高中物理选修3-1,库仑定律
- 格式:ppt
- 大小:920.00 KB
- 文档页数:17
高中物理选修3-1知识点总结高中物理选修3-1知识点总结高中物理选修3-1知识点总结第一章电场一基本公式1.库仑定律:F静=KQ1Q2r2(k9.0109Nm2/c2)2.场强(1)定义式:EF电q(2)点电荷:EKQr2(3)匀强电强:EUd3.电场力:F电Eq4.电势差:UABWABABqAWAOq5.电场力做功:与重力做功类同,做正功电势能减少,做负做电势能不断增加(1)W电=Uq(2)W电=F电scos6.电容器:QQ(1)cU{(2)Cs4kd7.电荷以初速度为零先进入加速电场U1再进入偏转电场U2:(1)水平侧移技术水平距离即竖直方向位移:U2y2l4U1d(2):tanU2l2Ud18.带电粒子在电场中的位移:(1)粒子穿过电场的时间:tLv0(2)在磁场中的加速度:aUqmd(3)搬回电场时的侧移距离:y12at2(4)离开电场时的速度偏向角:tanvyatvxv0二.基本规律1.电荷守恒定律a.带同种电荷的相同两球先接触后再分开,则两球各带总电荷量的一半b.带异种电荷的相同两球先之后接触后再分开,则电荷先中和再均分。
2.库仑定律条件:真空中的点电荷3.场强方向:规定:把正电荷受力的方向规定为场强方向4.电场线:(1)不相交、不相切,不闭合(2)密的地方场强大,疏的地方场强弱(3)某点的强场方向与该点的切线方向一致5.等势线:(1)与电场线垂直(2)在等势线上移动电荷,电场力不做功(3)等势线密的地方场强大,疏的地方场强弱6.等量这三类电荷电场分布:7.等量生化电荷电场分布:8.电容器:a.与源断开,电量Q不变;b.与电源接通电压U不变。
9.力做功:(1)电场力:仅仅决定电势能的变化。
正功,电势能减少;负功,电势能增加。
(2)重力:只决定重力势能的变化。
正功,重力势能减少;负功,重力势能增加(3)安培力:做正功电能转化为机械能,做负功机械能转化为电能。
做多少功,就转化多少能量。
(4)洛仑兹力:对运动电荷永远不够做功,始终与速度方向垂直。
库仑定律知识集结知识元库仑定律知识讲解一、内容:在真空中两个静止的点电荷间的作用力跟它们的电量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.二、表达式:F=k,式中k表示静电力常量,k=9.0×109N∙m2/C2.三、库仑定律适用条件1.库仑定律只适用于真空中的静止点电荷,但在要求不很精确的情况下,空气中的点电荷的相互作用也可以应用库仑定律.2.当带电体间的距离远大于它们本身的尺寸时,可把带电体看做点电荷.但不能根据公式错误地推论:当r→0时,F→∞.其实在这样的条件下,两个带电体已经不能再看做点电荷了.3.对于两个均匀带电绝缘球体,可将其视为电荷集中于球心的点电荷,r为两球心之间的距离.4.对两个带电金属球,要考虑金属球表面电荷的重新分布.四、应用库仑定律需要注意的几个问题1.库仑定律的适用条件是真空中的静止点电荷.点电荷是一种理想化模型,当带电体间的距离远远大于带电体的自身大小时,可以视其为点电荷而适用库仑定律,否则不能适用.2.库仑定律的应用方法:库仑定律严格地说只适用于真空中,在要求不很精确的情况下,空气可近似当作真空来处理.注意库仑力是矢量,计算库仑力可以直接运用公式,将电荷量的绝对值代入公式,根据同种电荷相斥,异种电荷相吸来判断作用力F是引力还是斥力;也可将电荷量带正、负号一起运算,根据结果的正负,来判断作用力是引力还是斥力.3.三个点电荷的平衡问题:要使三个自由电荷组成的系统处于平衡状态,每个电荷受到的两个库仑力必须大小相等,方向相反,也可以说另外两个点电荷在该电荷处的合场强应为零.例题精讲库仑定律例1.'一个挂在绝缘丝线下端的带正电的小球B,由于受到固定的带电小球A的作用,静止在如图所示的位置,丝线与竖直方向夹角为θ,A、B两球之间的距离为r且处在同一水平线上。
已知B 球的质量为m,带电荷量为q,静电力常量为k,A、B两球均可视为点电荷,整个装置处于真空中。
库仑定律★新课标要求(一)知识与技能1、掌握库仑定律,要求知道点电荷的概念2、理解库仑定律的含义及其公式表达,知道静电力常量3、会用库仑定律的公式进行有关的计算(二)过程与方法通过观察演示实验,概括出两种电荷间的作用规律。
培养学生观察、概括能力。
(三)情感、态度与价值观渗透物理学方法的教育,运用理想化模型方法,突出主要因素,忽略次要因素,抽象出物理模型——点电荷,研究真空中静止点电荷间互相作用力问题——库仑定律。
★教学重点掌握真空中点电荷间作用力大小的计算及方向的判定——库仑定律。
★教学难点库仑定律的实际应用★教学方法实验归纳法、讲授法★教学用具:有绝缘支架的小球、细线、小球、验电器,多媒体辅助教学设备★教学过程(一)引入新课教师:上节课我们学习了电荷及电荷守恒定律,了解了物质内部的微观结构,掌握了物体带电的实质。
通过静电感应现象知道电荷间存在相互作用力。
那么电荷间相互作用力的大小跟什么有关,存在怎样的规律?这节课我们就来深入学习这方面的知识。
(二)进行新课1、演示实验演示:用与丝绸摩擦过的有机玻璃棒反复多次使球带正电,再用丝线将小球悬于铁架台上,使较大的球靠近,小球放在不同位置。
如图所示。
[现象]位置不同,偏角不同,且距离越近,偏角越大。
[学生得]偏角越大,说明小球所受电力越大,即两球距离越大,电力越大。
[演示]将较大球放在同一位置,增大或减小其所带电量。
[现象]带电量越大,偏角越大。
[学生得]带电量越大,电力越大。
师生总结,得出结论:与电荷间相互作用力有关的因素:a.两电荷间距离:距离越近,电荷间相互作用力越大。
b.两电荷电荷量:电荷量越大,电荷间相互作用力越大。
