。 ②气缸体和气缸盖上的油道堵塞。 ③新发动机或大修后发动机的曲轴和连杆轴承间隙过小。 ④机油牌号不对,粘度过大。 ⑤机油变质。 ⑥机油变质 5、冷冻液优点: 防冻、除锈,同时又有提高沸点,防止开锅的作用。

汽车发动机构造及原理

第1篇汽车发动机构造与原理 第1章发动机基本结构与工作原理 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 发动机:将其它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW)、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基 本结构及工作原理 1.1.1 四冲程汽油机基本结 构及工作原理 1.四冲程汽油机基本结构 (图1-2) 2.四冲程汽油机基本工 作原理(图1-2) 表1-1 四冲程汽油机工作过 程 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气 门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

3.工作过程分析 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S:指活塞在上、下两个止点之间距离; 气缸工作容积V s:一个活塞在一个行程中所扫过的容积。 式中V s——工作容积(m3); D——气缸直径(mm); S——活塞行程(mm)。 发动机的排量V st:一台发动机所有气缸工作容积之和。 式中V st——发动机的排量(L); i——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa,温度达600K~700K),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T1)升高,而排气的温度(T2)降低,导致热效率提高。 1860年,法国人Lenoir(勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto)制造出第一台四冲程内燃机,采用压缩行程,虽然压缩比只有2.5,但热效率却提高到12%,有力地证明了科学是第一生产力这个真理。 压缩比ε:气缸内气体被压缩的程度。 式中V a——气缸总容积(活塞处于下止点时,活塞顶部以上的气缸容积);

摩托车发动机构造原理照片图解word资料11页

摩托车发动机构造原理照片图解 气缸、活塞: 图6-2 气缸的另一视角图 GY6气缸如图6-1所示。我们从图6-1可以看到,在气缸体边上有槽(或叫正时链条通道),正时链条从此通过到达气缸头,其中还要安装链条的导板片(图6-3a)、链条张紧器(图6-3b)。图6-1中我们可以看到气缸正前方有一个孔,它是用来安装正时链条的链条调整器总成的,链条调整器总成如图6-3所示。当正时链条发生磨损松动及异响时,我们可以通过链条调整器来对其进行一定的调整。 图6-3a 导板片图6-3b 链条张紧器 图6-3 GY6链条调整器总成 我们在前面已经了解过曲轴箱,在实际的安装中,图6-1所示的气缸,应该是反过来朝下安装在曲轴箱上的。在图6-1中,气缸中间圆形的缸套部分,就是活塞在气缸中上下运动的空间。我们没有找到GY6活塞的专门图片,但图6-4给出了一些活塞的照片,图6-5给出了一组活塞环的照片。 一组活塞图片图6-5 一组活塞环图片 见图6-4,活塞上有环槽部,用来安装活塞环。活塞环分气环、油环。GY 6有二道气环,一道油环。气环是用来防止燃烧室气体进入曲轴箱,而油环是用来防止润滑机油窜入燃烧室的。在这里给大家提一个问题,为什么活塞顶部有两个倾斜凹坑?你想一想吧,答案是:避免活塞位于气缸上止点时与进排气门相撞而设置的。国产上述GY6配件零售价格:缸体大约是¥200多块,国产的活塞价格大约是¥40左右,活塞环¥70左右。合资的和进口的就贵许多,甚至数倍。BH GY6强制风扇:在上述的文章中,我们看到了躲在屁股下座垫下发动机里的某些真面目,但是也许会有超级菜鸟问,我还是看不到呀!是的,气缸头和气缸是被包围起来的,像巴基斯坦的妇女,永远戴着一层面纱,这个面纱就是:发动机风扇导风罩,如图7-1所示。图7-2是风扇盖。图7-3是各种冷却风扇。

汽车发动机基本构造

汽车发动机基本构造 发动机基本构造 发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异,发动机的总体结构图如下所示。 汽油发动机 柴油发动机 汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。柴油机通常由两大机构和四大系统组成(无点火系)。 1.曲柄连杆机构 曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力。 2.配气机构 配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。 3.燃料供给系 由于使用的燃料不同,可分为汽油机燃料供给系和柴油机燃料供给系。 汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。 柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管和排气消声器等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后废气排出气缸。 4.冷却系 机动车一般采用水冷却式。水冷式由水泵、散热器、风扇、节温器和水套(在机体内)等组成,其作用是利用冷却水的循环将高温零件的热量通过散热器散发到大气中,从而维持发动机电动正常工作温度。 5.润滑系 润滑系由机油泵、滤清器、油道、油底壳等组成。其作用是将润滑油分送至各个相对运动零件的摩擦面,以减小摩擦力,减缓机件磨损,并清洗、冷却摩擦表面。

