大学物理(上)总复习
- 格式:ppt
- 大小:2.90 MB
- 文档页数:80
复习题一、简答题 1.|Δ|与Δr 有无不同?||和有无不同?||和有无不同? 2.简述简谐振动与平面简谐波的能量特点。
3. 刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同?刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。
因此各质元的角速度相同,而线速度、向心加速度、切向加速度不一定相同。
4.狭义相对论的相对性原理的内容是什么?5.简述狭义相对论的两条基本原理的内容6.简述多普勒效应。
7.狭义相对论的时间和空间有什么特点?8.两列波产生干涉需要具备哪些条件?9.用热力学第一定律说明,有没有可能:1)对物体加热而物体的温度不升高?2) 系统与外界不作任何热交换,而使系统的温度发生变化?二、判断题1.一对作用力和反作用力的功之和一定为零。
2.牛顿运动定律成立的参照系叫非惯性参照系。
3.牛顿运动定律只在惯性参照系中成立。
4.一对作用力和反作用力的冲量之和不一定为零。
5.牛顿运动定律在所有的参照系中都成立。
6.一对作用力和反作用力对同一轴的力矩之和不为零。
7.气体处于平衡态时,分子的每一个自由度上都具有的平均动能。
8.温度反映系统大量分子无规则运动的剧烈程度。
9.理想气体的温度和压强都是对大量分子而言的。
10.P-V 图上的一个点代表一个平衡态,一条连续曲线代表一个准静态过程。
11.热平衡态是指系统的宏观性质不随时间变化的稳定状态。
12.理想气体的内能仅仅是温度的单值函数。
判断题:FFTFFFTTTTFT三、填空题1. 某质点在力(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m 的过程中,力所做功为 。
因为F 与X 成一次函数关系所以可以用平均作用力来表示F =(4+54)/2=29N 位移S =10M所以W =FS =290Jr dtr d dt dr dt v d dt dv 1kT 2i x F )54(+=F当然也可以作出F 关于X 的图像:所包围的面积就是功W =(4+54)×10/2=290J2.一物体在水平面内从A 点出发,向东走5m ,再向北走5m ,历时5S ,则它在这段时间里发生的位移大小是,平均速率是,平均速度大小是。
大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。
运动方程的表达式和求解。
曲线运动中的切向加速度和法向加速度。
相对运动的概念和计算。
112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。
常见力的分析,如重力、弹力、摩擦力等。
牛顿定律在质点和质点系中的应用。
113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。
动量守恒定律的条件和应用。
功、功率的计算。
动能定理、势能的概念和计算。
机械能守恒定律的条件和应用。
114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。
转动惯量的计算和影响因素。
刚体定轴转动定律的应用。
力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。
12 热学部分121 气体动理论理想气体的微观模型和假设。
理想气体压强和温度的微观解释。
能量均分定理和理想气体内能的计算。
麦克斯韦速率分布律。
122 热力学基础热力学第一定律的内容和应用。
热力学过程,如等容、等压、等温、绝热过程的特点和计算。
循环过程和热机效率。
热力学第二定律的两种表述和微观意义。
13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。
电场强度的叠加原理。
电通量、高斯定理的应用。
静电场的环路定理、电势的定义和计算。
等势面、电场强度与电势的关系。
132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。
磁感应强度的叠加原理。
磁通量、安培环路定理的应用。
安培力、洛伦兹力的计算。
133 电磁感应法拉第电磁感应定律的应用。
动生电动势和感生电动势的计算。
自感和互感的概念和计算。
磁场能量的计算。
134 电磁场和电磁波位移电流的概念。
麦克斯韦方程组的积分形式和微分形式。
电磁波的产生和传播特性。
第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。
刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。
《⼤学物理》上册复习资料⼩飞说明:本资料纯属个⼈总结,只是提供给⼤家⼀些复习⽅⾯,题⽬均来⾃课件如有不⾜望谅解。
(若要打印,打印时请删去此⾏)第⼀章质点运动学1.描述运动的主要物理量位置⽮量:位移⽮量:速度⽮量:加速度⽮量:速度的⼤⼩:加速度的⼤⼩:2.平⾯曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的⾓量描述⾓位置:⾓速度:⾓加速度:圆周运动的运动⽅程:4.匀⾓加速运动⾓量间的关系ω= θ=5.⾓量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地⾯竖直向上抛出⼀个质量为m 的⼩球,若上抛⼩球受到与其瞬时速率成正⽐的空⽓阻⼒,求⼩球能升达的最⼤⾼度是多⼤?8.⼀飞轮以n=1500r/min的转速转动,受到制动⽽均匀地减速,经t=50s后静⽌。