过渡:早在我国东汉时期已经掌握了电荷间相互作用的定性规律,定量讨论电荷间相互作用,则是两千年之后的法国物理学家库仑。
库仑做了大量实验,于1785年得出了库仑定律。
2、库仑定律投影:库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
物理选修3-1》知识点总结物理选修3-1》知识点总结第六章静电场第1课时库仑定律、电场力的性质考点1.电荷、电荷守恒定律在自然界中存在两种电荷:正电荷和负电荷。
例如,用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。
电荷量的基本单位是元电荷,电荷守恒定律指出电荷不能被创造或消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。
考点2.库仑定律库仑定律描述了在真空中静止的两个点电荷之间的作用力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比,作用力的方向在它们的连线上。
这个作用力的大小可以用公式F=kQ1Q2/r^2来计算,其中k是静电力常量,等于9.0×10^9 N·m^2/C^2.考点3.电场强度电场是存在电荷周围能传递电荷间相互作用的一种特殊物质,对放入其中的电荷有力的作用。
电场强度是放入电场中的电荷受到的电场力F与它的电荷量q的比值,通常用N/C或V/m来表示。
电场强度有三种表达方式:定义式、决定式和关系式。
电场强度是一个向量量,其方向与正电荷在电场中受到的电场力的方向相同,与负电荷在电场中受到的电场力的方向相反。
多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的向量和,这种关系叫做电场强度的迭加,电场强度的迭加遵从平行四边形定则。
考点4.电场线、匀强电场电场线是为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。
电场线是为了直观形象的描述电场而假想的,实际上是不存在的理想化模型。
匀强电场是指在空间中电场强度大小和方向都相同的电场,可以用平行板电来实现。
1.电场线的性质电场线起始于正电荷或无穷远,终止于负电荷或无穷远,是不闭合的曲线。
任意两条电场线不会相交。
电场线的疏密程度表示电场的强度,而某点切线的方向表示该点的场强方向,但并不代表电荷在电场中的运动轨迹。
库仑定律整体设计教学分析本节内容的核心是库仑定律, 它是静电学的第一个实验定律, 是学习电场强度的基础。
本节的教学内容的主线有两条, 第一条为知识层面上的, 掌握真空中点电荷之间相互作用的规律即库仑定律;第二条为方法层面上的, 即研究多个变量之间关系的方法, 间接测量一些不易测量的物理量的方法, 及研究物理问题的其他基本方法。
教学目标1. 定性了解电荷间的相互作用力规律, 掌握库仑定律的内容及其应用。
2. 通过观察演示实验, 概括出电荷间的作用规律。
培养学生观察、分析、概括能力。
3. 体会研究物理问题的一些常用的方法, 如: 控制变量法、理想模型法、测量变换法、类比法等。
4. 渗透物理方法的教育, 运用理想化模型的研究方法, 突出主要因素、忽略次要因素, 抽象出物理模型——点电荷, 研究真空中静止点电荷相互作用力问题。
5.体会科学研究的艰辛, 培养学生热爱科学的、探究物理的兴趣。
6.通过静电力与万有引力的对比, 体会自然规律的多样性与统一性。
教学重点难点1. 电荷间相互作用力与距离、电荷量的关系。
2. 库仑定律的内容、适用条件及应用。
教学方法与手段1. 探究、讲授、讨论、实验归纳2. 演示实验、多媒体课件教学媒体1. J2367库仑扭秤(投影式)、感应起电机、通草球、绝缘细绳、铁架台、金属导电棒、库仑扭秤挂图等。
2. 多媒体课件、实物投影仪、视频片断。
知识准备自然界存在着两种电荷, 同种电荷相排斥, 异种电荷相吸引。
教学过程[事件1]教学任务: 创设情境, 引入新课师生活动:《三国志·吴书》中写道“琥珀不取腐芥”, 意思是腐烂潮湿的草不被琥珀吸引。
但是, 由于当时社会还没有对电力的需求, 加上当时也没有测量电力的精密仪器, 因此, 人们对电的认识一直停留在定性的水平上。
直到18世纪中叶人们才开始对电进行定量的研究。
现在就让我们踏着科学家的足迹去研究电荷之间的相互力。
演示实验:首先转动感应起电机起电, 然后利用带电的物体吸引轻小物体的性质使通草球与感应起电机的一端相接触, 通草球带同种电荷后弹开, 最后改变二者之间的距离观察有什么现象产生?(注意:观察细线的偏角)猜想: 电荷间相互作用力的大小与哪些因素有关?可能因素: 距离、电荷量及其他因素。
电荷在电场中的受力分析1-1库仑定律(受力分析)库仑定律表达式:F = 221r q q k ;其中q 1、q 2表示两个点电荷的电荷量,r 表示它们的距离,k 为比例系数,也叫静电力常量,k = 9.0×109N m 2/C 2.例1、真空中两个相同的等量同种电荷的金属小球A 和B (均可看成点电荷),分别固定在两处,两球间静电力为F ;如果用一个不带电的同样的金属小球C 先与A 接触,再与B 接触,然后移开C ,此时A 、B 两球间的静电力为F 1;如果将A 、B 间距离增大到原来的3倍,则A 、B 间的静电力为F 2,则F :F 1:F 2为多少?例2、如图所示、三个点电荷q 1、q 2、q 3固定在一条直线上,q 2与q 3间距离为q 1与q 2间距离的2倍,q 1、q 2之间的距离为L ,q 1、q 2、q 3的电荷量分别为+Q ,-3Q ,+4Q ,求每个电荷所受的静电力为多少?方向如何?例3、如图所示为一边长为L 的正方形,在A 、B 、C 、D 分别固定一个正电荷,电荷量为Q,求C点位置电荷所受的静电力。
