【苏科版】2014届中考数学第一轮夯实基础《第7讲 一元二次方程及其应用》
- 格式:ppt
- 大小:655.50 KB
- 文档页数:21
初三数学一元二次方程复习与总结某某科技版【本讲教育信息】一. 教学内容:一元二次方程复习与总结学习目标:1. 加深理解一元二次方程的有关概念2. 熟练地应用不同的方法解方程3. 能应用方程的思想和方法解决实际问题4. 体会“降幂法”在解方程中的含义二. 重点、难点:重点:一元二次方程的解法与应用难点:一元二次方程的综合应用课堂教学(一)知识要点(1)本章知识结构(2)中考主要考点①利用一元二次方程的意义解决问题②用整体思想对复杂的高次方程或分式方程进行变形(换元法)③考查配方法(主要结合函数的顶点式来研究)④一元二次方程的解法⑤一元二次方程根的近似值⑥建立一元二次方程模型解决问题⑦利用根的判别式求方程中的字母系数的值⑧与一元二次方程相关的探索或说理题⑨与其他知识结合,综合解决问题【典型例题】例1. 写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1 _____________________________________________________解:答案不唯一,例如:x2=0x2-x=0例2. 用换元法解方程x 2-2x +xx 272-=8,若设x 2-2x =y ,则原方程化为关于y 的整数方程是( ) A. y 2+8y -7=0 B. y 2-8y -7=0 C. y 2+8y +7=0D. y 2-8y +7=0解:D 。
换元法的实质是整体思想的应用。
例3. 用配方法解方程:x 2-4x -1=0解:利用配方法解一元二次方程的一般步骤是移项,二次项系数化为1,两边同时加上一次项系数一半的平方,左边化为完全平方式、利用平方的意义求解。
例4.判断方程ax 2+bx +c =0(a ≠0)一个解x 的X 围是( ) A. 3<x <3.23 B. 3.23<x <3.24 C. 3.24<x <3.25 D. 3.25<x解:一元二次方程根近似值是深层次地理解方程的重要概念,在实际应用中,作用很大。
一元二次方程易错点梳理易错点01 忽略一元二次方程中0 a 这一条件在解与一元二次方程定义有关的问题时,一定要注意一元二次方程的二次项系数不等于0这一条件。
易错点02 利用因式分解法解一元二次方程时出错(1)对因式分解法的基本思想理解不清,没有将方程化为两个一次因式相乘的形式;(2)在利用因式分解法解一元二次方程时忽略另一边要化成0;(3)产生丢根的现象,主要是因为在解方程时,出现方程两边不属于同解变形,解题时要注意方程两边不能同时除以一个含有未知数的项。
易错点03 利用公式法解方程时未将方程化为一般形式在运用公式法解方程时,一定要先将方程化为一般形式,从而正确的确定c b a ,,,然后再代入公式。
易错点04 根的判别式运用错误运用根的判别式判断一元二次方程的根的情况时,必须先把方程化为一般形式,正确的确定c b a ,,。
易错点05 列方程解应用题时找错等量关系列方程解应用题的关键是找对等量关系,根据等量关系列方程。
考向01 一元二次方程的有关概念例题1:(2021·山东聊城·中考真题)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( )A .2或4B .0或4C .﹣2或0D .﹣2或2例题2:(2021·贵州遵义·中考真题)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是例题分析易错点梳理5,﹣4,则原来的方程是()A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0考向02 一元二次方程的解法例题3:(2013·浙江丽水·中考真题)一元二次方程()2+=可转化为两个一元一次方x616+=,则另一个一元一次方程是()程,其中一个一元一次方程是x64A.x64+=-+=D.x64 -=-B.x64-=C.x64例题4:(2021·内蒙古赤峰·中考真题)一元二次方程2820--=,配方后可形为()x xA.()2418x-=x-=B.()2414C.()2864x-=x-=D.()241考向03 一元二次方程根的判别式和根与系数的关系例题5:(2021·广西河池·中考真题)关于x的一元二次方程220+--=的根的情x mx m况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数由m的值确定例题6:(2021·山东济宁·中考真题)已知m,n是一元二次方程220210+-=的两个x x实数根,则代数式22++的值等于()m m nA.2019 B.2020 C.2021 D.2022考向04 列一元二次方程解应用题例题7:(2021·山东滨州·中考真题)某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.(1)求该商品每次降价的百分率;(2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?例题8:(2021·山西·中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).一、单选题1.(2021·福建·厦门一中三模)对于一元二次方程20ax bx c ++=()0a ≠,下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=()0a ≠必有两个不相等的实根;③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;④若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+.