埋弧焊的工艺与特点
- 格式:docx
- 大小:15.54 KB
- 文档页数:5
埋弧焊名词解释1. 埋弧焊的概念埋弧焊是一种常用的电弧焊接方法,通过在焊接过程中使用焊条芯部的短弧电弧焊接。
在埋弧焊中,电弧在焊接缝处燃烧,产生高温来融化母材和焊条,形成焊缝。
2. 埋弧焊的工艺步骤埋弧焊的工艺步骤包括:准备工作、焊接前预热、确定焊接位置、选择合适的焊接电弧、调整电流电压参数、焊接操作、焊后处理等。
3. 埋弧焊的特点•高效性:埋弧焊的焊接速度较快,焊接效率高。
•熔渣保护性:埋弧焊过程中产生的熔渣可以有效保护焊缝免受空气中的氧气和氮气的污染。
•熔化温度高:埋弧焊的熔化温度较高,可以融化大部分常用金属材料,适用于焊接各类金属。
•技术要求高:埋弧焊需要熟练的操作技巧和经验,需要操作者具备较高的焊接技术水平。
4. 埋弧焊的设备和工具•埋弧焊机:埋弧焊机是埋弧焊工艺所必需的设备,用于提供焊接电流和电压。
•焊条:埋弧焊中使用的焊条分为不同种类,根据焊接对象和要求选择合适的焊条。
•面罩:用于保护焊工的面部,防止火花和紫外线辐射对眼睛和皮肤的伤害。
•手套和护腕:用于保护焊工的手部和前臂,防止火花和热量对皮肤的伤害。
•焊接钳:用于固定焊条和焊接工件。
5. 埋弧焊的优缺点优点:•焊接速度快,焊接效率高•焊缝质量高,焊接强度好•熔渣可以对焊缝起到保护,减少气孔和夹杂物的产生•适用于多种金属材料的焊接缺点:•对操作技术要求较高,需要经验丰富的焊工操作•焊接设备较为昂贵•对环境要求较高,焊接时产生的烟尘和废气对人体和环境有一定的影响6. 埋弧焊的应用领域埋弧焊在许多领域中有广泛的应用,主要包括以下几个方面: - 结构工程领域:用于焊接钢结构、桥梁、船舶等大型工程。
- 压力容器领域:用于焊接石油化工等领域中的压力容器。
- 管道工程领域:用于焊接石油、天然气等管道。
- 金属制品领域:用于焊接金属制品,如金属家具、金属门窗等。
7. 埋弧焊的未来发展趋势随着科技的不断进步,埋弧焊技术也在不断发展和改进。
未来发展趋势主要包括:- 自动化和智能化:埋弧焊将更加向自动化和智能化发展,通过引入机器人和自动控制系统,提高焊接精度和效率。
埋弧焊的焊接工艺埋弧焊(Submerged Arc Welding,SAW)是一种高效、稳定、经济的电弧焊接工艺。
它采用单面自动焊接技术,焊丝和焊接区域被埋在焊接熔渣中,以保护焊接区域免受空气污染。
埋弧焊接可用于生产钢板、管道、轮胎以及其他工业产品。
埋弧焊接的特点1. 高效:埋弧焊接速度快、连续、产量高,比手工电弧焊接效率高出数倍甚至十倍以上。
2. 稳定:埋弧焊接过程稳定,焊缝质量高,并且焊接不易产生气孔、裂纹等缺陷。
3. 经济:埋弧焊接器材简单、成本低廉,操作简单,可实现自动化生产。
4. 适用面广:埋弧焊接可用于焊接各种金属材料,包括钢、铜、铝等。
埋弧焊接的工艺埋弧焊接的基本设备包括电源、焊机、焊枪、焊丝、焊接电缆和其他辅助设备。
下面是埋弧焊接的具体工艺步骤:1. 准备工作:首先需要对待焊接的材料进行清洗和钝化处理,以便焊接区域不受腐蚀作用。
然后将工件放入夹持装置中,以便焊接。
2. 选用焊接电源:根据待焊接的材料和工件的厚度,选择合适的电源和电流大小。
通常使用直流或低频交流电源。
3. 选用焊丝和熔渣:选择合适的焊丝和熔渣,以确保焊接效果良好。
焊丝的直径通常为2.4mm、3.2mm和4mm,熔渣的成分也需要根据焊接的材料来选用。
4. 安装和调整焊机:将焊丝和熔渣装置安装在焊机上,并根据需要进行调整。
调整项包括焊丝送丝速度、熔渣的喷出速度、焊接电流和焊接电压等。
5. 启动焊接:将焊枪和焊丝放在焊件上,启动焊接过程。
焊丝和熔渣进入焊缝,形成熔池,然后熔池在熔渣的保护下冷却凝固。
6. 检查和清理:当焊接完成后,需要对焊缝进行检查,去除焊接过程中产生的熔渣和焊丝残留物。
最后进行质量检验,以确定焊接是否符合要求。