例4、如图所示为一边长为L的菱形,∠B=600,A、B、C、D分别固定一个正电荷,电荷量为Q,求D点位置电荷所受的静电力。
例5、如图所示为一半径为R的圆形,在A、B、C、D分别固定一个正电荷,电荷量为Q,求D点位置电荷所受的静电力。
例6、如图所示为一边长为L的正三角形,在A、B、C、O分别固定一个正电荷,(O点为三角形ABC的内切圆的圆心)电荷量为Q,求O点位置电荷所受的静电力。
例7、如图所示,一个挂在绝缘细线下端的带正电的小球B,静止在图示位置,若固定的带正电的小球A的电荷量为Q,B球的质量为m,带电荷量为q,θ=30°,A和B在同一条水平线上,整个装置处于真空中,求A、B两球间的距离.此时细绳的拉力为多少?例8、如图所示,两个完全相同的带电小球,电荷量均为q,细绳的长度为L,两小球均处于静止状态,则两个小球的质量为多少?此时细绳的拉力为多少?例8、如图所示,竖直绝缘墙壁上的Q 处有一固定的小球A ,在Q 的正上方P 点用绝缘线悬挂一个小球B ,A 、B 两小球因带电而相互排斥,致使悬线与竖直方向成θ角.由于漏电,A 、B 两小球的电荷量逐渐减小,悬线与竖直方向夹角θ逐渐减少,则在漏完电之前,拉力的大小将( )A .保持不变B .先变小后变大C .逐渐变小D .逐渐变大例9、如图所示,两个带电小球A 、B (可视为点电荷)的质量分别为m 1和m 2,带电荷量分别为q 1和q 2,用长度相同的绝缘细线拴住并悬挂于同一点,静止时两悬线与竖直方向的夹角分别为21θθ和相等,求m 1和m 2的大小关系。
1-2库仑定律1.定律内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成 ,跟它们的距离的二次方成 ,作用力的方向在它们的连线上.电荷间这种相互作用的电力叫做静电力或库仑力.2.库仑定律的表达式 库仑力F ,可以是引力,也可以是斥力,由电荷的电性决定.k 称静电力常量,k=9.0×109 N ·m 2/C 2.3.库仑定律的适用条件: , ,空气中也可以近似使用.电荷间的作用力遵守牛顿第三定律,即无论Q 1、Q 2是否相等,两个电荷之间的静电力一定是大小相等,【例2】(2004·广东)已经证实,质子、中子都是由称为上夸克和下夸克的两种夸克组成的,上夸克带电荷量为32 e ,下夸克带电荷量为-31e ,e 为电子所带电荷量的大小.如果质子是由三个夸克组成的,且各个夸克之间的距离都为l ,l =1.5×10-15 m.试计算质子内相邻两个夸克之间的静电力(库仑力).[解析]本题考查库仑定律及学生对新知识的吸取能力和对题中隐含条件的挖掘能力.关键点有两个:(1)质子的组成由题意得必有两个上夸克和一个下夸克组成.(2)夸克位置分布(正三角形).质子带电荷量为+e ,所以它是由两个上夸克和一个下夸克组成的.按题意,三个夸克必位于等边三角形的三个顶点处.这时上夸克与上夸克之间的静电力应为:F 1=k 23232l ee ⨯=94k 22l e 代入数值,得F 1=46 N ,为斥力上夸克与下夸克之间的静电力为F 2=k 23231lee ⨯=92k 22l e 代入数值,得F 2=23 N ,为引力.【方法总结】此题型新颖,立意较独特,体现了从知识立意向能力立意发展的宗旨.关键在于挖掘题目的隐含条件,构建夸克位置的分布图.[基本概念]1. 电荷及电荷守恒定律()基元电荷:11601019e C =⨯-. (2)电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从物体这一部分转移到另一部分,这叫做电荷守恒定律。
库仑定律知识点【知识要点】要点一 点电荷点电荷:当带电体间的距离比它们自身的大小大得多,以至带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看作带电的点,叫做点电荷.(1)点电荷是只有电荷量,没有大小、形状的理想化模型,类似于力学中的质点,实际中并不存在.(2)一个带电体能否看作点电荷,是相对于具体问题而言的,不能单凭其大小和形状确定,例如,一个半径为10 cm 的带电圆盘,如果考虑它和相距10 m 处某个电子的作用力,就完全可以把它看作点电荷,而如果这个电子离带电圆盘只有1 mm ,那么这一带电圆盘又相当于一个无限大的带电平面.要点二 库仑定律的理解1.适用条件:适用于真空中的点电荷.真空中的电荷若不是点电荷,如图1-2-2所示.同种电荷时,实际距离会增大,如图(a)所示;异种电荷时,实际距离会减小,如图(b)所示.图1-2-22.对公式122q q F k r =的理解:有人根据公式122q q F k r=,设想当r →0时,得出F →∞的结论.从数学角度这是必然的结论,但从物理的角度分析,这一结论是错误的,其原因是,当r→0时,两电荷已失去了点电荷的前提条件,何况实际的电荷都有一定的大小和形状,根本不会出现r=0的情况,也就是说,在r→0时不能再用库仑定律计算两电荷间的相互作用力.3.计算库仑力的大小与判断库仑力的方向分别进行.即用公式计算库仑力的大小时,不必将电荷q1、q2的正、负号代入公式中,而只将电荷量的绝对值代入公式中计算出力的大小,力的方向根据同种电荷相斥、异种电荷相吸加以判断即可.4.式中各量的单位要统一用国际单位,与k=9.0×109 N·m2/C2统一.5.如果一个点电荷同时受到另外的两个或更多的点电荷的作用力,可由静电力叠加的原理求出合力.6.两个点电荷间的库仑力为相互作用力,同样满足牛顿第三定律.【问题探究】1.库仑定律与万有引力定律相比有何异同点?一的一面.规律的表达那么简捷,却揭示了自然界中深奥的道理,这就是自然界和谐多样的美.特别提醒:(1)库仑力和万有引力是不同性质的力.