行波法在配电网故障测距中的应用
- 格式:doc
- 大小:54.50 KB
- 文档页数:10
摘要牵引供电系统是电力系统的一个独立的、特殊的分支,电力机车通过受电弓和牵引供电系统的接触网滑动取流。
由于牵引网沿线环境恶劣、牵引负荷特殊,且一直采用的阻抗法故障测距技术难以克服过渡电阻的影响,因此牵引网一旦发生故障,很难有效及时地查找出故障位置。
现场迫切需要有效、实用的故障定位或测距技术。
鉴于行波测距技术已成功运用于输电线路上,本文研究的目的是将行波故障测距技术应用到普遍使用的直供方式牵引供电系统中,解决应用中面临的关键技术问题,使其满足实用化要求。
文章中首先从行波测距技术的需求分析了牵引网的线路结构,包括锚段、分支线、车站分段线等特殊线路,在此基础上建立了牵引供电线路适用于行波法故障测距的典型模型;分析了带回流线的直供方式下接触网发生接地故障、接触网对回流线故障以及断线故障时产生的初始电压和电流行波特征;给出了单线以及复线牵引网(末端并联和末端解裂)下电压和电流行波在母线处和线路末端的传播特征;分析了电压和电流行波在特殊线路结构的传播特点以及对行波测距的影响;结合行波信号的利用方式,给出了适用于直供方式牵引网线路的实用化行波故障测距模式;提出了电压和电流行波信号的获取方法;分析了机车扰动、故障初相角、故障点过渡电阻等因素对行波测距可靠性影响;利用ATP对故障行波的产生及传播特性进行仿真验证;介绍了试验装置、现场试验系统、试运行过程和试运行结果。
理论分析可以得出:利用故障产生的暂态行波,可以有效、准确地测量接触网分别对地、对回流线短路以及断线等各种类型故障距离;测距模式应采用双端测距原理;单出线的母线、开路状态的线路末端须采用电压行波信号,两出线母线、并联状态的线路末端采用电压或电流行波信号均可;利用变电所、分区亭标准配置的电压互感器(TV)和电流互感器(TA)可获取所需的电压和电流行波信号;在线路没有互感器的情况下,也可利用所内自用变压器来获取线路电压行波;地线带回流线、锚段、车站分段线以及不等长回流线等特殊线路结构不对行波测距技术产生本质影响。
基于行波固有频率配电网混合线路故障测距浅析摘要:行波固有频率配电网混合线路故障测距技术是一种新的检测方法,它利用了分布式通信与处理系统中各种信息传输手段和传输方式,实现对配电设备运行状态实时监测,为供电部门提供准确可靠的数据。
本文基于行波固有频率对配电网混合线路故障测距进行分析,以供参考。
关键词:行波固有频率;配电网;混合线路;故障测距引言:本文主要探讨了基于行波固有频率的配电网混合线路故障测距方法。
文章首先介绍了行波固有频率测距原理,然后分析了配电网混合线路故障的特点,并提出了混合线路故障测距方法。
最后,结合实际应用,探讨了行波固有频率测距的应用效果。
本文的研究结果对于提高配电网故障定位的精度和效率具有一定的指导意义。
1行波固有频率测距原理行波固有频率测距原理是一种基于行波传播特性的故障测距方法,其原理是利用线路上行波的固有频率来计算故障距离。
行波固有频率是指线路上传播的行波信号在固有长度上所具有的频率特性。
通过测量故障点前后的行波固有频率,可以计算出故障点的距离。
行波固有频率测距原理的核心是对行波的固有频率进行测量。
该方法需要在线路的两个端点分别发射行波信号,并在线路上的不同位置采集行波信号。
通过对行波信号的频谱分析,可以得到行波的固有频率,从而计算出故障点的距离。
行波固有频率测距原理的优点是测距精度高、可靠性强、适用范围广。
该方法不受线路参数和负载变化的影响,因此可以在不同的工况下进行故障测距。
同时,该方法的实现也比较简单,只需要对行波信号进行频谱分析即可。
总之,行波固有频率测距原理是一种有效的故障测距方法,可以在电力系统故障诊断和维护中得到广泛应用。