总结埋弧焊接是一种高效、稳定、经济的焊接工艺,可以用于焊接各种金属材料。
埋弧焊接要求焊接区域被熔渣保护,以保证焊接质量。
在进行埋弧焊接时,需要选用合适的焊丝和熔渣,同时保证焊机的正常工作。
进行完埋弧焊接后,需要对焊缝进行检查和清理,以确保焊接的质量。
埋弧焊(SAW)一埋弧焊的原理及特点1、埋弧焊的焊接过程及原理定义:电弧在焊剂层下燃烧以进行焊接的熔化极电弧焊方法(Submerged arc welding)点击看埋弧焊视频二、埋弧焊的特点优点:生产效率高焊缝质量好劳动条件好缺点:难以全位置焊对焊前装配要求高不适宜焊接薄板,短缝,焊接材料有局限三、埋弧焊的分类及应用范围1、分类按送丝方式:等速送丝变速送丝按焊丝形状及数目:丝极——单丝、多丝、带级按成形条件:双面焊单面焊双面成形(需要反面衬垫)2、应用焊缝类型和焊件厚度:5mm以上的长直缝对接、角接和搭接接头材料:碳素结构钢、低合金结构钢、不锈钢、耐热钢、镍基合金、铜合金等结构:具有长而规则焊缝的大型结构,如船舶、压力容器、桥梁、起重机械等位置:平、横位置四埋弧焊的焊接材料与冶金过程1、埋弧焊的焊接材料及选用(1)焊剂(flux)型号:《埋弧焊用碳钢焊丝和焊剂》《低合金钢埋弧焊用焊剂》《埋弧焊用不锈钢焊丝和焊剂》牌号:熔炼焊剂HJχχχ烧结焊剂SJχχχ(2)焊丝(wire)参见《熔化焊用钢丝》、《焊接用不锈钢丝》及《碳钢药芯焊丝》、《低合金钢药芯焊丝》直径系列(mm):熔化焊用钢丝、焊接用不锈钢丝:1.6、2.0、2.5、3.0、3.2、4.0、5.0、6.0碳钢药芯焊丝、低合金钢药芯焊丝:1.2、1.4、1.6、2.0、2.4、2.8、3.2、4.0焊丝、焊剂的选用原则:焊丝、焊剂要匹配。
结构钢按等强原则选用焊丝,专业用钢(不锈钢、耐热钢等)按化学成分相同或相近的原则选用焊丝。
熔炼焊剂:便宜易得,成分均匀,相对不易吸潮,但合金过渡系数低,通常只适宜于碳素结构钢和某些低合金结构钢的焊接。
烧结焊剂: 稍贵,容易吸潮,但合金过渡系数高、脱渣性好,适用于高合金钢和不锈钢等钢种的焊接。
焊丝、焊剂的选用碳素结构钢:如选用HJ431+H08A16Mn钢:可选用HJ431+H08A或HJ431+H08MnA2、埋弧焊的冶金过程埋弧焊的冶金过程比较复杂。
自动埋弧焊的工艺特点
自动埋弧焊是一种常见的焊接技术,具有以下工艺特点:
1. 自动化程度高:自动埋弧焊采用机器设备进行焊接,能够实现连续和自动化的焊接过程,不需要人工持续控制焊接枪。
2. 焊接质量稳定:自动埋弧焊能够准确控制焊接参数,如电流,电压和焊接速度等,从而实现焊接质量稳定,焊缝质量高。
3. 适用于大型结构焊接:自动埋弧焊适用于大型结构的焊接,如船舶、桥梁和容器等,能够实现高效、快速的焊接。
4. 焊接速度快:自动埋弧焊连续进行焊接,焊接速度快,能够提高生产效率。
5. 适用于多种材料焊接:自动埋弧焊适用于多种材料的焊接,包括碳钢、不锈钢、铝合金等,具有广泛的应用范围。
6. 低能耗:自动埋弧焊由于采用高效的电弧,焊接过程能够实现能量利用率高,能够节约能源。
7. 操作简单:自动埋弧焊操作相对简单,只需对焊接参数进行设定,无需掌握复杂的焊接技巧,降低了对焊工的要求。
总体而言,自动埋弧焊具有高效、稳定和适用范围广的特点,适用于大型工件的焊接,能够提高生产效率和焊接质量。
埋弧焊的原理及特点一、埋弧焊工作原理埋弧焊是利用埋在焊剂中的焊丝与焊件之间的电弧所产生的热量熔化焊丝、焊剂和焊件并形成焊缝的一种焊接方法。
二、埋弧焊的特点及应用1.埋弧焊的优点(1)焊接生产效率高(I↑V↑)可使用大电流焊接,同时因电弧加热集中,熔透深度及焊丝熔化速度增加;例如单丝埋弧焊可一次焊透20mm以下I型坡口钢板;热量损失少,从而热效率提高,焊接速度大大提高,单丝埋弧焊的焊接速度可达30~50m/h,而焊条电弧焊只有6~8m/h。