(2)万有引力定律适用时,库仑定律不一定适用.2.三个点电荷如何在一条直线上平衡?当三个共线的点电荷在库仑力作用下均处于平衡状态时.(1)三个电荷的位置关系是“同性在两边,异性在中间”.如果三个电荷只在库仑力的作用下且在同一直线上能够处于平衡状态,则这三个电荷一定有两个是同性电荷,一个是异性电荷,且两个同性电荷分居在异性电荷的两边.(2)三个电荷中,中间电荷的电荷量最小,两边同性电荷谁的电荷量小,中间异性电荷就距离谁近一些.【例题分析】一、库仑定律的理解【例1】对于库仑定律,下面说法正确的是( )A.库仑定律适用于真空中两个点电荷之间的相互作用力B.两个带电小球即使相距非常近,也能用库仑定律C.相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等D.当两个半径为r的带电金属球中心相距为4r时,对于它们之间的静电力大小,只取决于它们各自所带的电荷量答案AC解析由库仑定律的适用条件知,选项A正确;两个小球若距离非常近则不能看作点电荷,库仑定律不成立,B项错误;点电荷之间的库仑力属作用力和反作用力,符合牛顿第三定律,故大小一定相等,C项正确;D项中两金属球不能看作点电荷,它们之间的静电力大小不仅与电荷量大小有关,而且与电性有关,若带同种电荷,则在斥力作用下,电荷分布如图(a)所示;若带异种电荷,则在引力作用下电荷分布如图(b)所示,显然带异种电荷时相互作用力大,故D项错误.综上知,选项A、C正确.二、点电荷的理解【例2】下列关于点电荷的说法中,正确的是( )A.只有体积很小的带电体才能看成是点电荷B.体积很大的带电体一定不能看成是点电荷C.当两个带电体的大小远小于它们之间的距离时,可将这两个带电体看成点电荷D.一切带电体都可以看成是点电荷答案 C解析本题考查点电荷这一理想模型.能否把一个带电体看成点电荷,关键在于我们分析时是否考虑它的体积大小和形状.能否把一个带电体看作点电荷,不能以它的体积大小而论,应该根据具体情况而定.若它的体积和形状可不予考虑时,就可以将其看成点电荷.故选C.【对点练习】1.下列关于点电荷的说法正确的是( )A.点电荷可以是带电荷量很大的带电体B .带电体体积很大时不能看成点电荷C .点电荷的所带电荷量可能是2.56×10-20 CD .大小和形状对作用力影响可以忽略的带电体可以看作点电荷2.如图1-2-3所示,图1-2-3两个半径均为r 的金属球放在绝缘支架上,两球面最近距离为r ,带等量异种电荷,电荷量绝对值均为Q ,两球之间的静电力为( )A .等于k Q 29r 2B .大于k Q 29r 2 C .小于k Q 29r 2 D .等于k Q 2r 2 3.(1)通过对氢核和核外电子之间的库仑力和万有引力大小的比较,你能得到什么结论?(2)你怎样确定两个或两个以上的点电荷对某一点电荷的作用力?4.关于库仑扭秤图1-2-4问题1:1785年,库仑用自己精心设计的扭秤(如图1-2-4所示)研究了两个点电荷之间的排斥力与它们间距离的关系.通过学习库仑巧妙的探究方法,回答下面的问题.(1)库仑力F与距离r的关系.(2)库仑力F与电荷量的关系.问题2:写出库仑定律的数学表达式,并说明静电力常量k的数值及物理意义.【常见题型】题型一库仑定律的应用如图1所示,两个正电荷q1、q2的电荷量都是3 C,静止于真空中,相距r=2 m.图1(1)在它们的连线AB的中点O放入正电荷Q,求Q受的静电力.(2)在O点放入负电荷Q,求Q受的静电力.(3)在连线上A点左侧的C点放上负点电荷q3,q3=1 C且AC=1 m,求q3所受的静电力.[思维步步高] 库仑定律的表达式是什么?在这个表达式中各个物理量的物理意义是什么?在直线上的各个点如果放入电荷q,它将受到几个库仑力的作用?这几个力的方向如何?如何将受到的力进行合成?[解析] 在A、B连线的中点上,放入正电荷受到两个电荷库仑力的作用,这两个力大小相等,方向相反,所以合力为零.如果在O点放入负电荷,仍然受到两个大小相等,方向相反的力,合力仍然为零.在连线上A的左侧放入负电荷,则受到q1和q2向右的吸引力,大小分别为F1=kq3q1x2和F2=kq3q2(r+x)2,其中x为AC之间的距离.C点受力为二力之和,代入数据为3×1010 N,方向向右.[答案] (1)0 (2)0 (3)3×1010 N,方向向右[拓展探究] 在第三问中如果把q3放在B点右侧距离B为1 m处,其他条件不变,求该电荷受到的静电力?[答案] 3×1010 N 方向向左[解析] 求解的方法和第三问相同,只不过电荷在该点受到两个电荷的库仑力的方向都向左,所以合力方向向左,大小仍然是3×1010 N.[方法点拨] 在教学过程中,强调不管在O点放什么性质的电荷,该电荷受到的静电力都为零,为下一节电场强度的叠加做好准备.另外还可以把电荷q3放在AB连线的中垂线上进行研究.题型二库仑定律和电荷守恒定律的结合甲、乙两导体球,甲球带有4.8×10-16 C的正电荷,乙球带有3.2×10-16 C的负电荷,放在真空中相距为10 cm的地方,甲、乙两球的半径远小于10 cm.(1)试求两球之间的静电力,并说明是引力还是斥力?(2)将两个导体球相互接触一会儿,再放回原处,其作用力能求出吗?是斥力还是引力?[思维步步高]为什么题目中明确两球的直径远小于10 cm?在应用库仑定律时带电体所带电荷的正负号怎样进行处理的?当接触后电荷量是否中和?是否平分?[解析] (1)因为两球的半径都远小于10 cm,因此可以作为两个点电荷考虑.由库仑定律可求:F=k q1q2r2=9.0×109×4.8×10-16×3.2×10-160.12N=1.38×10-19N两球带异种电荷,它们之间的作用力是引力.