2配电网混合线路故障特点随着我国经济快速发展以及人民生活水平不断提升,人们越来越关注供电质量与安全保障。
但是,由于各种社会原因,使得传统配网管理方式不能满足现代城市用电需求,无法实现“保一方平安”的目标。
与此同时,配电系统也存在着许多安全隐患。
基于行波法的输电线路故障测距方法的研究与实现的开题报告一、研究背景及意义随着电力系统的不断发展,输电线路故障的频率也越来越高,因此及时准确地测定故障位置就显得尤为重要。
传统的故障测距方法使用反射法和比较法,但这种方法需要使用专用的测距设备,且准确度有限。
近年来,随着计算机技术的不断发展,行波法已经成为一种被普遍采用的测距方法。
行波法是利用电力系统输电线路上的横波和纵波在同一方向上传播的特性,通过控制脉冲信号的发射和接收时刻及位置,实现对故障点距离的测定。
行波法具有不需要专用设备、准确度高、信号传输迅速等优点,因此越来越受到电力系统工程技术人员的关注和研究。
本课题旨在研究基于行波法的输电线路故障测距方法,探索使用该方法确定输电线路故障的准确度和实际可行性,为电力系统故障快速定位提供更加有效的手段。
二、研究内容及方案1.研究行波法在电力系统输电线路故障测距中的应用原理。
(1)行波法测距的基本原理及原理分析;(2)基于行波法的故障测距系统,包括硬件和软件设计,分析其主要结构和工作原理;(3)分析行波法的精度和准确性,比较与传统方法的差异;2.研究行波法在电力系统输电线路故障实验中的应用。
(1)搭建实验平台,根据实际的输电线路条件设置响应的参数;(2)设计使用行波法进行实际故障测量的方案;(3)记录数据并进行分析,比对行波法与传统方法之间的异同,验证方法的精度、可行性;3.研究基于行波法的故障测距系统的优化与改进方案(1)针对现有的行波法故障测距系统的问题提出优化改进的方案;(2)对系统进行改进,测试效果;三、技术路线1.掌握基于行波法的输电线路故障测距技术的理论基础,理解行波法的工作原理、测距原理和优势;2.搭建基于行波法的故障测距实验平台,测试行波法在实际应用中的效果;3.对现有的行波法故障测距系统进行分析,提出改进方案;4.对行波法故障测距系统进行改进,提高准确性和可靠性。
四、拟达到的预期目标1.深入了解行波法故障测距的理论基础,理解行波法的工作原理与计算公式;2.搭建基于行波法的实验平台,测试行波法在实际应用中的准确性和可行性;3.掌握行波法故障测距系统的优化方案,提高系统的准确性和可靠性;4.探索基于行波法的故障测距系统在电力系统故障快速定位中的实际应用价值。
配电网电缆故障行波测距技术研究发布时间:2023-06-09T08:01:39.055Z 来源:《新型城镇化》2023年11期作者:白杨[导读] 根据变压器中性点接地方式的不同,中性点运行方式可划分为小电流接地系统(中性点不接地系统或经过消弧线圈接地系统)和大电流接地系统(中性点直接接地系统或经小电阻接地系统)。
内蒙古电力(集团)有限责任公司呼和浩特供电分公司内蒙古呼和浩特 010010摘要:由于电缆都埋在地下或者沟内,一旦出现故障,就需投入大量人力及经济投入才能找到故障点。
由于配电网络是一个复杂的系统,在其运行过程中可能会出现各种情况,如短路、断线等事故。
当遇到这些情况时,必须对电网进行停电检修或更换设备。
若能通过技术迅速找出故障点,则可大大缩短故障时间和提高供电可靠性。
因此,对配电网电缆故障定位方法进行研究,具有十分重要的理论与实际意义。
关键词:配电网;电缆故障;行波测距技术1配电网电缆故障行波测距技术根据变压器中性点接地方式的不同,中性点运行方式可划分为小电流接地系统(中性点不接地系统或经过消弧线圈接地系统)和大电流接地系统(中性点直接接地系统或经小电阻接地系统)。