(2)焊接质量好保护效果好(焊剂、熔渣保护)空气中的氮、氧难以侵入,提高了焊缝金属的强度和韧性;由于焊接速度快,热输入相对减少,热影响区的宽度比焊条电弧焊小,有利于减小焊接变形及防止近缝区金属过热。
熔池金属凝固速度慢(冶金反应、成份稳定、缺陷少);焊接过程自动化,焊缝表面光洁、平整、成形美观。
(3)改善焊工的劳动条件机械化操作,埋弧不见弧光不需面罩,烟尘、气体少。
(4)节约焊接材料及电能熔深大,可不开或少开坡口,减少了焊缝中焊丝的填充量,节省因加工坡口而消耗的母材。
飞溅极少,无焊条头的损失,节省焊接材料。
热量集中,且利用率高,因此单位长度焊缝所消耗的电能大为降低。
(5)焊接范围广能焊接碳钢、低合金钢、不锈钢,还能焊接耐热钢及铜合金、镍基合金等有色金属。
并且还可以进行磨损、耐腐蚀材料的堆焊。
但不适用于铝、钛等氧化性强的金属和合金的焊接。
2.埋弧焊的缺点(1)采用颗粒状焊剂保护,只适用于平焊或倾角不大的位置及角焊位置焊接,其他位置需采用特殊装置。
(2)不能直接观察电弧与坡口的相对位置,容易产生焊偏及未焊透,也不能及时调整焊接工艺参数,需要采用焊缝自动跟踪装置保证焊炬对准焊缝不焊偏。
(3)焊接电流较大,电弧的电场强度较高,当电流小于100A 时,电弧的稳定性较差,因此不适于厚度小于1mm的薄件的焊接。
(4)焊接设备复杂,维修保养难度大。
只适用于直的长焊缝和环形焊缝的焊接,无法焊接形状不规则的焊缝。
埋弧焊工艺一、埋弧焊工艺参数有焊接电流、电弧电压、焊接速度、焊丝直径、焊丝伸出长度、焊丝倾角、焊件倾斜等。
对焊缝成形和焊接质量影响最大的是:焊接电流、电弧电压和焊接速度。
1.焊接电流若其他因素不变,焊接电流增大,电弧吹力增强,焊缝厚度增大;焊丝熔化速度也加快,余高稍有增加;电弧摆动小,所以焊缝宽度变化不大。
焊接电流过大,易咬边或成形不良,热影响区增宽,甚至烧穿。
焊接电流过小,焊缝厚度减小,易产生未焊透缺陷,电弧稳定性差。
见下图2.电弧电压若其他因素不变,增加电弧长度,电弧电压增加。
随电弧电压增加,焊缝宽度显著增大,而焊缝厚度和余高减小。
原因是:电弧电压越高,电弧就越长,电弧的摆动范围就越大,焊件被电弧加热的面积越大,致使焊缝宽度增大。
但电弧长度增大以后,电弧热量损失加大,用于熔化母材和焊丝的热量减少,使得焊缝厚度和余高减少。
结论:电流是决定焊缝厚度的主要因素;电压是影响焊缝宽度的主要因素。
焊接电流和电弧电压必须良好匹配。
焊接电流/A 600~700700~850850~10001000~1200电弧电压/V34~3636~3838~4040~423.焊接速度:焊接速度对焊缝厚度和焊缝宽度都有明显影响,焊接速度增加,焊缝厚度和焊缝宽度都大为下降。
原因是:焊接速度增加,焊缝中单位时间内输入的热量减少。
影响趋势:焊速过大,易形成未焊透、咬边、焊缝表面粗糙不平等缺陷;焊速过小,则会形成易裂的“蘑菇形”焊缝或产生烧穿、夹渣、焊缝不规则的缺陷。
4.焊丝直径:焊接电流不变时,随着焊丝直径的增大,电流密度减小,电弧吹力减弱,电弧的摆动作用增强,使焊缝宽度增加而焊缝厚度减小;焊丝直径减小时,电流密度增加,电弧吹力增大,使得焊缝厚度增加。
表3—10焊接电流与电弧电压的匹配关系结论:用同样大小的电流焊接时,小直径焊丝可获得较大的焊缝厚度。
焊丝直径/mm2.03.04.05.06.0焊接电流/A 200~400350~600500~800700~1000800~12005.焊丝伸出长度焊丝伸出长度:导电嘴至焊丝端部的长度。
埋弧焊的原理特点和应用1. 埋弧焊的原理埋弧焊是一种特殊的电弧焊接方法,它利用电源的弧电能将焊丝与工件之间的间隙填满,实现焊接的同时,将焊缝部分呈“埋弧”状态。
埋弧焊的原理主要包括三个方面:•电源提供电流:埋弧焊通常使用直流电源,将工件与电源的正极连接,将焊丝连接到电源的负极,通过电弧产生热能进行焊接。
•电弧经过焊丝与工件间隙:焊丝与工件之间的间隙中形成电弧,通过电弧产生的高温熔化焊丝和工件表面,形成熔融池。