(2)将两个导体球相互接触,首先正负电荷相互中和,还剩余(4.8-3.2)×10-16 C 的正电荷,这些正电荷将重新在两导体球间分配,由于题中并没有说明两个导体球是否完全一样,因此我们无法求出力的大小,但可以肯定两球放回原处后,它们之间的作用力变为斥力.[答案] (1)1.38×10-19 N 引力(2)不能斥力[拓展探究] 如果两个导体球完全相同,接触后放回原处,两球之间的作用力如何?[答案] 5.76×10-21 N 斥力[解析] 如果两个导体球完全相同,则电荷中和后平分,每个小球的带电荷量为0.8×10-16 C,代入数据得两个电荷之间的斥力为F=5.76×10-21 N.[方法点拨]两个导体相互接触后,电荷如何分配,跟球的形状有关,只有完全相同的两金属球,电荷才平均分配.【课后作业】一、选择题1.下列说法正确的是( )A.点电荷就是体积很小的带电体B.点电荷就是体积和所带电荷量很小的带电体C 根据F=k q1q2r2可知,当r→0时,有FD.静电力常量的数值是由实验得出的2.两个半径相同的金属小球,带电荷量之比为1∶7,相距r,两者相互接触后,再放回原来的位置,则相互作用力可能是原来的( )A.47B.37C.97D.1673.如图2所示,图2在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是( )A .速度变大,加速度变大B .速度变小,加速度变小C .速度变大,加速度变小D .速度变小,加速度变大4.如图3所示,图3两个带电金属小球中心距离为r ,所带电荷量相等为Q ,则关于它们之间电荷的相互作用力大小F 的说法正确的是( )A .若是同种电荷,F <k Q 2r 2 B .若是异种电荷,F >k Q 2r 2 C .若是同种电荷,F >k Q 2r 2D.不论是何种电荷,F=k Q2 r25.如图4所示,图4悬挂在O点的一根不可伸长的绝缘细线下端有一个带电荷量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B,当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B的电荷量分别为q1和q2,θ分别为30°和45°,则q2/q1为( ) A.2 B.3C.2 3 D.3 36.如图5所示,图5把一个带电小球A固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B.现给B一个沿垂直AB方向的水平速度v0,B球将( )A.若A、B为异种电性的电荷,B球一定做圆周运动B.若A、B为异种电性的电荷,B球可能做加速度、速度均变小的曲线运动C.若A、B为同种电性的电荷,B球一定做远离A球的变加速曲线运动D.若A、B为同种电性的电荷,B球的动能一定会减小7.如图6所示,图6三个完全相同的金属小球a 、b 、c 位于等边三角形的三个顶点上.a 和c 带正电,b 带负电,a 所带电荷量的大小比b 的小.已知c 受到a 和b 的静电力的合力可用图中四条有向线段中的一条来表示,它应是( ) A .F 1 B .F 2 C .F 3 D .F 4 二、计算论述题8.“真空中两个静止点电荷相距10 cm ,它们之间相互作用力大小为9×10-4 N .当它们合在一起时,成为一个带电荷量为3×10-8 C 的点电荷.问原来两电荷的带电荷量各为多少?”某同学求解如下: 根据电荷守恒定律:q 1+q 2=3×10-8 C =a根据库仑定律:q 1q 2=r 2k F =(10×10-2)29×109×9×10-4 C 2 =1×10-15 C 2=b联立两式得:q 21-aq 1+b =0 解得:q 1=12(a ±a 2-4b )=12(3×10-8±9×10-16-4×10-15) C根号中的数值小于0,经检查,运算无误.试指出求解过程中的错误并给出正确的解答.9.如图7所示,图7一个挂在绝缘细线下端的带正电的小球B,静止在图示位置,若固定的带正电小球A的电荷量为Q,B球的质量为m,带电荷量为q,θ=30°,A和B在同一条水平线上,整个装置处于真空中,求A、B两球间的距离.10.一半径为R的绝缘球壳上均匀地带有电荷量为+Q的电荷,另一电荷量为+q的点电荷放在球心O处,由于对称性,点电荷受力为零.现在球壳上挖去半径为r(r≪R)的一个小圆孔,则此时位于球心处的点电荷所受到力的大小为多少?方向如何?(已知静电力常量为k)参考答案【对点练习】1.答案AD2.答案 B3.答案(1)微观粒子间的万有引力远小于库仑力,因此在研究微观带电粒子的相互作用力时,可忽略万有引力.(2)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变.因此,两个或两个以上的点电荷对某一个点电荷的作用力等于各点电荷单独对这个电荷的作用力的矢量和.4.答案 问题1:(1)F ∝1r2 (2)F ∝q 1q 2问题2:F =k q 1q 2r2,k =9×109 N ·m 2/C 2.物理意义:两个电荷量为1 C 的点电荷,在真空中相距1 m 时,它们之间的库仑力为1 N. 【课后作业】 一、选择题 1.答案 D解析 当r →0时,电荷不能再被看成点电荷,库仑定律不成立. 2.答案 CD解析 由库仑定律可知,库仑力与电荷量的乘积成正比,设原来两小球分别带电荷量为q 1=q 、q 2=7q .若两小球原来带同种电荷,接触后等分电荷量,则q 1′=4q ,q 2′=4q ,则D 正确.若两小球原来带异种电荷,接触后到q 1″=3q ,q 2″=3q ,则由库仑定律可知,C 正确. 3.答案 C解析 根据同种电荷相斥,每个小球在库仑斥力的作用下运动,由于力的方向与运动方向相同,均做加速直线运动,速度变大;再由库仑定律F =k q 1q 2r 2知随着距离的增大,库仑斥力减小,加速度减小,所以只有选项C 正确. 4.