(1)求⾓加速度β和从制动开始到静⽌时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的⾓速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上⼀点的速度、切向加速度和法向加速度9.⼀带蓬卡车⾼h=2m,它停在马路上时⾬点可落在车内到达蓬后沿前⽅d=1m处,当它以15 km/h 速率沿平直马路⾏驶时,⾬滴恰好不能落⼊车内,求⾬滴相对地⾯的速度及⾬滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'uP ),,(),,(z y x z y x '''第⼆章⽜顿运动定律 1.经典⼒学的时空观(1)(2)(3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌⾯上放置⼀固定圆环,半径为R ,⼀物体贴着环带内侧运动,如图所⽰。
大学物理大一知识点总结导引:大学物理是一门重要的基础课程,为学习其他专业课程奠定了坚实的基础。
大一学期,我们接触到了很多物理学的基本概念和理论,本文将对大一物理课程的主要知识点进行总结和回顾,帮助我们巩固学习成果,为未来的学习打下坚实基础。
第一章:力学力学是物理学的基础,它研究物体的运动和相互作用。
在大一学期,我们主要学习了以下几个重要的力学知识点:1. 牛顿定律牛顿第一定律:物体保持匀速直线运动或静止,除非有外力作用。
牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。
牛顿第三定律:作用力和反作用力大小相等、方向相反、作用在不同的物体上。
2. 物体的运动匀速直线运动:速度恒定,位移与时间成正比。
匀加速直线运动:速度随时间变化,位移与时间平方成正比。
3. 力的作用和分解力的作用:力可以改变物体的形状、大小、方向和速度。
力的分解:一个力可以分解为多个力的合力,通过正余弦定理可以计算各个分力的大小和方向。
第二章:热学热学是研究热量和热能转化的物理学科。
在大一学期,我们学习了以下热学知识点:1. 温度和热量温度:物体的热平衡状态,是物体内部微观粒子的平均动能。
热量:热能的传递方式,由高温物体传递给低温物体。
2. 理想气体状态方程理想气体状态方程:PV = nRT ,P为压强,V为体积,n为物质的物质的量,R为气体常数,T为温度。
3. 热力学定律第一热力学定律:能量守恒定律,热量传递和功对环境的变化之和恒为零。
第二热力学定律:热气流传递的方向是高温到低温的。
第三章:光学光学是研究光和光与物质相互作用的学科。
在大一学期,我们学习了以下光学知识点:1. 光的传播和成像光的传播方式:直线传播、反射和折射。
成像原理:反射成像和透镜成像,可用于解释镜子和凸透镜的成像原理。
2. 光的干涉和衍射干涉:光的波动性质在相遇时会干涉或加强。
衍射:光的波动性质在绕过障碍物时发生弯曲和扩散。
3. 光的色散和偏振色散:光在通过介质时,不同波长的光具有不同的折射率。
大学物理总复习各章知识点的总结本文档旨在为大学物理学生提供各章知识点的总结,以便进行全面的复。
以下是各章的重要知识点概述:第一章:力学基础- 牛顿三定律:惯性定律、动量定律和作用-反作用定律- 力和力的矢量表示- 物体的平衡状态和平衡条件- 力的分解和合成- 弹力和摩擦力第二章:运动学- 位移、速度和加速度的定义和关系- 一维运动和二维运动的公式和图像- 自由落体运动和投射运动- 碰撞和动量守恒定律- 圆周运动和使用向心力的公式第三章:力学定律应用- 牛顿第二定律和用力学定律解决动力学问题- 摩擦力和滑动/静止摩擦力的计算- 动能和势能的概念以及能量守恒定律的应用- 万有引力和行星运动的规律- 弹性碰撞和非弹性碰撞的区别第四章:热学- 温度、热量和热平衡的概念- 热传递和热平衡的方式:传导、对流和辐射- 理想气体定律和状态方程- 热力学第一定律和热功公式的应用- 熵和热传递的熵变定律第五章:波动光学- 波和光的特性和性质- 光的干涉和衍射现象- 多普勒效应和光谱的应用- 像的成像和光的折射- 反射和折射定律的应用第六章:电学静电学- 电荷和电场的概念- 高斯定律和电场强度的计算- 静电势和电势能的关系- 电和电容的计算- 电场中电荷的受力和电势能的变化第七章:电学电流学- 电流、电阻和电压的定义和关系- 欧姆定律和电阻的计算- 串联和并联电路的计算- 电功率和电能的转换- 阻抗和交流电的特性第八章:磁学- 磁场和磁力线的概念- 安培环路定理和电流的磁场- 法拉第电磁感应定律和楞次定律- 电动势的产生和电磁感应的应用- 磁场中的电荷和导线的受力以上是大学物理各章知识点的概述。
希望本文档能够帮助您进行有效的复习和准备,祝您考试顺利!。
内容提要位矢:k t z j t y i t x t r r )()()()(++==位移:k z j y i x t r t t r r ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t∙∙∙→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dt r d dt d t a t ∙∙∙∙∙∙→∆++=++===∆∆=222222220lim υυ圆周运动 角速度:∙==θθωdtd 角加速度:∙∙===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a += 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dt d a t ==沿切线方向 线速率:ωυR =弧长:θR s =解题参考大学物理是对中学物理的加深和拓展。
