四年级数学下册运算定律和简便计算复习
- 格式:ppt
- 大小:1.18 MB
- 文档页数:33
四年级混合运算规则+简便计算练习运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。
6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
运算法则1. 整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
运算顺序1. 没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
2. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
3. 第一级运算:加法和减法叫做第一级运算。
人教版数学四年级下册《总复习》(四则运算、运算定律与简便计算)说课稿一. 教材分析人教版数学四年级下册《总复习》主要包括四则运算、运算定律与简便计算这两个部分。
这一单元是对整个学期所学内容的回顾与总结,目的是让学生巩固和掌握基本的运算方法和运算定律,提高运算速度和准确性。
二. 学情分析四年级的学生已经掌握了加、减、乘、除四则运算的基本方法,对运算定律也有了一定的了解。
但在实际操作中,部分学生可能会存在运算速度慢、准确性不高、对运算定律运用不熟练等问题。
因此,在教学过程中,需要针对这些问题进行针对性的指导。
三. 说教学目标1.知识与技能:使学生掌握四则运算的基本方法,熟练运用运算定律进行简便计算。
2.过程与方法:培养学生的运算能力,提高运算速度和准确性。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.教学重点:四则运算的基本方法,运算定律的运用。
2.教学难点:运算定律在实际计算中的应用,提高运算速度和准确性。
五. 说教学方法与手段1.教学方法:采用讲解、示范、练习、讨论、小组合作等教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入:通过一个有趣的数学故事引入本节课的主题,激发学生的学习兴趣。
2.讲解与示范:讲解四则运算的基本方法,示范运算定律的运用。
3.练习与讨论:学生进行练习,小组内讨论解决问题。
4.小组合作:学生分组进行合作,运用运算定律进行简便计算。
5.总结与拓展:总结本节课所学内容,提出拓展问题,激发学生的探究精神。
七. 说板书设计板书设计要清晰、简洁,突出重点。
主要包括四则运算的基本方法和运算定律的运用。
八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答情况等,了解学生的学习状态。
2.练习完成情况:检查学生完成的练习题,评价学生的掌握程度。
3.小组合作:评价学生在小组合作中的表现,包括沟通能力、合作精神等。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便计算 (一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+9975.计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56 (10)425+14+185 (11)67+25+33+75 (12)245+180+20+155 (13)75+168+25 (14)60+255+40 (15)13+46+55+54+87 (16)5+137+45+63+50 (17)548+52+468 (18)135+39+65+11 (19)282+41+1594、解决问题。
人教版四年级下册数学加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律与简便计算运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a ×b=b ×a 4、乘法结合律:(a ×b)×c=a ×(b ×c)5、乘法分配律:(a +b )×c=a ×c +b ×c6、减法的性质:a-b-c=a-(b+c)7、除法的性质:a ÷b ÷c=a ÷(b ×c )(一)加减法运算定律 1.加法交换律 定义:两个加数交换位置,和不变. 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++ (注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
)例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律(注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
)减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,就等于减去后面这两个数的和。
字母表示:)(c b a c b a +-=-- 例3.简便计算: (1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
小学四年级数学下册知识点运算定律和简便运算小学四年级数学下册知识点运算定律和简便运算在现实学习生活中,说起知识点,应该没有人不熟悉吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
想要一份整理好的知识点吗?以下是店铺帮大家整理的小学四年级数学下册知识点运算定律和简便运算,仅供参考,大家一起来看看吧。
小学四年级数学下册知识点运算定律和简便运算篇1一、加法运算定律1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
ab=ba2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(ab)c=a(bc)小学四年级数学下册知识点运算定律及简便运算:乘法的这两个定律往往结合起来一起使用。
如:125788的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)c=ac+bc(a-b)c=ac-bc小学四年级数学下册知识点运算定律和简便运算篇21、亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。