我国6~35kV中低压配电网以中性点不接地系统和经消弧线圈接地系统为主,少部分经高电阻接地系统,都是小电流接地系统。
当前配电网出现的故障种类中约有80%是单相接地,单相接地故障的发生率远远高于两相短路,两相接地和三相短路。
因此,本文主要研究小电流接地系统中电缆线路的单相接地故障。
国内外专家学者对配电网单相接地故障测距进行了一系列的研究,主要包括:故障分析法、注入法和行波法。
1.1故障分析法故障分析法是以配电网线路模型为基础,重点关注故障时线路的故障特征与边界条件,选取合适的等效网络与故障量,并推导出故障量与故障距离之间的关系。
故障分析法主要包括阻抗法及其改进方法、网络拓扑矩阵法。
将配电网中各条母线及分支线路视作网络节点,根据电路原理建立起网络拓扑阻抗矩阵或导纳矩阵。
配电线路行波故障测距方法与系统的研究应用摘要:目前,配电网故障定位的相关研究较多,但研究的重点主要集中在配电网的故障选线问题上。
随着技术的发展以及人们对供电质量要求的增高,各国不断推进智能电网的建设,以期在电网出现故障时能够及时反应,通过可靠的程序判断并自动隔离故障,防止故障进一步扩大。
但目前主要通过人工巡检方式查找故障,效率低下,难以满足智能电网的要求。
因此,必须在当前小电流选线原理的基础上,研究一套切实可行的中低压配电网故障定位系统,为智能电网的建设打好坚实的基础。
关键词:配电线路;行波故障测距;应用1基于行波的故障测距方法上世纪中期,有些学者试着利用行波传播原理分析故障的位置,并在不断应用的过程中产生了基于暂态行波定位故障位置的理论。
在众多专家和学者的共同努力下,行波传播理论逐渐成熟,特别是掌握了行波的折反射过程以及各种介质中行波的传播特性。
计算机技术的进步催生了一系列电磁仿真软件,进而随着多回线路间解耦方法的构建,电磁测距理论越来越完善。
最近的几十年间,暂态行波故障的特征量提取方法成为了研究的热点。
这些都推动了现代行波测距技术的发展,实现了传统故障分析法到智能化测距算法的突破。
行波法是一种在输配电线路中广泛应用的故障定位技术,该方法优势明显,能够同时得到故障距离和故障分支,且计算速度较快。
根据两段是否同步采集数据,行波法又可划分成单端测距算法和双端测距算法。
此外,得益于交叉学科的发展,例如现代通信技术的应用,使得双端测距技术能够实现同步测量。
交叉学科的发展推动了行波测距装置的进步,电子技术、小波理论及通信技术等理论应用改善了测距装置的性能。
2配电线路行波故障测距方法与系统的研究应用2.1测距系统设计要求配电线路测距系统的设计,应重点考虑系统的可靠性、实用性、易扩展性以及先进性,做好方案实施规划,逐步建立地区级配电线路测距系统。
该系统的主要运行模式如下:由站端设备实时采集故障行波的数据,经传输后由主站对故障数据进行综合分析,得到故障线路名称和故障距离等信息,然后进行WEB发布。
配电线路行波故障测距初探朱彪摘要:我国中压配电网多采用中性点非有效接地运行方式,线路结构复杂,多存在架空线、电缆混合线路。
线路发生单相接地故障时,由于故障电流微弱,电弧不稳定等原因,使得定位其故障点成为难题;线路发生相间短路故障时,则会造成停电事故。
因此,线路故障的快速准确定位对于提高供电可靠性、减少停电损失有重要意义。
关键词:配电线路;行波故障测距;一、行波测距的应用原理我国目前使用的行波测距技术主要包括单端和双端两种测距原理和方法,单端的测距方法采用较多的是A型的单端测距方法,双端的测距方法主要采用D型的双端测距方法。
单端测距方法中的A型测距方法主要是在线路的一端进行测量工作,通过行波技术测量产生故障的位置到对端母线之间往返一次的时间,从而通过相应的数据来计算故障点到对端母线之间的距离。
双端测距方法中的D型测距方法主要是通过故障点自身造成的行波,通过相关时间的计算来确定故障点到两端之间的距离。