汽车发动机构造与原理

汽车发动机构造与原理 Company Document number:WUUT-WUUY-

第1篇 汽车发动机构造与原理 第1章 发动机基本结构与工作原理 发动机 :将其它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大()、热效率高(汽油机略高于,柴油机达左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 四冲程发动机基本结构及工作原理 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

四冲程汽油机基本结构及工作原理 1.四冲程汽油机基本结构(图1-2) 2.四冲程汽油机基本工作原理(图1-2) 表1-1 四冲程汽油机工作过程 3.工作过程分析 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S:指活塞在上、下两个止点之间距离;

汽车发动机构造原理图解

汽车发动机原理图解 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。<本文原载于-技巧网评> 一. 气缸体(图2-1) 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,

气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。(图2-2) (1) 一般式气缸体其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差 (2) 龙门式气缸体其特点是油底壳安装平面低于曲轴

的旋转中心。它的优点是强度和刚度都好,能承受较大的机 械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。[ 录入者:周洋 | 时间:2007-09-22 13:49:12 | 作者: | 来源:技巧网评 | 浏览:471次 ] (3) 隧道式气缸体这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。 为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷(图2-3)。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。<本文原载于-技巧网评>

图解常见汽车发动机结构图

图解常见汽车发动机结 构图 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同下面我们一起了解一下。 ●汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。 ●气缸数不能过多 一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。 ●V型发动机结构 其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。 ●W型发动机结构 将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。 ●水平对置发动机结构 水平对置发动机的相邻气缸相互对立布置(活塞的底部向外侧),两气缸的夹角为180°,不过它与180°V型发动机还是有本质的区别的。水平对置发动机与直列发动机类似,是不共用曲柄销的(也就是说一个活塞只连一个曲柄销),而且对向活塞的运动方向是相反的,但是180°V型发动机则刚好相反。水平对置发动机的优点是可以很好的抵消振动,使发动机运转更为平稳;重心低,车头可以设计得更低,满足空气动力学的要求;动力输出轴方向与传动轴方向一致,动力传递效率较高。缺点:结构复杂,维修不方便;生产工艺要求苛刻,生产成本高,在知名品牌的轿车中只有保时捷和斯巴鲁还在坚持使用水平对置发动机。 ●发动机为什么能源源不断提供动力 发动机之所以能源源不断的提供动力,得益于气缸内的进气、压缩、做功、排气这四个行程的有条不紊地循环运作。 进气行程,活塞从气缸内上止点移动至下止点时,进气门打开,排气门关闭,新鲜的空气和汽油混合气被吸入气缸内。 压缩行程,进排气门关闭,活塞从下止点移动至上止点,将混合气体压缩至气缸顶部,以提高混合气的温度,为做功行程做准备。 做功行程,火花塞将压缩的气体点燃,混合气体在气缸内发生“爆炸”产生巨大压力,将活塞从上止点推至下止点,通过连杆推动曲轴旋转。 排气行程,活塞从下止点移至上止点,此时进气门关闭,排气门打开,将燃烧后的废气通过排气歧管排出气缸外。 ●发动机动力源于爆炸