(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。
在级末尾的零不读,在级中间的零必须读。
中间不管连续有几个零,只读一个零。
2、亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、比较数大小的方法。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
人教版数学四年级下册《总复习》(四则运算、运算定律与简便计算)教案一. 教材分析人教版数学四年级下册《总复习》主要涉及四则运算、运算定律与简便计算。
这一部分内容是小学数学的基础,对于培养学生的逻辑思维和数学素养具有重要意义。
教材通过复习和总结,帮助学生巩固已学的知识,提高解决问题的能力。
二. 学情分析四年级的学生已经掌握了基本的四则运算和运算定律,但对于一些复杂的简便计算方法可能还不够熟练。
学生的学习兴趣较高,但部分学生可能对一些概念和运算方法的理解不够深入,需要通过教学加以引导和巩固。
三. 教学目标1.使学生掌握四则运算的基本方法和运算定律。
2.培养学生运用运算定律进行简便计算的能力。
3.提高学生的逻辑思维和解决问题的能力。
四. 教学重难点1.重点:掌握四则运算的基本方法,熟练运用运算定律进行简便计算。
2.难点:理解并运用一些特殊的简便计算方法。
五. 教学方法采用问题驱动、案例教学、合作学习等方法,引导学生通过自主学习、讨论交流,掌握四则运算和运算定律,提高简便计算能力。
六. 教学准备1.教材和人教版数学四年级下册《总复习》相关资料。
2.教学PPT或其他辅助教学材料。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出四则运算和运算定律的重要性,激发学生的学习兴趣。
示例问题:小明有12个苹果,他想把它们平均分给4个朋友,每个朋友能得到多少个苹果?2.呈现(10分钟)呈现四则运算和运算定律的相关知识,引导学生回顾和总结已学的知识。
四则运算:加法、减法、乘法、除法运算定律:交换律、结合律、分配律3.操练(10分钟)通过一些具体的例子,让学生运用四则运算和运算定律进行计算,巩固所学知识。
1.23 + 17 = ?2.35 - 18 = ?3.42 × 5 = ?4.63 ÷ 9 = ?5.巩固(10分钟)让学生分成小组,互相讨论和解答一些有关四则运算和运算定律的问题,提高合作学习能力。
运算定律与简便计算 (一)加减法运算定律1.加法交换律 定义:两个加数交换位置,和不变 字母表示:a b b a +=+ 例如:16+23=23+16 546+78=78+5462.加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++ 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24(3)140+639+860 举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245 3.减法交换律、结合律 注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=-- 例3.简便计算:(1)369-45-155 (2)896-580-120 4.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997 随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56 (二)乘除法运算定律1.乘法交换律 定义:交换两个因数的位置,积不变。
运算定律和简便计算一、加法运算定律:(1)加法交换律:两个加数交换位置,和不变。
用字母表示:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
用字母表示:(a+b)+c=a+(b+c)二、乘法运算定律:(1)乘法交换律:交换两个因数的位置,积不变。
用字母表示:a×b=b×a(2)乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,积不变。
用字母表示:(a×b)×c=a×(b×c)(3)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
用字母表示:(a+b)×c=a×c+b×c a×(b+c)=a×b+a×c三、简便计算(1)连减的简便计算:一个数连续减去两个数,可以用这个数减去两个减数的和。
(注意这种方法的逆向运算)a-b-c=a-(b+c) (2)连除的简便计算:一个数连续除以两个数,可以用这个数除以两个除数的积a÷b÷c=a÷(b×c)(3)加减法、乘加、乘除法的灵活应用a-b+c=a+c-ba÷b×c=a×c ÷b四、运算定律与简便计算的整理和复习小小法官(判断对错)1、25 х102 =25 х100 + 2 ( )2、132-(32 + 47)= 132 –32 + 47 ( )3、350 ÷5 х 2 = 350÷( 5 х 2 ) ( )4、68 х99 + 68 = 68 х100 ( ) 典型错误分析:错误一:对运算定律混淆不清如:18×101=18×100×1=1800(101变成了100×1,所以错误。
)125×48=125×(40+8)=125×40+8=5008(应该8与125再相乘)125×48=125×(40+8)=125×40×125×8=5000000(40+8)中的加号“+”看乘了乘号“×”,25×64×125=25×(60+4)×125=25×60+4×125=2000(60+4)的括号直接去掉了,把原来的连乘变成了乘法加法。
运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a ×( b×c) 5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c 6、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c7、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷ b。