•焊丝填充熔融池:焊丝通过电弧熔化,并通过焊枪提供的保护气体形成气雾保护,防止熔融池受到空气中的氧、氮、水分等有害物质的污染。
2. 埋弧焊的特点埋弧焊作为一种特殊的焊接方法,有着许多独特的特点,使其在许多应用场景中得到了广泛的应用。
以下是埋弧焊的主要特点:•高效高速:埋弧焊具有高弧压、高焊接速度等特点,能够快速完成焊接任务,提高工作效率。
•熔深大:由于埋弧焊采用电弧熔化焊丝和工件,使得焊缝熔深大,焊接强度高。
•操作简单:埋弧焊不需要复杂的技术操作,几乎任何人都能够快速上手进行埋弧焊接,降低了应用门槛。
•焊接质量好:埋弧焊的焊接质量稳定且良好,焊缝质量满足国家标准和技术要求。
•适应性广:埋弧焊适用于多种材料的焊接,如低碳钢、合金钢、不锈钢、铝等。
3. 埋弧焊的应用埋弧焊作为一种高效、高质量的焊接方法,广泛应用于各种工业领域。
以下是埋弧焊的主要应用领域:•汽车制造业:埋弧焊适用于汽车制造业中的钢板焊接、车身焊接等工艺,能够快速、稳定地完成焊接任务。
•建筑工程:埋弧焊在建筑工程中的应用主要集中在钢结构焊接、安全门窗、钢管焊接等领域。
•石化管道:埋弧焊的高效性使其在石化管道焊接中得到了广泛应用,能够确保焊接质量,提高工作效率。
•能源装备:埋弧焊在能源装备制造中具有重要地位,如风力发电设备、核电设备等的焊接。
•船舶制造:埋弧焊在船舶制造中能够完成各种材料的焊接,确保船舶结构牢固。
•铁路运输:埋弧焊在铁路轨道的连接、修复等方面有着重要应用,能够保证铁路运输的安全性。
埋弧焊的工作原理及特点埋弧焊是利用电弧作为热源的焊接方法。
埋弧焊时电弧是在一层颗粒状的可熔化焊剂覆盖下燃烧,电弧不外露,埋弧焊由此得名。
所用的金属电极是不间断送进的光焊丝。
工作原理埋弧焊时,被焊工件与焊丝分别接在焊接电源的两极。
焊丝通过与导电嘴的滑动接触与电源连接。
焊接回路包括焊接电源、连接电缆、导电嘴、焊丝、电弧、熔池、工件等环节,焊丝端部在电弧热作用下不断熔化,因而焊丝应连续不断地送进,以保持焊接过程的稳定进行。
焊丝的送进速度应与焊丝的熔化速度相平衡。
焊丝一般由电动机驱动的送丝滚轮送进。
随应用的不同,焊丝数目可以有单丝、双丝或多丝。
有的应用中采用药芯焊丝代替实心焊丝,或是用钢带代替焊丝。
埋弧焊的优点和缺点埋弧焊的主要优点所用的焊接电流大,相应输入功率较大。
加上焊剂和熔渣的隔热作用,热效率较高,熔深大。
工件的坡口可较小,减少了填充金属量。
单丝埋弧焊在工件不开坡口的情况下,一次可熔透20mm。
焊接速度高,以厚度8-10mm的钢板对接焊为例,单丝埋弧焊速度可达50-80cm/min,手工电弧焊则不超过10-13cm/mm。
焊剂的存在不仅能隔开融化金属与空气的接触,而且使熔池金属较慢凝固。
液体金属与融化的焊剂有较多时间进行冶金反应,减少了焊缝中产生气孔、裂纹等缺陷的可能性。
焊剂还可以向焊缝金属补充一些合金元素,提高焊缝金属的力学性能。
在有风的环境中焊接时,埋弧焊的保护效果比其他电弧焊方法好。
自动焊接时,焊接参数可通过自动调节保持稳定。
与手工电弧相比,焊接质量对焊工技艺水平的依赖程度大大降低。
没有电弧光辐射,劳动条件较好。
埋弧焊的主要缺点由于采用颗粒状焊剂,这种焊接方法一般只适用于平焊位置。
其他位置焊接需采用特殊措施以保证焊剂能覆盖焊接区。
不能直接观察电弧与坡口的相对位置,如果没有采用焊缝自动跟踪装置,则容易焊偏。
埋弧焊电弧的电场强度较大,电流小于100A时电弧不稳,因而不适于焊接厚度小于1mm的薄板。
完整版埋弧焊工艺参数及焊接技术在进行埋弧焊工艺参数及焊接技术的探讨之前,首先需要了解埋弧焊的基本概念。
埋弧焊是一种常用的电弧焊接方法,通过将焊丝埋在焊缝中,利用电弧加热熔化焊缝两侧的材料,形成牢固的焊接接头。
埋弧焊广泛应用于工业领域中的焊接工艺中,具有高效、快捷、高质量的特点。
一、埋弧焊工艺参数埋弧焊工艺参数是指在埋弧焊过程中需要控制和调节的参数。