摩托车结构图

新大洲GY6-125发动机 图1-2江门中裕GY6发动机(江门联合发动机有限公司生产) (转.希望大家看了有点帮助)也许大多数人都曾感受,当我们还是菜鸟时,我们甚至连化油器是什么样子都不知道,菜得连怠速都不会调整。现在,也许将来,我们仍然会很菜,摩托车上的技术总是不断更新发展着,作为机车羔羊这样一个网站,我们的初衷就是提供一个大家交流学习的场所,不断提高大家的机车知识、普及机车文化。 作为一个摩托车手,具有一些发动机知识是必要的。在这里,我们试图做一些最基本的知识图解,把我们知道的告诉大家,也许它确实是很初步,但是,也许它对摩托菜鸟会很有用。而且以后,我们希望我们之中的好手,提供这方面的文章,大家共同分享,共同提高。 这次我们首先要提供的是GY6的资料,图1-1,图1-2是两个GY6发动机。图1-1是用于新大洲白雪公主的GY6,图1-2是江门中裕产的。GY6在国内按照国家规定的汽油机型号标示方法,一般摩托厂家标式为XX152QMI,例如JC152QMI,其中JC是金城厂的缩写、1是指单缸、52是指缸径、Q指强制风冷。 我们首先要提供的是GY6的资料,一方面因为它是目前国内踏板上最普遍的发动机。另一方面,虽然它是很老的设计,但是由于它的简单和可靠,所以可以做为我们了解的第一个对象。当你了解了GY6发动机结构,再去看本田水冷大鲨、株洲雅马哈凌鹰等车,就会感觉容易许多。GY6的参数几呼是固定的:缸径52.4 X57.8mm,压缩比9.2:1,但是国内生产的GY6,功率和扭距都远远不及光阳原厂,参数高低不一,有的标示最大功率可达6.2KW/7500r,有的则只能达到5.4KW/7500r,但其共同点几呼是都是在4000转时达到最大扭距,踏板的起步转速一般是2700转,所以感觉GY6起步还是较为有力的。另一共同点是7500转时达到峰值功率,所以GY6的最大转速并不高。

汽车发动机构造与维修完整版

《汽车发动机构造与维修》课程标准 开设时间:第一学期 课时数:10/周 教材版本:人民邮电,仇雅莉主编 一、课程概述 《汽车发动机构造与维修》是汽车检测与维修技术针对汽车修理工岗位能力进行的一门核心课程。本课程构建于《电工电子学》、《汽车机械基础》、《机械制图》等课程的基础上也是进一步学习《汽车发动机电控系统检修》、《汽车电气与电子系统检修》等专业核心技能课程的基础。主要培养学生会利用现代诊断和检测设备进行汽车发动机的故障诊断、故障分析、零部件检测及维修更换等专业能力同时注重培养学生的社会能力和方法能力。 通过对《汽车发动机构造与维修》课程的学习与训练,使学生掌握汽车两大机构五大系统的整体构造,对组成零部件的认识及掌握相应的工作原理。常用的修理工具和检测仪器的使用;简单零件常见腐蚀、磨损和裂纹故障的检测方法和对应的修理技术;明白发动机主要部件的拆卸和装配技术;知道发动机试车、发动机系统故障的常见类型和排除方法;具有运用所学知识分析问题的能力;具有运用所学技能解决实际问题的能力。《汽车发动机构造与维修》共160学时(理论96学时,实训64学时),以讲授和实际操作相结合的课程,注重专业知识传授的同时,突出实践技能的培养和职业素养养成,共分为10个学习模块教学,每个学习模块以零件认识为基础,通过发动机的一个主要部件的构造来学习工作原理。并设置相应的总结和巩固习题。

二、培养目标 1、专业能力目标 具备维修手册相应查找能力 具备常用工具、专业工具、检测仪器使用能力具备准确识别零部件能力 具备准确鉴别零部件使用与更换能力 具备准确判断故障部位能力 具备试车能力 2、方法能力目标 资料收集整理能力 制定、实施工作计划的能力 简单的绘图与识图能力 检查、判断能力 理论知识的运用能力 3、社会能力目标 培养学生的沟通能力及团队协作精神 培养学生分析问题能力、解决问题的能力 培养学生勇于创新、敬业乐业的工作作风 培养学生的质量意识、安全意识。 培养学生社会责任心、绿色制造意识 培养学生的安全意识及自我保护能力。 三、课程容与要求

汽车发动机构造原理图解

汽车发动机构造原理图解 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 (1) 曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

(2) 配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

(4) 润滑系统 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 (5) 冷却系统 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷

汽车发动机构造与维修教案

汽车发动机构造与维修 教 案 授课专业:汽车检测与维修 授课名称:汽车发动机构造与维修 授课教师:游玲 2015年9 月1 日

第次课8 学时授课时间分钟

备注教学内容(讲稿) 1.1发动机总体构造 1.1.1发动机组成 1、曲柄连杆机构 曲柄连杆机构由机体组、活塞连杆组、曲轴飞轮组三部分组成。其 作用是将燃料燃烧产生的热能转变为活塞往复运动的机械能,再通过连 杆将活塞的往复运动转变为曲轴的旋转运动而对外输出动力。 2、配气机构 配气机构由气门组及气门传动组组成。其作用是使可燃混合气及时 充入气缸并及时将废气从气缸中排出。 3、燃料供给系统 汽油机燃料供给系统和柴油机燃料供给系统由于使用的燃料和燃烧 过程不同,在结构上有很大差别,而汽油机燃料供给系统根据混合气的 形成方式不同又可分为传统化油器式和电控直喷式两种。其作用是将一 定浓度和数量的可燃混合气(或空气)供入气缸以供燃烧,并将燃烧生 成的废气排出。 4、冷却系统 冷却系统有水冷却系统和风冷却系统两种,现代汽车一般都采用水 冷却系统。其作用是将受热机件的热量散到大气中去,从而保证发动机 正常工作 5、润滑系统 润滑系统的作用是将润滑油送至各个摩擦表面,以减轻机件的磨损, 并清洗、冷却摩擦表面,延长发动机的使用寿命。 6、起动系统 起动系统的作用是将静止的发动机起动并转入自行运转。 7、点火系统 点火系统是汽油发动机独有的,按控制方式不同又分为传统点火系 和电子控制点火系两种。其作用是按规定时刻向气缸内提供电火花以点 燃气缸中的可燃混合气。柴油发动机由于其混合气是自行着火燃烧,故 没有点火系。 1.1.2发动机分类

摩托车发动机维修小窍门

发动机维修是一门精细的技术活,但是不代表它深不可测,有很多维修小窍门,只要你认真学习和积累,修理发动机也不是什么难的事情。 1 1.检查缸体、活塞组件磨损 缸体与缸盖、活塞共同形成可燃混合气压缩、燃烧膨胀的空间,当车子使用时间一长,活塞环、活塞裙部与气缸壁反复摩擦,缸体、活塞组件出现磨损,磨损严重时,导致密封性能下降,车辆起动困难、动力性下降。以下分别对二冲程发动机和四冲程发动机的缸体、活塞组件磨损故障检修进行论述。

2 二冲程发动机:拆掉排气管,左手慢慢地压起动杆让曲轴旋转,使第2道活塞环或活塞裙部正好堵住缸体排气口。从缸体排气口朝里看,如果能看见第2道环及活塞的裙部留有窜气痕迹━━黑色积炭,说明缸体、活塞组件出现较大磨损,需更换活塞组件和缸体等部件。 四冲程发动机:1)起动发动机冷车怠速运转,测试尾气排放温度。手接近排气管尾部感受尾气温度。如果尾气温度较高,说明缸体、活塞组件磨损,有窜气现象;缸体、活塞组件正常使用。2)起动发动机,将曲轴箱上安装的橡胶通气软管插入水中,如果水中出现较大气泡,说明缸体、活塞组件出现较严重的磨损,密封性能差,缸压下降。 2.检查发动机的负压 二种程发动机在压缩过程中,活塞向上运行,下方密封的曲轴箱容积逐渐扩大,从而形成真空,在外界大气压的作用下,新鲜的可燃合混合气在负压的作用下自动吸入曲轴箱(曲柄室)。当缸体、活塞组件严重磨损、曲轴油封损坏、曲轴箱密封垫破损、曲轴箱漏气时,曲轴箱无负压或负压较小,可燃混合气无法进入曲轴箱,发动机出现不能起动或起动困难、力性下降等故障。 四冲程发动机进排气门漏气,缸体、活塞组件严重磨损,导致负压下降,混合气无法自动吸 入缸体,会出现起动困难或不能起动、动力性下降、油耗增大等故障。

发动机结构图

第一部分汽车底盘概述 单元一汽车底盘概述 汽车一般是由发动机、底盘、车身和电气设备组成,下面对汽车底盘做一整体性的介绍。 课题1.1 汽车底盘的基本组成 汽车底盘由传动系、行驶系、转向系和制动系四大系统组成,其功用为接受发动机的动力,使汽车运动并保证汽车能够按照驾驶员的操纵而正常行驶。如图1-1和1-2所示为常见货车和轿车的底盘结构图。 1-前轴2-前悬架3-前轮4-离合器5-变速器6-驻车制动器7-传动轴8-驱动桥9-后悬架10-后轮11-车架12-转向盘

