在直线参数方程的标准形式下,直线上两点之间的距离可用|t1-t2|来求.直线的
参数方程和普通方程可以进行互化.特别是要求直线上某一定点到直线与曲线的
交点的距离和直线与曲线相交的弦长时,通常要使用参数的几何意义,宜用参数方
程形式.
典例提升2
已知直线的参数方程为ቊ
= 1 + 2,
(t为参数),求该直线被圆x2+y2=9截得的弦
5 1 2
64
12 5
+
16
=
.
5
5
2
1
+ 2 + ′ =9,
5
探究三错辨析
易错点:错用参数的几何意义而致误
典例提升3
= 2− 2 ,
2+y2=4交于A,B两点,求
已知过点M(2,-1)的直线l:൞
(t为参数),l与圆x
= −1 + 2
|AB|及|AM|·|BM|.
错解:把直线方程代入圆的方程,化简得t2-6t+2=0.设A,B两点对应的参数分别为
其中t'是点M(2,-1)到直线l上的一点P(x,y)的有向线段的数量,将其代入圆的方程
x2+y2=4,化简得t'2-3 2t'+1=0.因为Δ>0,可设t1',t2'是方程的两个根,由根与系数的
关系,得t1'+t2'=3 2,t1't2'=1.由参数t'的几何意义得|MA|=|t1'|,|MB|=|t2'|,
数).
1
= 3− 2 ,
(2)把൞
代入x-y+1=0,