不同的焊接材料和焊接工件要求不同的工艺参数,下面介绍几个常见的埋弧焊工艺参数。
1. 电流:焊接过程中电流的选择对焊接质量至关重要。
一般来说,焊接电流越大,焊接速度越快,但是如果电流过大,会使焊接接头产生过渡熔化、气孔等缺陷。
因此,在设置电流时需要根据焊接材料和工件的要求选择适当的电流。
2. 电压:焊接电压直接影响到焊接速度和焊缝的质量。
当电压过高时,焊接速度会加快,但是容易产生飞溅和熔穿等缺陷。
而电压过低则会导致焊缝不完全熔化,影响焊接接头的强度。
因此,在设置电压时需要根据焊接材料和工件的要求选择适当的电压。
3. 焊接速度:焊接速度是指焊枪在焊接过程中移动的速度。
焊接速度的选择应根据焊接材料和工件的要求以及焊接的位置和环境条件来确定。
焊接速度过快会导致焊缝不完全熔化,焊接速度过慢则容易使焊接区域过热,从而产生焊缝凹陷和熔渣残留等问题。
二、焊接技术除了合适的工艺参数,有效的焊接技术也是埋弧焊的关键。
下面介绍几个常用的焊接技术。
1. 准备工作:在焊接之前,需要进行准备工作,包括清除焊接表面的污垢和氧化物,并将焊缝两侧的材料加热到适当的温度,以确保焊接质量。
2. 焊接姿势:埋弧焊通常采用手持式焊枪进行,焊工应采取稳定的姿势,控制焊枪的角度和位置,以保证焊接过程的稳定和准确。
3. 焊接顺序:在进行多道焊接时,需要根据焊接材料和工件的要求确定焊接的顺序。
通常情况下,先焊接两端再进行中间部分的焊接,以保证焊接接头的质量和稳定性。
4. 控制温度:焊接过程中需要控制焊接区域的温度,以保证焊缝的质量。
双丝埋弧焊焊接工艺1双弧双丝埋弧焊的原理和特点双丝埋弧焊的原理:埋弧焊的工作原理如图1-1所示,焊接电源的两极分别接导电嘴和焊件。
但是由于每根焊丝流经的电流磁场会对另一根焊丝底下的电弧产生电磁作用力,双丝电弧将因流经同向电流而相互吸引,如图1-2,使这种双丝埋弧焊过程具有以下特点:图1-2双丝焊时电弧相互吸引1、双丝埋弧焊接有两根独立的焊丝,焊接电流分别通过两根焊丝,焊丝间距小于50mm时形成一个共熔池,焊丝间距大于50mm时形成两个独立的熔池,较长的熔池长度,是冶金反应更为充分。
前丝采用大电流、低电压;后丝采用小电流、高电压,以期达到提高焊接速度和改善焊缝成形的目的电弧热使焊丝、焊机及母材局部熔化和部分蒸发。
2、双丝间距足够小时,双丝电弧实际上形成一个熔池,其形状将受到双丝排列方式及丝间距的控制,当双丝沿焊接方向串列时,熔池将沿焊接线呈细长椭圆,从而有利于形成窄而深的焊缝;当双丝并列时,熔池深度减低而宽度增大,显然这将特别适合于堆焊的要求;如果把双丝作不同角度斜列,则熔池形状将介于上述两者之间。
加上焊丝间距及焊接电流、电压、焊速和焊缝坡口尺寸的调整,使其焊缝横截面形状、熔深、熔宽、稀释率拥有相当宽的调整余地,可以满足薄板和厚板、对接和角接及表面堆焊的多种应用要求。
3、双丝双弧埋弧焊由于是双电弧单熔池,不仅实现高速焊接,而且热循环过程相对较慢,有利于焊缝中微量元素的扩散,提高焊缝性能。
双丝双弧埋弧焊采用双电源,双焊丝(电极),前道直流后道交流。
前电极为直流,采用大焊接电流低电弧电压,充分发挥直流电弧的穿透力,获得大熔深;后电极为交流,采用相对较小焊接电流大电弧电压,增加熔宽,克服前道大电流可能形成的熔化金属堆积,配合高速度焊接,从而形成美观的焊缝成形。
由于前道电弧给后道焊接提供了预热功能,还可以大幅度减低电力消耗。
焊接主要工艺参数包括焊接电流、电压以及焊接速度。
其中焊接电流是决定焊丝熔化速度、熔透深度和母材熔化量的最重要参数,增大焊接电流,会使电弧的热功率和电弧力都有所增加,导致焊缝熔深增大,焊丝熔化量增加,余高增大,而熔宽变化不大,造成焊缝形状系数变小。
第四章埋弧焊教学目的:使学员掌握埋弧焊的工作原理及特点教学要求:1、埋弧焊的原理;2、埋弧焊的设备结构;3、埋弧焊的操作技术和安全特点。
教学重点:1、埋弧焊的原理;2、埋弧焊的工艺。