其中正确的有( )A .1个B .2个C .3个D .4个 2.(2021·黑龙江牡丹江·模拟预测)关于x 的一元二次方程()22395m x m x x -+=+化为一般形式后不含一次项,则m 的值为( )A .0B .±3C .3D .-33.(2021·广西玉林·一模)关于x 的一元二次方程:24ax bx c ++=的解与方程2540x x -+=的解相同,则a b c ++=( )A .1B .2C .3D .44.(2021·河南涧西·三模)定义()224a b a a b =+-+★,例如()2373372428=+⨯-+=★,若方程0x m =★的一个根是1-,则此方程的另一个根是( )A .2-B .3-C .4-D .5-5.(2021·广东·惠州一中一模)若m ,n 为方程2310x x --=的两根,则m n +的值为( )A .1B .1-C .3-D .3 微练习6.(2021·广东·西南中学三模)下列一元二次方程中,没有实数根的是( )A .2x 2﹣4x +3=0B .x 2+4x ﹣1=0C .x 2﹣2x =0D .3x 2=5x ﹣27.(2021·陕西·西安市铁一中学模拟预测)抛物线222y x x a =++-与坐标轴有且仅有两个交点,则a 的值为( )A .3B .2C .2或3-D .2或38.(2021·广东·珠海市紫荆中学三模)直线y x a =+经过第一、三、四象限,则关于x 的方程220x x a ++=实数解的个数是( )A .0个B .1个C .2个D .以上都有可能9.(2021·四川省宜宾市第二中学校一模)受新冠影响,某股份有限公司在2020年3月份销售口罩的核心材料熔喷无纺布的收入为2.88万元,而在1月份的销售收入仅为2万元,那么该股份有限公司在2020年第一季度的销售收入月增长率为( )A .0.2%B .-2.2%C .20%D .220%10.(2021·安徽·合肥市第四十五中学三模)每年春秋季节流感盛行,极具传染性如果一人得流感,不加干预,则经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x 人,则下列方程正确的是( )A .2181x x ++=B .()2181x += C .()21181x x +++= D .()()211181x x ++++= 11.(2021·黑龙江佳木斯·三模)商场购进一批衬衣,进货单价为30元,按40元出售时,每天能售出500件.若每件涨价1元,则每天销售量就减少10件.为了尽快出手这批衬衣,而且还能每天获取8000元的利润,其售价应该定为( )A .50元B .60元C .70元D .50元或70元12.(2021·河北桥东·二模)若x 比()1x -与()1x +的积小1,则关于x 的值,下列说法正确的是( )A .不存在这样x 的值B .有两个相等的x 的值C .有两个不相等的x 的值D .无法确定 二、填空题13.(2021·湖南师大附中博才实验中学二模)已知1x =是一元二次方程20x x c ++=的解,则c 的值是___________.14.(2021·广东·江门市第二中学二模)设a 为一元二次方程22520210x x +-=的一个实数根,则26152a a ++=______.15.(2021·内蒙古包头·三模)已知a 是方程260x x +-=的解,求22341121a a a a a -⎛⎫-+÷= ⎪+++⎝⎭_____________. 16.(2021·内蒙古·呼和浩特市回民区教育局教科研室二模)方程x 2=x 的解为 ___.17.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)小丽在解一个三次方程x 3-2x +1=0时,发现有如下提示:观察方程可以发现有一个根为1,所以原方程可以转化为(x -1)(x 2+bx +c )=0.根据这个提示,请你写出这个方程的所有的解______.18.(2021·江苏·苏州市立达中学校二模)若关于x 的一元二次方程2(2)20mx m x +++=的根都是整数,则整数m 的最大值是________.三、解答题19.(2021·广东·深圳市宝安中学(集团)模拟预测)解下列方程.(1)()2233x x -=-.(2)22530x x -+=.20.(2021·陕西·西安益新中学模拟预测)解方程:2x (x ﹣3)+x =321.(2021·广东·铁一中学二模)解方程:()2131x x -=+ 22.(2021·浙江·杭州市丰潭中学二模)已知代数式5x 2﹣2x ,请按照下列要求分别求值:(1)当x =1时,代数式的值.(2)当5x 2﹣2x =0时,求x 的值.23.(2021·广东·珠海市文园中学三模)已知关于x 的一元二次方程2(21)210k x x -++=有实数根.(1)求k 的取值范围;(2)取12k =-,用配方法解这个一元二次方程.24.(2021·重庆实验外国语学校三模)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a %,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.25.(2021·辽宁·建昌县教师进修学校二模)某儿童玩具店销售一种玩具,每个进价为60元,现以每个100元销售,每天可售出20个,为了迎接六一儿童节,店长决定采取适当的降价措施,经市场调查发现:若每个玩具每降价1元,则每天多售出2个.设该玩具的销售单价为x(元),日销售量为y(个).(1)求y与x之间的函数关系式.(2)为了增加盈利,减少库存,且日销售利润要达到1200元,销售单价应定为多少元?(3)若销售单价不低于成本价,每个获利不高于成本价的30%,将该玩具的销售单价定为多少元时,玩具店每天销售该玩具获得的利润最大?最大利润是多少元?。