E型和F型的测距方法分别使用断路器合闸和断路器分闸,通过时间来计算相关的距离数据。
以上的测距方法各有特点,总体来说这些技术已经能够在实际的使用过程中发挥很好的作用,具有准确性高、测量方便的特点,但是就目前的技术水平来说行波测距能够发挥更好的测量效果,因此应当加强对于行波测量技术的开发推广和使用。
二、配电线路行波故障测距2.1行波信号的提取暂态行波所覆盖的频带很宽,信号的提取可由电压或电流互感器完成。
高压输电线路普遍采用的电容分压式电压互感器CVT(,截止频率低,传变高频电压信号会带来衰减和相移,因此很少使用。
常规的电流互感器可以传变100kHz以上的电流暂态分量,能够满足行波测距的要求,在实际应用中常用电流互感器提取行波信号。
同时,对于新建变电站使用的电子式电流互感器ECT,提出了相应的行波信号提取方法。
既然行波在传输过程中只有遇到阻抗不连续点才会发生反射和折射,那么录波波形中最有特点的波形部分一定是阻抗不连续点。
基于行波理论与卷积神经网络的配电网故障测距技术摘要:本文提出了一种基于行波理论和卷积神经网络的配电网故障测距技术。
首先,通过行波理论推导得到了基于站内测量的故障定位方法,该方法可以在各类故障情况下实现数据处理和准确定位并形成行波激励谱。
然后,将行波激励谱输入到卷积神经网络中,利用网络学习的能力对故障进行自动分类和定位。
通过实验验证,该方法可以在多种故障情况下实现高精度的故障诊断,具有较好的实用价值。
关键词:配电网;故障测距;行波理论;卷积神经网络引言随着现代化信息技术的快速发展,配电网的可靠性和安全性日益得到重视。
然而,由于配电网负载的预测不确定性和配电设备的老化等原因,故障事件经常发生,给整个系统的运行带来了很大的风险。
因此,配电网故障测距技术的研究显得尤为重要。
传统的配电网故障测距技术主要基于电磁暂态(TDR)原理,但是这种方法在故障发生位置后方向不确定,而且准确度较低。
因此,需要开发一种能够更准确、更可靠地进行故障诊断和定位的方法。
本文提出了一种基于行波理论和卷积神经网络的配电网故障测距技术,该方法可以在不同类型的故障情况下实现数据处理和准确定位。
本文的主要贡献在于使用行波理论推导出了基于站内测量的故障定位方法,并将其与卷积神经网络结合,实现了高精度的故障诊断。
方法1. 行波理论行波理论是一种基于信号传输速度的故障诊断方法,适用于配电网的故障测距。
该方法的基本思想是通过测量信号在线路中传输的时间来判断故障发生的位置。
当线路发生故障时,信号会在故障位置产生反射,从而形成行波。
因此,通过测量行波传输时间,就可以推断出故障所在的位置。
2. 卷积神经网络卷积神经网络是一种深度学习模型,已在图像分类、目标检测和自然语言处理等领域获得了广泛应用。
该模型可以学习到特征的表示和分类,从而实现图像或数据的自动识别和分类。
本文的卷积神经网络用于对行波激励谱进行分类和定位。
网络通过学习训练样本的特征,可以对新的故障样本进行快速准确地分类和定位。
应用于含有线-缆混合线路配电网的行波故障测距新方法侯丽钢;汤向华;江辉;刘辉;范乐松【摘要】故障行波波头的准确辨识是提高配电网行波故障测距精度的关键因素之一,文中提出基于改进希尔伯特-黄变换(HHT)的行波波头标定方法,首先利用自适应噪声的完全集合经验模态分解(CEEMDAN)方法对故障信号进行分解,再利用希尔伯特变换求取高频固有模态函数分量的瞬时幅值,根据瞬时幅值的突变点确定行波波头的到达时刻.针对配电网的单一线路,利用该方法标定行波波头后,采用D型测距原理实现测距;针对线-缆混合线路,提出了基于接点时差的双端测距原理实现故障测距.对不同故障时间、故障位置、接地电阻等情况的故障进行仿真实验,结果表明,该方法可精确标定行波波头,且具有较高的测距精度.