教学难点:埋弧焊的工艺参数。
课时:8课时。
第一节埋弧焊的工作原理及特点埋弧焊也是利用电弧作为热源的焊接方法。
埋弧焊时电弧是在一层颗粒状的可熔化焊剂覆盖下燃烧,电弧不外露,埋弧焊由此得名。
所用的金属电极是不间断送进的光焊丝。
二。
埋弧焊的优点和缺点1、埋弧焊的主要优点(1)所用的焊接电流大,相应输入功率较大。
加上焊剂和熔渣的隔热作用,热效率较高,熔深大。
工件的坡口可较小,减少了填充金属隔量。
单丝埋弧焊在工件不开口的情况下,一次可熔透20mm。
(2)焊接速度高,以厚度8~10mm的钢板对接焊为例,单丝埋弧焊速度可达50~80cm/min,手工电弧焊则不超过10~13cm/min.(3)焊剂的存在不仅能隔开熔化金属与空气的接触,而且使熔池金属较慢凝固。
液体金属与熔化的焊剂间有较多时间进行冶金反应,减少了焊缝中产生气孔、裂纹等缺陷的可能性。
焊剂还可以向焊缝金属补充一些合金元素,提高焊缝金属的力学性能。
(4)在有风的环境中焊接时,埋弧焊的保护效果比其它电弧焊方法好。
(5)自动焊接时,焊接参数可能过自动调节保持稳定。
与手工电弧焊相比,焊接质量对焊工技艺水平的依赖程度可大大降低。
(6)没有电弧光辐射,劳动条件较好。
2、埋弧焊主要缺点(1)由于采用颗粒状焊剂,这种焊接方法一般只适用于平焊位置。
其他位置焊接需采用特殊措施以保证焊剂能覆盖焊接区。
(2)不能直接观察电弧与坡口的相对位置,如果没有采用焊缝自动跟踪装置,则容易焊偏。
(3)埋弧焊电弧的电场强度较大,电流小于100A时电弧不稳,因而不适于焊接厚度小于1mm的薄板。
三、埋弧焊的适用的范围由于埋弧焊熔深大,生产率高,机械化操作的程度高,因而适于焊接中厚板结构的长焊缝。
在造船、锅炉与压力容器、桥梁、起重机械、铁路车辆、工程机械、重型机械和冶金机械、核电站结构、海洋结构等制造部门有着广泛的应用,是当今焊接生产中最普遍使用的焊接方法之一。
埋弧焊工艺与操作技巧引言埋弧焊是一种常用的焊接技术,广泛应用于钢结构、船舶、桥梁、石油化工等领域。
本文将介绍埋弧焊的基本原理、操作技巧以及注意事项。
一、埋弧焊的原理埋弧焊是一种根据电弧熔化焊条供料来进行焊接的方法。
其工作原理如下: 1. 焊条通过供电电源产生电弧。
2. 电弧在工件和焊条之间形成,熔化焊条并使其与工件熔合。
3. 熔化的金属在焊接缝中形成焊渣,保护焊缝避免氧气和杂质的侵入。
二、埋弧焊的操作技巧1.选择适当的焊接电流和电压。
根据工件的材料和类型,选择合适的焊接电流和电压可以保证焊缝的质量和稳定性。
2.控制焊接速度。
焊接速度的过快或过慢都会影响焊缝的质量。
应根据焊接材料和厚度,选择适当的焊接速度。
3.保持合适的焊接角度。
通常情况下,焊接角度应垂直于工件表面。
如果角度偏离,会导致焊缝质量下降和焊接变形。
4.注意电焊材料的质量。
合格的焊条和焊剂对焊接质量至关重要。
务必选择有质量保证的材料进行焊接操作。
5.确保焊接环境的通风良好。
焊接过程中会产生大量的烟尘和有害气体,应确保操作区域有良好的通风条件,以保护操作人员的健康。
三、注意事项1.安全操作。
焊接过程中需要注意防护措施,包括戴上防焊光眼镜、焊接手套和防护服等,以避免对皮肤和眼睛的损伤。
2.注意电焊设备的维护。
定期检查焊接设备的接线和电源,确保其正常工作,避免意外事故。
3.焊接接头的准备工作。
在进行埋弧焊前,应对接头进行清洁和打磨,以去除锈蚀和污垢,保证焊接质量。
4.控制焊接温度。
过高的焊接温度会导致焊缝脆性增加,影响焊接质量。
应根据材料要求和焊接规范,控制焊接温度。
5.注意焊接参数的选择。
除了焊接电流和焊接速度外,还应注意电弧长度、焊接间隙等参数的合理选择,以保证焊缝质量。
四、总结埋弧焊是一种常用的焊接技术,掌握埋弧焊的工艺和操作技巧对焊接质量至关重要。
本文介绍了埋弧焊的基本原理、操作技巧以及注意事项。
通过正确的操作和控制,可以实现优质的焊接效果,并确保焊缝的质量和稳定性。