1-前悬架2-前轮制动器3-前轮4-离合器踏板5-变速器操纵机构6-驻车制动手柄7-传动轴8-后桥9-后悬架10-后轮制动器11-后轮12-后保险杠 13-备胎14-横向稳定器15-转向盘 一、传动系 汽车传动系是指从发动机到驱动车轮之间所有动力传递装置的总称。其功用是将发动机的动力传给驱动车轮。不同的汽车,其底盘的组成稍有不同;如载货汽车及部分轿车,其底盘一般是由离合器、手动变速器、万向传动装置(万向节和传动轴)、驱动桥(主减速器、差速器、半轴、桥壳)等组成,如图1-3所示;而现在轿车中采用自动变速器的越来越多,其底盘包括自动变速器、万向传动装置、驱动桥等,即用自动变速器取代了离合器和手动变速器;如果是越野汽车(包括SUV,即运动型多功能车),还应包括分动器。 传动系各组成的功用如下: (1) 离合器:保证换档平顺,必要时中断动力传动。 (2) 变速器:变速、变矩、变向、中断动力传动。 (3) 万向传动装置:实现有夹角和相对位置经常发生变化的两轴之间的动力传动。 (4) 主减速器:将动力传给差速器,并实现降速增矩、改变传动方向。 (5) 差速器:将动力传给半轴,并允许左右半轴以不同的转速旋转。

摩托车发动机构原理照片图解

摩托车发动机构原理照片图解

————————————————————————————————作者:————————————————————————————————日期: 2

3 摩托车发动机构造 原理照片图解 气缸、活塞: 图6-2 气缸的另一视角图 GY6气缸如图6-1所示。我们从图6-1可以看到,在气缸体边上有槽(或叫正时链条通道),正时链条从此通过到达气缸头,其中还要安装链条的导板片(图6-3a )、链条张紧器(图6-3b )。图6-1中我们可以看到气缸正前方有一个孔,它是用来安装正时链条的链条调整器总成的,链条调整器总成如图6-3所示。当正时链条发生磨损松动及异响时,我们可以通过链条调整器来对其进行一定的调整。 图6-3a 导板片 图6-3b 链条张紧器 图6-3 GY6链条调整器总成 我们在前面已经了解过曲轴箱,在实际的安装中,图6-1所示的气缸,应该是反过来朝下安装在曲轴箱上的。在图6-1中,气缸中间圆形的缸套部分,就是活塞在气缸中上下运动的空间。我们没有找到GY6活塞的专门图片,但图6-4给出了一些活塞的照片,图6-5给出了一组活塞环的照片。 图6-4 一组活塞图片 图6-5 一组活塞环图片 见图6-4,活塞上有环槽部,用来安装活塞环。活塞环分气环、油环。GY6有二道气环,一道油环。气环是用来防止燃烧室气体进入曲轴箱,而油环是用来防止润滑机油窜入燃烧室的。在这里给大家提一个问题,为什么活塞顶部有两个倾斜凹坑?你想一想吧,答案是:避免活塞位于气缸上止点时与进排气门相撞而设置的。 国产上述GY6配件零售价格:缸体大约是¥200多块,国产的活塞价格大约是¥40左右,活塞环¥70左右。合资的和进口的就贵许多,甚至数倍。 BH GY6强制风扇: 在上述的文章中,我们看到了躲在屁股下座垫下发动机里的某些真面目,但是也许会有超级菜鸟问,我还是看不到呀!是的,气缸头和气缸是被包围起来的,像巴基斯坦的妇女,永远戴着一层面纱,这个面纱就是:发动机风扇导风罩,如图7-1所示。图7-2是风扇盖。图7-3是各种冷却风扇。 图7-1 风扇导风罩 图7-2 风扇盖 图7-3 各种冷却风扇

发动机结构图解

发动机结构图解 内燃机的分类方法很多,按照不同的分类方法可以把内燃机分成不同的类型,下面让我们来看看内燃机是怎样分类的。 (1) 按照所用燃料分类 内燃机按照所使用燃料的不同可以分为汽油机和柴油机(图1-1)。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。 2) 按照行程分类 内燃机按照完成一个工作循环所需的行程数可分为四行程内燃机和二行程内燃机(图1-2 )。

把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),活塞在气缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广泛使用四行程内燃机。 (3) 按照冷却方式分类 内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机(图1-3)。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可靠,冷却效果好,被广泛地应用于现代车用发动机。

4) 按照气缸数目分类 内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机(图1-4)。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。 5) 按照气缸排列方式分类

相关主题
文本预览
相关文档 最新文档