2014年中考数学一轮复习讲义:一元二次方程【考纲要求】1.理解一元二次方程的概念.2.掌握一元二次方程的解法.3.了解一元二次方程根的判别式,会判断一元二次方程根的情况;了解一元二次方程根与系数的关系并能简单应用.4.会列一元二次方程解决实际问题.【命题趋势】结合近年中考试题分析,一元二次方程的内容考查主要有一元二次方程的有关概念,一元二次方程的解法及列一元二次方程解决实际问题,题型以选择题、填空题为主,与其他知识综合命题时常为解答题.【知识梳理】一、一元二次方程的概念:1、只含有一个未知数,并且未知数的最高次数是二次,这样的整式方程叫做一元二次方程。
2、一元二次方程的一般形式是ax2+bx+c=0(a≠0)。
二、一元二次方程的解法:1、解一元二次方程的基本思想是降次,主要方法有:直接开平方法、配方法、公式法、因式分解法。
2、配方法:通过配方把一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)变形为能直接开平方的形式,再利用直接开平方法求解。
3、公式法:一元二次方程ax2+bx+c=0(a≠0)当b2-4ac≥0时,方程有两个实数根。
4、因式分解法:用因式分解法解方程的原理是:若a·b=0,则a=0或b=0.三、一元二次方程根的判别式:1.一元二次方程根的判别式是⊿=b2-4ac。
2.(1)b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根;(2)b2-4ac=0一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根;(3)b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)无实数根。
四、一元二次方程根与系数的关系:1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式. 2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根是x 1,x 2,则x 1+x 2=﹣,12c x x a五、实际问题与一元二次方程: 列一元二次方程解应用题的一般步骤: (1)审题;(2)设未知数;(3)找相等关系;(2)(4)列方程;(5)解方程;(6)检验;(7)写出答案. 题型分类 、深度剖析:考点一、一元二次方程的有关概念【例1】下列方程中是关于x 的一元二次方程的是( ) A .x 2+1x2=0 B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=0解析:由一元二次方程的定义可知选项A 不是整式方程;选项B 中,二次项系数可能为0;选项D 中含有两个未知数.故选C.答案:C方法总结 方程是一元二次方程要同时满足下列条件:①是整式方程;②只含有一个未知数;③未知数的最高次数为2;④二次项系数不等于0.容易忽略的是条件①和④.触类旁通1 已知3是关于x 的方程x 2-5x +c =0的一个根,则这个方程的另一个根是( )A .-2B .2C .5D .6 考点二、一元二次方程的解法 【例2】解方程x 2-4x +1=0.分析:本题可用配方法或公式法求解.配方法通常适用于二次项系数化为1后,一次项系数是偶数的一元二次方程.对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解.解:解法一:移项,得x 2-4x =-1.配方,得x 2-4x +4=-1+4,即(x -2)2=3,由此可得x -2=±3,x 1=2+3,x 2=2- 3.解法二:a =1,b =-4,c =1.b 2-4ac =(-4)2-4×1×1=12>0,x =4±122=2± 3.方法总结 此类题目主要考查一元二次方程的解法及优化选择,常常涉及到配方法、公式法、因式分解法.选择解法时要根据方程的结构特点,系数(或常数)之间的关系灵活进行,解题时要讲究技巧,尽量保证准确、迅速.触类旁通2 解方程:x 2+3x +1=0. 考点三、一元二次方程根的判别式的应用【例3】关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4± 2D .0或8解析:b 2-4ac =(m -2)2-4(m +1)=0,解得m 1=0,m 2=8.故选D. 答案:D方法总结 由于一元二次方程有两个相等的实数根,可得根的判别式b 2-4ac =0,从而得到一个关于m 的方程,解方程求得m 的值即可.一元二次方程根的判别式的应用主要有以下三种情况:(1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围;(3)应用判别式证明方程根的情况.触类旁通3 已知关于x 的一元二次方程mx 2+nx +k =0(m ≠0)有两个实数根,则下列关于判别式n 2-4mk 的判断正确的是( )A .n 2-4mk <0 B .n 2-4mk =0 C .n 2-4mk >0 D .n 2-4mk ≥0 考点四、一元二次方程根与系数的关系【例4】已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.