埋弧焊问题及解决埋弧焊是目前广泛使用的一种生产效率较高的机械化焊接方法。
它与焊条电弧焊相比,虽然灵活性差一些,但焊接质量好、效率高、成本低,劳动条件好。
1 埋弧焊的原理及特点一、埋弧焊的过程及原理埋弧焊是利用焊丝与工件之间在焊剂层下燃烧的电弧产生热量,熔化焊丝、焊剂和母材金属而形成焊缝的熔化极电弧焊方法。
由于焊接时电弧掩埋在焊剂层下燃烧,电弧光不外露,因此被称为埋弧焊。
二、埋弧焊的特点1.埋弧焊的主要优点:(1)焊接生产率高;(2)焊缝质量好;(3)焊接成本较低;(4)劳动条件好;2.埋弧焊的主要缺点:(1)难以在空间位置施焊;(2)对工件装配质量要求高;(3)不适合焊接薄板和短焊缝。
三、埋弧焊的分类及应用范围埋弧焊的应用范围(1)焊缝类型和焊件厚度凡是焊缝可以保持在水平位置、或倾斜度不大的工件,不管是对接、角接和搭接接头,都可以用埋弧焊焊接,如平板的拼接缝、圆筒形工件的纵缝和环缝、各种焊接结构中的角缝和搭接缝等。
埋弧焊可焊接的焊件厚度范围很大。
除了厚度在5mm以下的焊件由于容易烧穿,埋弧焊用得不多外,较厚的焊件都适于用埋弧焊焊接。
目前,埋弧焊焊接的最大厚度已达650mm。
(2)焊接材料种类随着焊接冶金技术和焊接材料生产技术的发展,适合埋弧焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢以及某些有色金属,如镍基合金、铜合金等。
此外,埋弧焊还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。
2 埋弧焊的焊接材料与冶金过程一、埋弧焊的焊接材料及选用1.焊丝根据焊丝的成分和用途可将其分为碳素结构钢焊丝、合金结构钢焊丝和不锈钢焊丝三大类,随着埋弧焊所焊金属种类的增加,焊丝的品种也在增加,目前生产中已在应用高合金钢焊丝、各种有色金属焊丝和堆焊用的特殊合金焊丝等新品种焊丝。
焊丝选用原则:埋弧焊焊接低碳钢时,常用的焊丝牌号有H08、H08A、H15Mn等,其中以H08A的应用最为普遍。
当工件厚度较大或对力学性能的要求较高时,则可选用含Mn量较高的焊丝。
埋弧焊的工艺与特点
摘要:埋弧焊是当今生产效率较高的机械化焊接方法之一,它的全称是埋弧自动焊,又称焊剂层下自动电弧焊。
本文对埋弧焊的工艺与特点进行简要的分析。
埋弧焊的实质是在一定大小颗粒的焊剂层下,由焊丝和焊件之间放电而产生的电弧热使焊丝的端部及焊件的局部熔化,形成熔池,熔池金属凝固后即形成焊缝。
这个过程是在焊剂层下进行的,所以称为埋弧焊。
焊丝末端和焊件之间产生电弧之后,电弧的辐射热使周围的焊剂熔化,其中一部分达到沸点,并蒸发形成高温气体,这部分蒸气将电弧周围的熔化焊剂(熔渣)排开,形成一个气泡,电弧在这个气泡内燃烧,气泡的上部被部分熔化了的焊剂及渣壳构成的外膜包围着。
它不仅能很好地将熔池与空气隔开,而且可以隔绝弧光的辐射。
随着电弧在气泡内连续燃烧,焊丝不断地熔化形成熔滴落入熔池。
当电弧沿焊缝方向不断向前移动时,熔池也随之冷却而凝固形成焊缝,密度较小的熔渣浮在熔池的表面,冷却后成为渣壳。
埋弧焊的焊接过程可以表述为,焊剂由漏斗流出后,均匀地撒在装配好的焊件上,堆放高度为30~50mm。
焊丝由送丝轮控制送进,经导电嘴送入焊接电弧区。
焊接电源的输出端分别接在导电嘴和焊件上。
送丝机构、焊剂漏斗和控制盘通常装在一台小车上。
焊接时只要按下启动按钮,焊接过程便可自动进行。
一.埋弧焊工艺
焊前准备:埋弧焊在焊接前必须做好准备工作,包括焊件的坡口加工、待焊部位的表面清理、焊件的装配以及焊丝表面的清理、焊剂的烘干等。
1.坡口加工
坡口加工要求按GB986—1988执行,以保证焊缝根部不出现未焊透或夹渣,并减少填充金属量。
坡口的加工可使用刨边机、机械化或半机械化气割机、碳弧气刨等。
2.待焊部位的清理
焊件清理主要是去除锈蚀、油污及水分,防止气孔的产生。