答案 AB 解析净电荷只能分布在金属球的外表面,若是同种电荷则互相排斥,电荷间的距离大于r ,如图所示,根据库仑定律F=kq 1q 2r 2,它们之间的相互作用力小于kQ 2r 2.若是异种电荷则相互吸引,电荷间的距离小于r ,则相互作用力大于k Q 2r 2.故选项A 、B 正确. 5.答案 C解析 A 处于平衡状态,则库仑力F =mg tan θ.当θ1=30°时,有kq 1q r 21=mg tan30°,r 1=l sin 30°;当θ2=45°时,有k q 2qr 22=mg tan 45°,r 2=l sin 45°,联立得q 2q 1=2 3.6.答案 BC解析 (1)若两个小球所带电荷为异种电荷,则B 球受到A 球的库仑引力,方向指向A .因v 0⊥AB ,当B 受到A 的库仑力恰好等于向心力,即k q 1q 2r 2=m v 20r 时,解得初速度满足v 0=kq 1q 2mr,B 球做匀速圆周运动;当v >v 0时,B 球将做库仑力、加速度、速度都变小的离心运动;当v <v 0时,B 球将做库仑力、加速度、速度逐渐增大的向心运动.(2)若两个小球所带电荷为同种电荷,B 球受A 球的库仑斥力而做远离A 的变加速曲线运动(因为A 、B 距离增大,故斥力变小,加速度变小,速度增加). 7.答案 B解析 对c 球进行受力分析,如下图所示.由已知条件知:F bc >F ac .根据平行四边形定则表示出F bc 和F ac 的合力F ,由图知c 受到a 和b 的静电力的合力可用F 2来表示,故B 正确.二、计算论述题 8.答案 见解析解析 题中仅给出两电荷之间的相互作用力的大小,并没有给出带电的性质,所以两点电荷可能异号,按电荷异号计算.由q 1-q 2=3×10-8 C =a ,q 1q 2=1×10-15 C 2=b 得q 21-aq 1-b =0由此解得q 1=5×10-8 C ,q 2=2×10-8 C9.答案3kQqmg解析 如下图所示,小球B 受竖直向下的重力mg ,沿绝缘细线的拉力F T ,A 对它的库仑力F C .由力的平衡条件,可知Fc =mgtan θ 根据库仑定律Fc =k2Qq r解得=3kQqmg10.答案kqQr 24R 4由球心指向小孔中心解析 如下图所示,由于球壳上带电均匀,原来每条直径两端相等的一小块圆面上的电荷对球心点电荷的力互相平衡.现在球壳上A 处挖去半径为r 的小圆孔后,其他直径两端电荷对球心点电荷的力仍互相平衡,则点电荷所受合力就是与A 相对的B 处,半径也等于r 的一小块圆面上电荷对它的力F.B 处这一小块圆面上的电荷量为:222244B r r q Q Q R R ππ== 由于半径r ≪R ,可以把它看成点电荷.根据库仑定律,它对中心点电荷的作用力大小为:F=k 2B q qR =k 2224r qQ R R=kqQr 24R 4其方向由球心指向小孔中心.。
高中物理学习讲义k nq r 2,三个金属小=nq2,球接触后,球1的带电量q =q +nq 22=+4,此时1、2间的作用力F′=k nq2·+4r2=k +28r 2,由题意知F′=F ,即n =+,解得n =6.故D 正确.G mL2,kQL2B.F引≠Gm2L2,≠kQL2≠G mL2,kQL2D.F引=Gm2L2,≠kQL2一侧电荷分布较密集,又L=3r,不满足的要求,故不能将带电球壳看成点电荷,所以不能≠k QL2.kQL2.万有引力定律适用于两个可看成质点的物体,虽然不满足,但因为其壳层的厚度和质量分布均匀,两球壳可看作B.tan2α=Q2 Q1D.tan3α=Q2 Q1、F BP为库仑力,B.l-kq2 k0l2D.l-5kq2 2k0l2处且与AB在一条直线上-9 4Q应带负电,放在A的左边且和为研究对象,由平衡条件:k qQ Ax2=kQ A Q Br2①以C为研究对象,则k qQ Ax2=k+2②球带电荷量较大球带电荷量较小球带电荷量较大球带电荷量较小】一根放在水平面内的光滑玻璃管绝缘性能很好,管内部有两个完全一样的弹性金属小Q.两球从图中位置由静止释放,问两球再次经过图中位球的瞬时加速度为释放时的几倍?3kq2m系统为研究对象,为研究对象,画出其受力图如右图所示,后,要产生水平向右的加速度,故C.4/7倍D.无法确定答案C解析C与A、B反复接触后,最终结果是A、B原先所带的总和,最后在三个小球间均分,最后A、B两球的电荷量为7Q+-3=2Q.A、B原先有引力:F=kq1q2r2=k7Q·Qr2=7kQ2r2;A、B最后的斥力F′=k 2Q·2Qr2=4kQ2r2,所以F′=47F,A、B间的库仑力减小到原来的47.5.(多选)如图所示,带电小球A、B的电荷量分别为Q A、Q B,OA=OB,都用长L的丝线悬挂在O点.静止时A、B相距为d.为使平衡时AB间距离减为d2,可采用以下哪些方法()A.将小球A、B的质量都增加到原来的2倍B.将小球B的质量增加到原来的8倍C.将小球A、B的电荷量都减小到原来的一半D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增加到原来的2倍答案BD解析对B球,根据共点力平衡可知,Fm B g=dL,而F=kQ A Q Bd2,可知d=3kQAQ B Lm B g,故选B、D.§同步练习§1.关于点电荷的概念,下列说法正确的是()A.当两个带电体的形状对它们之间相互作用力的影响可以忽略时,这两个带电体就可以看做点电荷B.只有体积很小的带电体才能看做点电荷C.体积很大的带电体一定不能看做点电荷D.对于任何带电球体,总可以把它看做电荷全部集中在球心的点电荷答案 A2.