解:(1)依题意,得b 2-4ac ≥0,即[-2(k -1)]2-4k 2≥0,解得k ≤12.(2)解法一:依题意,得x 1+x 2=2(k -1),x 1x 2=k 2. 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1x 2-1, 即2(k -1)=k 2-1,解得k 1=k 2=1.∵k ≤12,∴k 1=k 2=1不合题意,舍去.②当x 1+x 2<0时,则有x 1+x 2=-(x 1x 2-1), 即2(k -1)=-(k 2-1).解得k 1=1,k 2=-3. ∵k ≤12,∴k =-3.综合①②可知k =-3.解法二:依题意,可知x 1+x 2=2(k -1). 由(1)可知k ≤12,∴2(k -1)<0,即x 1+x 2<0.∴-2(k -1)=k 2-1,解得k 1=1,k 2=-3.∵k ≤12,∴k =-3.方法总结 解决本题的关键是把给定的代数式经过恒等变形化为含x 1+x 2,x 1x 2的形式,然后把x 1+x 2,x 1x 2的值整体代入.研究一元二次方程根与系数的关系的前提为:①a ≠0,②b 2-4ac ≥0.因此利用一元二次方程根与系数的关系求方程的系数中所含字母的值或范围时,必须要考虑这一前提条件.触类旁通4 若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是( ) A .4 B .3 C .-4 D .-3 考点五、用一元二次方程解实际问题【例5】汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?解:设该品牌汽车年产量的年平均增长率为x ,由题意,得 6.4(1+x )2=10,解得x 1=0.25,x 2=-2.25.∵x 2=-2.25<0,故舍去,∴x =0.25=25%.10×(1+25%)=12.5.答:2011年的年产量为12.5万辆.方法总结 此题是一道典型的增长率问题,主要考查列一元二次方程解应用题的一般步骤.解应用题的关键是把握题意,找准等量关系,列出方程.最后还要注意求出的未知数的值是否符合实际意义,不符合的要舍去.触类旁通5 商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,请回答:(1)商场日销售量增加__________件,每件商品盈利__________元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2 100元?。
第7课时:二次方程(组)【课前预习】 (一)知识梳理1、一元二次方程,二元二次方程(组)的定义。
2、一元二次方程的解法,基本思想是降次,常用方法是直接开平方法、配方法、因式分解法、公式法、十字相乘法。
3、二元二次方程组(一个是二元一次方程、一个是二元二次方程)的解法,基本思想是消元、降次,常用方法代入消元法。
(二)课前练习2221.3(1)2(2)40 .2. .3.7100 .4.1)(21x x x x x x x x m x m --+-==-+=-++将方程化成一元二次方程的一般形式,得,一次项系数是,二次项系数是方程的根是若一个三角形的三边长均满足方程,那么此三角形的周长是关于的一元二次方程(2)100 .x m m +-=的一个根为,那么的值是 5.下列关于x 的方程:2232223(1)230,(2)20,(3)5,(4)1x x x x x x y x--=-+=+=+= 其中是一元二次方程的有 . 6.用规定方法解下列方程:(1)()22132x -=(开平方法与因式分解法) (2)242x x +=(配方法与公式法)【解题指导】2221.1310 (2)3 (3)3250x x x x x +-=+=--=例解下列方程:()2261102.210x y y x y ⎧-+-=⎨--=⎩例解二元二次方程组:3.2)340x ( ). . . . mm x mx m m m m -+-==±==-≠±A 2B 2C 2D 2例方程(是关于的一元二次方程,则例5.m 为何值时,方程组 2y 12xy 3x m ⎧=⎨=+⎩有两个相同的实数解.【巩固练习】()2222221.150 .2.210,4 .3.1 5 (2)( (3)(4)(32)110m x mx m a a a a x x y x x -+-=-+=-=-=+=+-+=方程是关于x 的一元二次方程,则满足的条件是若则2解下列方程:()4.请你写出一个有一根为1的一元二次方程: .22520111; (2) 2830x y x y xy x y -=+=⎧⎧⎨⎨=-+=⎩⎩.解下列方程组:()【课后作业】 班级 姓名一、必做题:1、已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( ) A .3- B .3 C .0 D .0或3 2、用配方法解一元二次方程542=-x x 的过程中,配方正确的是( ) A .(1)22=+x B .1)2(2=-x C .9)2(2=+x D .9)2(2=-x 3、一元二次方程2520x x -=的解是( )A .x 1 = 0 ,x 2 =25B . x 1 = 0 ,x 2 =52-C .x 1 = 0 ,x 2 =52D . x 1= 0 ,x 2 =25-4、下列说法中,正确的是( )A .如果a b c d b d ++=,那么a cb d= B 3C .当1x <D .