一般用喷砂、喷丸方法或手工清除,必要时用火焰烘烤待焊部位。
在焊前应将坡口及坡口两侧各20mm区域内及待焊部位的表面铁锈、氧化皮、油污等清理干净。
3.焊件的装配
装配焊件时要保证间隙均匀,高低平整,错边量小,定位焊缝长度一般大于30mm,并且定位焊缝质量与主焊缝质量要求一致。
必要时采用专用工装、卡具。
对直缝焊件的装配,在焊缝两端要加装引弧板和引出板,待焊后再割掉,其目的是使焊接接头的始端和末端获得正常尺寸的焊缝截面,而且还可除去引弧和收尾容易出现的缺陷。
4.焊接材料的清理
埋弧焊用的焊丝和焊剂对焊缝金属的成分、组织和性能影响极大。
因此焊接前必须清除焊丝表面的氧化皮、铁锈及油污等。
焊剂保存时要注意防潮,使用前必须按规定的温度烘干待用。
二.埋弧焊具有以下特点:
1.生产效率高
由于埋弧焊时,焊丝的伸出长度较小,可以采用较大的焊接电流。
例如焊条电弧焊使用焊条焊接时,电流的范围也就是250~350A,而埋弧焊通常为600?850A,甚至可达到1000A,故埋弧焊电流对焊丝的预热作用比焊条电弧焊大得多,再加上电弧在密封的熔剂气泡中燃烧,热效率极高,使焊丝的熔化系数增大、母材熔化快,提高了焊接速度。
2.焊缝质量好
埋弧焊时,焊接区受到焊剂和渣壳的可靠保护,大大减小了有害气体的入侵机会。
同时还可以降低焊缝的冷却速度,从而提高了焊缝接头的力学性能。
埋弧焊焊接规范比较稳定,焊速均衡,焊缝表面粗糙度小,化学成分和力学性能也比较均匀。
由于埋弧焊熔深较深,故不易产生未焊透等缺陷。
由于电流大,熔深较大,熔池中的气体往往来不及逸出,因而对气孔的敏感性较大。
3.节省焊接材料和电能
由于熔深大,对于较厚的焊件可以不开坡口进行焊接,焊缝中焊丝的填充量显著减少,节约了焊材,也节省了由于加工坡口和填充坡口所耗的电能。
由于埋弧焊受焊剂的有效保护,飞溅极少,又没有像焊条电弧焊那样的焊条头的损失,这就提高了填充焊丝的利用率,降低了成本。
4.劳动条件好
由于实现了焊接过程机械化,操作较简便,减轻了焊工的劳动强度,而且电弧在焊剂层下燃烧,没有弧光的有害影响,放出的烟尘也较少,从而改善了焊工的劳动条件。
三.埋弧焊需要控制的焊接参数
埋弧焊需要控制的焊接参数较多,对焊缝质量和成形影响较大的规范参数有:
焊接电流、电弧电压、焊接速度、焊丝直径与伸出长度、焊丝与焊件之间的倾斜度等。
焊剂的粒度及焊剂层厚度也对焊缝质量有一定影响。
1.焊接电流
焊接电流是决定熔深的主要因素。
在一定的范围内,电流增加时,焊缝的楚深'和余高4都增加,而焊缝的熔宽B增加不大。
增大焊接电流可以提高生产率,但在一定的焊速下,焊接电流过大会使热影响区过大并产生焊瘤或使焊件被烧穿。
若焊接电流过小,则熔深不足,产生熔合不好或未焊透,夹渣等缺陷。
为保证焊缝的内在质量和成形美观,在提高焊接电流的同时要相应提高电弧电压,使它们保持符合要求的焊缝成形系数。
埋弧焊时既可以采用直流电源,也可以采用交流电源。
当采用直流正接时,由于焊丝的熔敷速度比反接时高30%~50%,且熔深浅,所以它适合薄板焊接和堆焊。
直流反接时的熔深比正接大,适合焊厚件。
2.电弧电压
其他参数不变时,电弧电压是决定熔宽的素。
电弧电压增加时,熔深H减小,熔宽B增大,余高h变小。
电弧电压过大时,焊剂的熔化量增加,电弧不稳,因此,电弧电压的大小应与焊接电流匹配。
3.焊接速度
其他参数不变时,焊接速度增加,焊缝单位长度内所得到的电弧热量减小,因此使熔深变浅;同时焊缝上单位长度内所得到的焊丝熔化量也减少,所以焊缝的余高和熔宽相应减少。
过分地增加焊接速度会造成未焊透、焊缝边缘熔合不好。
焊接速度太慢,则焊缝余高过高,形成宽而浅的大熔池,焊缝表面粗糙,容易
产生满溢、焊瘤或烧穿,生产效率也不高。
近年来,虽然先后出现了许多种高效、优质的新焊接方法,但埋弧焊的应用领域依然未受任何影响。
从各种熔焊方法的熔敷金属重量所占份额的角度来看,埋弧焊约占10%左右,且多年来一直变化不大。