【期刊名称】《江苏电机工程》【年(卷),期】2019(038)002【总页数】6页(P111-116)【关键词】故障测距;CEEMDAN;行波;线-缆混合;波头辨识【作者】侯丽钢;汤向华;江辉;刘辉;范乐松【作者单位】国网海门市供电公司,江苏海门226100;国网海门市供电公司,江苏海门226100;国网海门市供电公司,江苏海门226100;国网海门市供电公司,江苏海门226100;国网海门市供电公司,江苏海门226100【正文语种】中文【中图分类】TM7550 引言电缆线路因其占用地上空间小、输送容量大、故障率低等优点,越来越多的用于配电网中,配网出现了线-缆混合线路。
配电网短路故障时有发生,特别是单相接地故障占总故障的80%左右,当线-缆混合线路发生短路故障时,故障点位置不易查找,且当今智能电网的发展对配网故障测距技术提出了更高的要求,因此准确快速的定位出故障点的位置,将故障切除,可大大节省人力物力,保证供电的可靠性。
因故障暂态行波受接地点电阻、CT饱和、故障类型及中性点接地方式的影响小,配网行波故障测距技术已经成为研究的热点。
对行波测距而言,行波波头的准确识别和行波波速的确定是提高测距精度的关键。
基于行波法的电力线路测距电气工程及其自动化 关永昌指导教师 王艳松摘要:中性点非有效接地是配电网中性点的典型接地方式,这种接线方式的系统可靠性高,在发生单相接地后,接地相的接地电流很小,但是故障定位比较困难。
因此,小电流接地系统故障的快速自动定位对于提高供电可靠性、减少停电损失具有重要的意义。
本文介绍了利用电压行波分别对无分支线路和有分支线路进行故障测距的单端行波测距方法。
对故障电压波形进行离散平稳小波分解或应用数学形态学,根据信号的奇异性检测原理找出行波波头,由行波在故障点及母线之间往返一趟的时间或线模与零模速度差来确定故障距离。
关键词:故障定位;行波;离散平稳小波分解;数学形态学一、前言我国的中低压配电网大多采用中性点非有效接地方式。
配电线路发生单相接地故障后,快速、准确的定位出故障点,不仅对快速修复故障线路,保证供电可靠性及减少停电损失,而且对保证整个系统的安全稳定及经济运行都有十分重要的作用[1]。
目前,单相接地故障测距方法主要可分为行波法、阻抗法、及注入信号法。
行波法具有不受系统运行方式变化、不稳定电弧、系统参数、串补电容、线路不对称及互感器变换误差的影响,以及故障测距快速准确等优点,其在输电线路上已得到成功应用,因此利用行波法实现配电线路故障测距具有重要的研究意义。
对于无分支线路,根据波头极性区分反射波,从而确定故障距离;针对配电线路多分支的情况,本文根据单端行波测距法,通过小波分解或多分辨形态梯度分析故障信号,利用行波特征波确定故障区段,利用线模与零模速度差来确定故障距离。
二、无分支线路测距原理 单端行波定位方法:在线路发生故障时,故障点产生的电压(电流)行波在故障点与母线之间来回反射,根据行波在测量点与故障点或对端母线之间往返一次的时间和行波的波速来确定故障点的距离。
行波在无分支线路中的折反射可用图1所示的行波网格图说明。
第一个电压行波到达母线M 端时,M 端的电压波形应 图1 故障暂态行波传播过程是: 1()()()m F m m F m u t u t u t τατ=-+-(1) 当故障点位于母线M 端到线路中点之间时,第二个从故障点方向来的行波必然是故障点的反射波。
配网行波故障预警与定位装置的测距理论今天江苏宇拓电力科技来为大家说明一下配网行波故障预警与定位装置的测距理论一、引言随着电力系统的发展,对配电网的稳定性和可靠性提出了更高的要求。
配网行波故障预警与定位装置作为一种先进的设备,能够实现对配电网故障的快速预警和定位,对于提高电力系统的稳定性和可靠性具有重要的作用。
本文将重点介绍该装置的测距理论。