方程220x x +-=的根是2112x x =-=,5、方程(x-1)2=4的解是 .6、请你写出一个两根分别为2,3的一元二次方程: .7、若关于x 的方程2210x x k ++-=的一个根是0,则k = .8、若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k +=.9、用配方法解方程542=-x x 时,方程的两边同加上 ,使得方程左边配成一个完全平方式. 10、解方程:(1)2(3)4(3)0x x x -+-=. (2)2230x x --=(3)2310x x --=. (4)0)3(2)3(2=-+-x x x(5)2213x x +=. (6)x 2-6x +1=0.11、解方程组:(1)27x 6xy 82x 3y 5⎧-=⎨-=⎩ (2)二.选做题:1、若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A .1B .2C .-1D .-22、方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =3、2(3)5(3) .x x x -=-一元二次方程的根为4、2222()4()120,1 .x x x x x x x ----=-+已知实数满足则代数式的值为5、用适当的方法解关于x 的方程(1)064)94(32=+--x x (2)032)26(2=+++x x6. 222222)(1)-120,+y x y x y x +-+=已知(求的值。
江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及及应用练习(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及及应用练习(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及及应用练习(含解析)的全部内容。
第二章方程(组)与不等式(组)第7课时一元二次方程及其应用(建议答题时间:60分钟)基础过关1。
(2016厦门)方程x2-2x=0的根是()A.x1=x2=0 B。
x1=x2=2C. x1=0,x2=2 D. x1=0,x2=-22。
(2016昆明)一元二次方程x2-4x+4=0的根的情况是( )A。
有两个不相等的实数根B。
有两个相等的实数根C.无实数根D. 无法确定3。
(2016新疆)一元二次方程x2-6x-5=0配方后可变形为()A。
(x-3)2=14 B.(x-3)2=4C. (x+3)2=14D. (x+3)2=44。
(2016潍坊)关于x的一元二次方程x2-\r(2)x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C。
45°D。
60°5。
(2016绵阳)若关于x的方程x2-2x+c=0有一根为-1,则方程的另一根为()A。
-1 B。
-3C.1D。
36. (2016烟台)若x1,x2是一元二次方程x2-2x-1=0的两个根,则x错误!-x1+x2的值为( )A。
第二章方程(组)与不等式(组)第7课时一元二次方程及其应用江苏中考真题精选命题点1 解一元二次方程(近3年39套卷,2015年考查3次,2014年考查3次,2013年考查3次)1.(2015徐州20(1)题5分)解方程:x2-2x-3=0.2.(2014徐州20(1)题5分)解方程:x2+4x-1=0.3.(2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(近3年39套卷,2015年考查6次,2014年考查6次,2013年考查5次)1.(2014苏州7题3分)下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C. (x-1)(x+2)=0D. (x-1)2+1=02.(2015连云港6题3分)已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则k的取值范围是()A. k<B.k>-C. k<且k≠0D. k>-且k≠03.(2013镇江8题2分)写一个你喜欢的实数m的值_______,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4.(2015南通12题3分)已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于_______.5.(2015南京12题2分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是________.6.(2015镇江9题2分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________.7.(2015徐州13题3分)已知关于x的方程x2-2x-k=0有两个相等的实数根,则k的值为_________.8.(2014扬州17题3分)已知a、b是方程x2-x-3=0的两个根,则代数式2a3+b2+3a2-11a-b+5的值为.9.(2015泰州18题8分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.命题点3 一元二次方程的应用(近3年39套卷,2015年考查2次,2014年考查1次,2013年考查3次)1.(2013南京14题2分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:__________.