(多选)M和N是两个不带电的物体,它们互相摩擦后M带正电1.6×10-10 C,下列判断正确的有()如图所示,把一带正电的小球a放在光滑绝缘斜面上,欲使球a能静止在斜面上,需在b应(a、b两小球均可看成点电荷)()点点点点与+Q分别固定在A、BC点开始以某一初速度向右运动,不计试探电荷的重力.则之间的运动,下列说法中可能正确的是().一直做减速运动,且加速度逐渐变小.一直做加速运动,且加速度逐渐变小三球所受静电力大小一定相等,方向水平向左进行受力分析,如图所示,由平衡条件得FN=0②受力分析如图所示,由平衡条件得,由牛顿第三定律,墙所受A球压力大小,方向水平向左.如图所示,绝缘水平面上静止着两个质量均为m,电荷量均为+,与水平面间的动摩擦因数均为则两物体将开始运动.当它们的加速度第一次为零时,或指向B)(2) kQ2μmg-r2的加速度第一次为零时,A、B间的距离为r′-r 2=kQ2μmg-r2如图所示,一光滑绝缘导轨,与水平方向成45°角,两个质量均为两个小球间距离为何值时,两球速度达到最大值?受力对称,对B受力分析,开始时Fcos 45°=mgsin 45°时,增大,两球做减速运动,当速度减为零后又沿斜面向上加速运动.k Qr2.Qkmg.Qkmg的两点为平衡位置各自沿导轨往返运动,即振动.(1)70kqL2403q球受到B球的库仑力向左,要使对A球,有k2-k L2=ma5.两个半径为R的带电球所带电荷量分别为q1和q2,当两球心相距3R时,相互作用的静电力大小为()A.F=k q1q2R2B.F>kq1q2R2C.F<k q1q2R2D.无法确定答案 D解析因为两球心距离不比球的半径大很多,所以两带电球不能看做点电荷,必须考虑电荷在球上的实际分布.当q1、q2是同种电荷时,相互排斥,电荷分布于最远的两侧,电荷中心距离大于3R;当q1、q2是异种电荷时,相互吸引,电荷分布于最近的一侧,电荷中心距离小于3R,如图所示.所以静电力可能小于k q1q2R2,也可能大于kq1q2R2,D正确.6.如图所示,三个点电荷q1、q2、q3固定在一直线上,q2与q3间距离为q1与q2间距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电荷量之比为()A.(-9)∶4∶(-36) B.9∶4∶36C.(-3)∶2∶(-6) D.3∶2∶6答案 A解析本题可运用排除法解答.分别取三个电荷为研究对象,由于三个电荷只在静电力作用下保持平衡,所以这三个电荷不可能是同种电荷,这样可立即排除B、D选项,故正确选项只可能在A、C中.若选q2为研究对象,由库仑定律知:kq2q1r2=kq2q3r2,因而得:q1=14q3,即q3=4q1.选项A恰好满足此关系,显然正确选项为A.7.有两个带电小球,电荷量分别为+Q和+9Q.在真空中相距0.4 m.如果引入第三个带电小球,正好使三个小球都处于平衡状态.求:(1)第三个小球带的是哪种电荷?(2)应放在什么地方?(3)电荷量是Q的多少倍?答案(1)带负电(2)放在+Q和+9Q两个小球连线之间,距离+Q 0.1 m处(3)9 16倍解析根据受力平衡分析,引入的第三个小球必须带负电,放在+Q和+9Q两个小球的连线之间.设第三个小球带电量为q,放在距离+Q为x处,由平衡条件和库仑定律有:以第三个带电小球为研究对象:kQ·qx2=k9Q·q-x2解得x=0.1 m以+Q为研究对象:kQ·q2=k·9Q·Q2,得q=9Q168.如图所示,大小可以不计的带有同种电荷的小球A和B互相排斥,静止时两球位于同一水平面上,绝缘细线与竖直方向的夹角分别为α和β,且α<β,由此可知()A.B球带的电荷量较多B.B球质量较大C.B球受的拉力较大D.两球接触后,再静止下来,两绝缘细线与竖直方向的夹角变为α′、β′,则仍有α′<β′答案 D解析两小球处于平衡状态,以小球A为研究对象受力分析如图所示,受三个力(m A g、F、F A)作用,以水平和竖直方向建立坐标系;利用平衡条件得F A·cos α=m A g,F A·sin α=F整理得:m A g=Ftan α,F A=Fsin α同理对B受力分析也可得:m B g=Ftan β,F B=Fsin β由于α<β,所以m A>m B,F A>F B,故B、C错.不管q A、q B如何,A、B所受的库仑力是作用力、反作用力关系,大小总相等.两球接触后,虽然电荷量发生了变化,库仑力发生了变化,但大小总相等,静止后仍有α′<β′(因为m A>m B),故A错,D对.9.如图所示,把一带正电的小球a放在光滑绝缘斜面上,欲使球a能静止在斜面上,需在MN间放一带电小球b,则b应()将增大的带电小球A用丝线吊起,若将带电荷量为3 cm时,丝线与竖直方向夹角为的大小为多少?所以q A =2×10-3-229.0×109×4×10-8C =5×10-9 C.小球B 受到的库仑力与小球A 受到的库仑力为作用力和反作用力,所以小球B 受到的库仑力大小为2×10-3 N .小球A 与小球B 相互吸引,小球B 带正电,故小球A 带负电.13.如图所示,一个挂在绝缘细线下端的带正电的小球B ,静止在图示位置,若固定的带正电小球A 的电荷量为Q ,B 球的质量为m ,带电荷量为q ,θ=30°,A 和B 在同一条水平线上,整个装置处于真空中,求A 、B 两球间的距离.答案3kQq mg解析 如图所示,小球B 受竖直向下的重力mg 、沿绝缘细线的拉力F T 、A 对它的库仑力F C . 由力的平衡条件, 可知F C =mg tan θ 根据库仑定律得 F C =k Qq r 2 解得r =kQqmg tan θ=3kQq mg14.如图所示,在光滑绝缘的水平面上沿一直线等距离排列三个小球A 、B 、C ,三球质量均为m ,A 与B 、B 与C 相距均为L (L 比球半径r 大得多).若小球均带电,且q A =+10q ,q B =+q ,为保证三球间距不发生变化,将一水平向右的恒力F 作用于C 球,使三者一起向右匀加速运动.求:(1)F 的大小;(2)C 球的电性和电荷量.答案 (1)70kq 2L 2 (2)带负电,电荷量为403q解析 因A 、B 为同种电荷,A 球受到B 球的库仑力向左,要使A 向右匀加速运动,则A 球必须受到C 球施加的向右的库仑力.故C 球带负电.设加速度为a ,由牛顿第二定律有: 对A 、B 、C 三球组成的整体, 有F =3ma对A 球,有k ·10q ·q C L 2-k q ·10qL 2=ma 对B 球,有k 10q ·q L 2+k q ·q CL 2=ma解得:F =70kq 2L 2 q C =403q。