本章对质点运动的描述相对于中学时更强调其瞬时性、相对性和矢量性,特别是处理问题时微积分的引入,使问题的讨论在空间和时间上更具普遍性。
对于本章习题的解答应注意对基本概念和数学方法的掌握。
矢量的引入使得对物理量的表述更科学和简洁。
注意位矢、位移、速度和加速度定义式的矢量性,清楚圆周运动角位移、角速度和角加速度方向的规定。
微积分的应用是难点,应掌握运用微积分解题。
这种题型分为两大类,一种是从运动方程出发,通过微分求出质点在任意时刻的位矢、速度或加速度;另一种是已知加速度或速度与时间的关系及初始条件,通过积分求出任意时刻质点的速度、位矢或相互间的关系,注意式子变换过程中合理的运用已知公式进行变量的转换,掌握先分离变量后积分的数学方法。
内容提要动量:υm p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M ⨯=质点的角动量(动量矩):υ⨯=⨯=r m p r L 角动量定理:dtL d M =外力 角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW ∙= ⎰∙=B A AB r d F W 一般地 ⎰⎰⎰++=B AB A B A z z z y y y x x x AB dz F dy F dx F W 动能:221υm E k = 动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。
《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。
大学物理2(上)总复习---选择题选择题(1) 1.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( b )。
A .恒为零;B .不为零,但保持不变;C . 随F 成正比地增大;D .开始随F 增大,达到某一最大值后,就保持不变。
2.如图所示,两个同频率、同振幅的简谐振动曲线和,它们的相位关系是(a )。
A .a 比b 滞后 2π;B .a 比b 超前2π; C .b 比a 超前4π; D .b 比a 滞后4π。
3.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心, 随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为( a )。
A .02ωmR J J +;B .()02ωR m J J +;C .0ω;D .02ωmR J 。
4.一台工作于温度为327C 0和27 C 0的高温和低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功为 ( b )。
A .2000J ;B .1000J ;C .800J ;D .500J 。
5.在同一媒质中两列相干的平面简谐波强度之比是12:4:1I I =,则两列波的振幅之比21:A A 为 ( b )。
A .4;B .2;C .16;D .1/4。
6.一运动质点在某瞬时位于位矢),(y x r的端点处,对其速度的大小有四种意见,即(1)dt dr ; (2)dt r d ; (3)dt ds ; (4)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx 。
下述判断正确的是 ( d )。
A . 只有(1)(2)正确;B .只有(2)正确;C .只有(2)(3)正确;D . 只有(3)(4)正确。
7.一质点沿y 方向振动,振幅为A ,周期为T ,0t s =时,位于平衡位置 0y =处,向y 轴正方向运动。
胤熙说明:本资料纯属个人总结,只是提供给大家一些复习方面,题目均来自课件如有不足望谅解。
(若要打印,打印时请删去此行)第一章质点运动学1.描述运动的主要物理量位置矢量:位移矢量:速度矢量:加速度矢量:速度的大小:加速度的大小:2.平面曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的角量描述角位置:角速度:角加速度:圆周运动的运动方程:4.匀角加速运动角量间的关系ω= θ=5.角量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地面竖直向上抛出一个质量为m 的小球,若上抛小球受到与其瞬时速率成正比的空气阻力,求小球能升达的最大高度是多大?8.一飞轮以n=1500r/min的转速转动,受到制动而均匀地减速,经t=50s后静止。
(1)求角加速度β和从制动开始到静止时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的角速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上一点的速度、切向加速度和法向加速度9.一带蓬卡车高h=2m,它停在马路上时雨点可落在车内到达蓬后沿前方d=1m处,当它以15 km/h 速率沿平直马路行驶时,雨滴恰好不能落入车内,求雨滴相对地面的速度及雨滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'u∙P ),,(),,(z y x z y x '''第二章 牛顿运动定律 1.经典力学的时空观(1) (2) (3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌面上放置一固定圆环,半径为R ,一物体贴着环带内侧运动,如图所示。
物体与环带间的滑动摩擦系数为μ。