第1题图2.(2014南京22题8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为_______万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x.3.(2013连云港23题10分)小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48cm2.”他的说法对吗?请说明理由.4.(2015淮安26题10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售是_______斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】命题点1 解一元二次方程1. 解:因式分解得:(x+1)(x-3)=0,…………………………………………………………(3分)即x+1=0或x-3=0,…………………………………………………………………………(4分)解得:x1=-1 ,x2=3.……………………………………………………………………………(5分)2. 解:原式可化为(x2+4x+4-4)-1=0,即(x+2)2=5,…………………………………(3分)两边开方得,x+2=±,…………………………………………………………………(4分)解得x1=-2+,x2=-2-.…………………………………………………………………(5分)。
知识点01:解一元二次方程【高频考点精讲】1.用“配方法”解一元二次方程(1)把原方程化为ax2+bx+c=0(a≠0)的形式;(2)方程两边同时除以二次项系数,使二次项系数为1,并把常数项移到方程右边;(3)方程两边同时加上一次项系数一半的平方;(4)把左边配成一个完全平方式,右边化为一个常数;(5)如果右边是非负数,可以通过直接开平方法求解;如果右边是负数,则判定此方程无实数解。
2.用“因式分解法”解一元二次方程(1)移项,使方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每个因式分别为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解。
3.用“换元法”解一元二次方程(1)把方程中某个含有未知数的式子看成一个整体,用另一个未知数去替换它,从而将原方程转化成关于新未知数的方程,这种方法叫做“换元法”。
(2)“换元法”关键是构造元和设元,目的是变换研究对象,将问题转移至新对象的知识背景中去研究,从而使复杂问题简单化。
知识点02:高次方程和无理方程【高频考点精讲】1.高次方程(1)一般地,最高次项的次数高于2次的方程,叫做高次方程。
(2)高次方程的解法通过适当方法把高次方程转化为次数较低的方程求解。
所以,解高次方程一般要降次,将高次方程转化成二次方程或一次方程。
2.无理方程(1)方程中含有根式,且开方数是含有未知数的代数式,这样的方程叫做无理方程。
(2)解无理方程关键是去根号,将其转化为整式方程。
(3)常用方法:乘方法,配方法,因式分解法,设辅助元素法。
注意:用乘方法解无理方程,通常会产生增根,应当注意验根。
知识点03:根的判别式及根与次数关系 【高频考点精讲】 1.根的判别式一元二次方程ax 2+bx +c =0(a ≠0)的根与根的判别式(△=b 2﹣4ac )有如下关系:(1)当△>0时,方程有两个不相等的两个实数根;反过来,当方程有两个不相等的两个实数根时,△>0。
苏科版数学七年级上册4.1《一元二次方程》说课稿一. 教材分析《一元二次方程》是苏科版数学七年级上册4.1节的内容。
这部分内容是在学生已经掌握了方程和方程的解的基础上进行教学的。
一元二次方程是初中数学中的重要内容,也是学习高中数学的基础。
这部分内容不仅可以帮助学生更好地理解数学的本质,还可以培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于方程和方程的解已经有了一定的了解。
但是,对于一元二次方程的概念和求解方法还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元二次方程的概念和求解方法。
三. 说教学目标1.知识与技能:让学生理解和掌握一元二次方程的概念,学会解一元二次方程。
2.过程与方法:通过自主学习、合作交流的方式,让学生掌握一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学的美。
四. 说教学重难点1.教学重点:一元二次方程的概念,一元二次方程的解法。
2.教学难点:一元二次方程的求解过程,对于不同类型的一元二次方程选择合适的解法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导相结合的方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.引入新课:通过回顾方程和方程的解的知识,引导学生思考如何解决更复杂的方程问题。
进而引入一元二次方程的概念。
2.讲解概念:讲解一元二次方程的定义,通过示例让学生理解一元二次方程的特点。
3.解法讲解:讲解一元二次方程的解法,包括因式分解法、配方法、公式法等。
并通过示例让学生理解每种解法的步骤和应用。
4.练习与讨论:布置一些练习题,让学生自主完成,然后进行合作交流,讨论解题思路和解法。
5.总结与拓展:对一元二次方程的概念和解法进行总结,并进行一些拓展知识的介绍,如一元二次方程的应用等。