2、库仑定律:F k一厂(不带正负号)r(k=9.0 W9N-m2/C2, r为点电荷球心间的距离)3、电场强度定义式:E Fq场强的方向:正检验电荷受力的方向.4、点电荷的场强:E A k-Q2 (Q为场源电「A量)5、电场力做功:W AB qU AB(带正负号)6、电场力做功与电势能变化的关系:W电E p7、电势差的定义式:U AB W AB(带正负q号)8电势的定义式: A W AP(带正负号)q(P代表零势点或无穷远处)9、电势差与电势的关系:U AB A BE丄d(d为沿场强方向的距离)11、初速度为零的带电粒子在电场中加速:v第二章、电路1、电阻定律:R g (I叫电阻率)S2、串联电路电压的分配:与电阻成正比U1 R[ R.1—-—- u 1 1—U总U2 R2,R1 R2 总3、并联电路电流的分配:与电阻成反比I 1 R2 . R2 .丨2 R1 1R R2 干4、串联电路的总电阻:R串R1 R2( nR)5、并联电路的总电阻:R并了字(旦)R1 R2 n6、I-U伏安特性曲线的斜率:k tan 丄R12、带电粒子在电场中的偏转:加速度一一a理mdqU丨22md v]偏转角--- tan qU丨2md v013、初速度为零的带电粒子在电场中加速并偏转:&闭合电路欧姆定律:I —R r9、闭合电路的路端电压与输出电流的关系:U E I r10、电源输出特性曲线:电动势E:等于U轴上的截距内阻r :直线的斜率r tan E I短选修3-1公式第一章、电场qU2 I2yc * 2qU12md -mU2I24dU;1、电荷先中和后均分:q qi2q2(带正负号)14、电容的定义:C单位:法拉15、平行板电容器的电容:10、匀强电场的电场强度与电势差的关系:偏转量R12安培力的方向判断:左手定则 5、磁通量:BSsin 单位:韦伯 Wb(B 为B 和S 的夹角,即线和面的夹角) * 6、力矩:M FL (L 为力F 的力臂) * 7、通电矩形线圈在匀强磁场中绕垂直于磁场的轴旋转的磁力矩:15、热功率:P 热l 2R17、电源输出的最大电功率:第三章、磁场1、 磁场的方向:小磁针静止时 N 极的指向2、 安培定则:判断直线电流、环形电流、 通电螺线管的方向。
静电场第一节 库仑定律一、电荷1. 两种电荷:即正电荷和负电荷。
同种电荷相互排斥,一种电荷相互吸引。
2. 元电荷:最小的电荷量。
即电子或质子所带的电荷量,用e 来表示,e=1.6×10-19 C 。
最早由美国物理学家密立根测得。
3. 电荷量:电荷的多少叫做电荷量。
电荷量的单位:库伦(C )。
物体带的电荷量只能是e 的整数倍。
4. 比荷:电荷量与质量的比。
电子的比荷:C/kg 1076.1m e 11e⨯=,比荷又叫做荷质比,是带电粒子的一个重要参数。
5. 点电荷:自身线度远小于相互作用距离的带电体可以看做点电荷,点电荷是一种理想化模型。
二、三种起电方式的比较1.摩擦起电。
电荷得失。
玻璃棒与丝绸摩擦,玻璃棒因失去电子而带正电。
2.接触起电。
电荷转移。
金属棒与带正电的物体接触,正电荷转移到金属棒。
3.感应起电。
静电感应。
同种电荷在电场力的作用下远离带电体,异种电荷在 电场力的作用下靠近带电体。
注意:1. 用丝绸摩擦过的玻璃棒带正电,用毛皮摩擦过的硬橡胶棒带负电,是电子的转移。
2. 静电感应现象是导体内部电荷的重新分布,显现出了电性。
三、电荷守恒定律内容:电荷既不会创生,也不会消失,它只能从一个物体转移到另一个物体或从一个物体的一部分转移到另一部分,在转移过程中,电荷总量保持不变。
【例】有两个完全相同的带电绝缘金属小球A 、B ,分别带有电荷量Q A =6.4×10-9C ,Q B =-3.2×10-9C ,让两绝缘金属小球接触后A 、B ,分别所带的电荷量各是多少?在接触过程中,电子如何转移并转移了多少?方向:同种电荷相排斥,异种电荷相吸引。
(3)使用条件:真空中的点电荷。
(4)库仑扭秤实验:通过实验,库仑发现两点电荷之间静电力与距离平方成反比的规律。
五、库仑定律的应用1. 库仑定律的基本应用【例】如图所示,把A 、B 两个相同的导电小球分别用长为0.10m 的绝缘细线悬挂于OA 和OB 两点.用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点OB 移到OA 点固定.两球接触后分开,平衡时距离为0.12m .已测得每个小球质量是8.0×10-4kg ,带电小球可视为点电荷,重力加速度g=10m/s2,静电力常量k=9.0×109N•m2/C2,则( )A .两球所带电荷量相等B .A 球所受的静电力为1.0×10-2NC .B 球所带的电荷量为4√6×10-8CD .A 、B 两球连线中点处的电场强度为0【例】在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A 、B 、C 位于等边三角形的三个顶点上,小球D 位于三角形的中心,如图所示。