二、装置概述配网行波故障预警与定位装置是一种基于行波原理的设备,它通过捕捉故障发生时在电力线上产生的行波信号,实现对故障的预警和定位。
该装置具有以下特点:1. 反应快速:能够在故障发生的瞬间捕捉到行波信号,及时发出预警。
2. 定位准确:通过对行波信号的传播速度和时间差进行计算,实现对故障位置的精确定位。
3. 适应性强:能够适应各种复杂的配电网环境,包括不同的线路长度、线型、负荷等。
4. 可维护性高:装置采用模块化设计,便于维护和升级。
三、测距理论配网行波故障预警与定位装置的测距理论是基于行波原理的。
行波原理是一种利用电磁波在导体中传播特性进行测距的方法。
在电力系统中,当线路发生故障时,故障点会产生一个电压突变,这个突变产生的行波信号在线路中传播,遇到阻抗不匹配的点会产生反射和折射。
通过捕捉这些行波信号,可以实现对故障的定位。
具体来说,配网行波故障预警与定位装置通过以下步骤实现测距:1. 捕捉行波信号:装置安装在电力线的两端,持续监测电力线上的电压波动。
当捕捉到故障产生的行波信号时,装置会立即启动测距程序。
2. 计算传播时间:装置通过高精度时钟对行波信号的传播时间进行精确计时。
由于行波信号在电力线中的传播速度接近光速,因此可以认为行波信号的传播时间几乎是瞬时的。
3. 计算距离:根据行波信号的传播时间和装置之间的距离差,可以计算出故障距离。
具体公式为:d = (t * v) / 2,其中d为故障距离,t为行波信号传播时间,v为电力线中行波信号的传播速度(约为光速)。
配网行波故障预警与定位装置的故障距离算法今天江苏宇拓电力科技来为大家说明一下配网行波故障预警与定位装置的故障距离算法。
一、引言配网行波故障预警与定位装置是一种用于配电网故障预警与定位的设备,其核心技术是基于行波原理的故障距离算法。
本文将详细介绍这种装置的故障距离算法。
二、行波原理及故障定位原理行波原理是利用电磁波在传输线中传播的特性,当线路发生故障时,故障点会产生向线路两端传播的行波。
通过捕捉和分析这些行波,可以确定故障的位置。
基于行波原理的故障定位装置通过在配电网中安装行波传感器,实时监测线路中的行波信号。
当线路发生故障时,装置会捕捉到由故障点产生的行波信号,并通过算法分析计算出故障距离。
三、故障距离算法故障距离算法是配网行波故障预警与定位装置的核心技术,其基本步骤如下:1. 采集行波信号:通过行波传感器采集线路中的行波信号,包括故障点产生的初始行波和由故障点反射回来的反射行波。
2. 提取特征量:从采集到的行波信号中提取出能够反映故障距离的特征量,如行波传播时间、波形形状等。
3. 构建数学模型:根据行波传播规律和电力系统的特性,建立能够描述行波信号与故障距离之间关系的数学模型。
常用的模型包括双曲函数模型、指数函数模型等。
4. 拟合模型参数:将提取出的特征量代入数学模型中,通过拟合算法确定模型参数,从而得到与实际情况最为接近的故障距离估计值。
5. 输出故障预警与定位结果:将计算得到的故障距离信息通过通信接口发送给监控中心,同时提供故障预警与定位服务。
四、算法优化与改进为了提高故障定位的准确性和实时性,可以对算法进行优化和改进,包括:1. 采用更精确的模型:建立更加精确的数学模型,充分考虑行波传播过程中的衰减、反射等因素对故障距离估计的影响。
2. 引入人工智能技术:利用人工智能算法,如神经网络、支持向量机等,对行波信号进行分类和识别,提高故障检测的准确性。
3. 优化特征提取算法:改进特征提取算法,提高特征量的提取精度和可靠性,从而降低模型拟合的误差。
基于行波测距法的配电网故障定位技术的研究一、目的和意义随着我国工业的发展,电力网络规模逐渐加大,网络结构逐渐复杂,用户对供电稳定的要求也越来越高。
一方面,在系统正常运行时要防止故障的发生;另一方面,在故障发生后尽快进行故障定位,迅速排除故障,保证系统运行安全,将损失最小化。
现阶段我国10kV配电网大多数采用中性点非有效接地系统(中性点不接地或经消弧线圈接地),其特点是单相接地故障时不会形成短路回路,故障线路流过电流为所有非故障线路对地电容电流之和,数值小,不必立刻切断线路,允许带故障运行一段时间。
但随着馈线的增多,电容电流增大,长时间运行就容易单相接地变成多点接地短路,弧光接地还会引起系统的过电压,损坏设备,破坏系统的安全运行,所以必须及时找到故障线路和故障地点。
然而,配电网故障定位一直是电力系统中亟待解决的难题。
这是由配电网络自身的特点决定的。
配电网络与输电网络相比有以下三大特点:(1)供电半径小。
较短的线路使得在输电网故障定位中应用广泛的经典阻抗法在配电网络中误差明显加大。
(2)末端随机负荷多。
这一特点使得阻抗法在配电网中无法精确定位。
(3)线路分支多.从结构上来说,分支多本身给精确某个分支带来了困难从算法上来说,分支多所带来的信息就多,其中包含的真伪信息都多,混杂在一起,难于理清。
因而,配电网故障定位问题一直没有得到有效的解决。
国内大多仍然采用人工巡线的方法,由于配电网络分支复杂,又不可能同时派出大量巡线工人,所以故障发生后停电时间较长,自动化水平低.如果能够找到一种合适的技术方法,能够在故障发生后迅速精确的定出故障位置,一方面节省了人力物力,另一方面也提高了系统运行的长期稳定性。
二、项目研究的背景国内外的研究现状1)阻抗法阻抗法以线路为均匀传输线为基础,当发生单相接地故障时,根据线路的电压、电流的数值计算故障回路的阻抗,再利用已知的线路单位阻抗获得故障点距测量点的距离。
应用阻抗法设备投资很少,易于工程实现,但受到路径阻抗、电源参数和线路负荷的影响很大。
高压输电线路行波故障测距技术及应用探究摘要:高压输电线路是电力系统的重要组成部分。
快速、准确地故障测距,可以及时发现绝缘隐患,及早采取防范措施,提高运行的可靠性并减少因停电而造成的巨大综合损失。
进一步研究输电线路的行波故障测距,对于提升故障测距的精度,保证电网稳定运行仍具有重要意义。
关键词:输电线路行波故障测距高压输电线路的准确故障测距是从技术上保证电网安全、稳定和经济运行的重要措施之一,具有巨大的社会和经济效益。
输电线路行波故障测距与传统的工频量测距方式相比具有明显的优势,但同时由于受一些干扰因素影响,导致目前的行波故障测距仍存在诸多问题。
为了及时发现绝缘隐患,采取防范措施,保障电力系统运行的可靠性,就必须寻找一种快速、准确的故障测距方法,及时找到高压输电线路的故障点。
1.行波法故障测距的原理及分类近年来,全国电网逐渐升级换代,变电站容量不断增大,作为各变电站间能量传输的通道,高压输电线路在电力系统中地位显得越来越重要,高压输电线路的可靠性相对整个电网的安全运行也具有越来越重要的作用。
随着电压等级从超高压到特高压不断发展,电力系统对电网安全运行的要求越来越高,输电线路发生故障后的影响也将会越来越大,对线路修复的准确性和快速性也提出了更高的要求。
准确快速的故障测距可有效帮助修复线路,保证线路可靠供电,从而保证整个电网的安全稳定运行,最大程度降低线路故障对整个电力系统造成的威胁,以及对国民经济和人民生活带来的综合损失。
行波即线路中传播的电磁波。
当输电线路发生故障时,故障点处会产生从基频到很高频率的暂态行波,暂态行波沿输电线向两端传播,在线路末端母线、故障点等波阻抗不连续的点处会发生反射和折射。
经过反射和折射行波的极性会发生改变,频率会发生突变,根据这些变化量可以测量出行波到达这些点的时刻。
利用线路长度,行波到达测量点的时刻以及行波传播的速度可以计算出故障点所在的位置。
按照检测行波的方式,将行波测距法分为四类,A型、B型、C型和D型。