二端口网络的网络参数
- 格式:docx
- 大小:36.71 KB
- 文档页数:1
第七章二端口网络§7-2 二端口网络的参数方程及参数一、导纳参数方程、导纳参数如图7-4所示无源线性二端口电路中,电压、电流参考方向如图所示,电路已达稳定。
假设端口电压、为已知量,、为待求量,用、表示、时,1U 2U 1I 2I 1U 2U 1I 2I 根据叠加定理,二端口网络的方程为22212122121111U Y U Y I U Y U Y I +=+=式中系数具有导纳性质,称为二端口网络的导纳参数(参数),所以上式称为导纳方程或方程。
无源二端口网络的Y 参数,仅与网络的内部结构、元件参数、工作频率有关,而与输入信号的振幅、负载的情况无关。
因此,这些参数描述了二端口网络本身的电特性。
所以导纳方程可以用矩阵形式表示为⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡2221121121Y Y Y Y I I ⎥⎥⎦⎤⎢⎢⎣⎡21U U UY I =⎥⎥⎦⎤⎢⎢⎣⎡=21I I I ⎥⎥⎦⎤⎢⎢⎣⎡=21U U U 22122111⎥⎦⎤⎢⎣⎡=Y Y Y Y Y 为端口电流列向量;为端口电压列向量;为导纳矩阵或Y 矩阵011112==U U I Y 012212==U UIY 022221==U UIY 021121==U UIY 由于每个Y 参数都是在一个端口短路情况下分析得到的,因此参数也称为短路导纳参数。
对于无源线性二端口网络可以证明,输入和输出互换位置时,不会改变由同一激励所产生的响应。
由此得出2112Y Y =即在参数中,只有三个参数是独立的,这样的网络具有互易性,称为互易网络。
如果二端口网络是对称的(即对称二端口网络),则输出端口和输入端口互换位置后,电压和电流均不改变,有2211Y Y =对互易且对称二端口网络中,则参数中只有两个参数是独立的。
【例7-1】求图7-5所示二端口网络的导纳矩阵。
解将端口2短路sj U I Y U )42(011112-=== sj U I Y U 4012212=== sj U I Y U 4021121=== sj U I Y U 3022221-=== S将端口1短路。
29二端口网络方程参数及等效电路
一、二端口网络方程
二端口网络的方程如下:
V1=Z11I1+Z12I2
V2=Z21I1+Z22I2
其中V1和V2代表两端口的电压,I1和I2代表两端口的电流,Z11、Z12、Z21和Z22代表四个参数,每个参数对应一条电阻等效的连续线。
二、网络方程参数
网络方程的参数:
(1)Z11:端口1的电阻或电抗,它代表端口1电流I1通过端口1
电阻时,端口1的电压。
(2)Z12:端口1和端口2的电阻或电抗,它代表端口1电流I1通
过端口1和端口2电阻时,端口2的电压。
(3)Z21:端口2的电阻或电抗,它代表端口2电流I2通过端口2
电阻时,端口1的电压。
(4)Z22:端口2和端口1的电阻或电抗,它代表端口2电流I2通
过端口2和端口1电阻时,端口2的电压。
三、网络方程等效电路
二端口网络方程可以用下图所示的等效电路来表达:
等效电路中的电压源的电压值与实际网络中可以使用的电压值相同,即V1和V2分别代表端口1和端口2的电压。
同时,Z11、Z12、Z21和
Z22分别代表端口1、端口1和端口2、端口2之间的电阻或电抗。
四、总结
二端口网络方程的形式为:V1=Z11I1+Z12I2;V2=Z21I1+Z22I2,其中V1和V2代表两端口的电压,I1和I2代表两端口的电流。
一、 二端口网络的Y 方程和Y 参数应用替代原理,将网口电压1U 和2U 用电压源代替,如图6-1-1(a )所示。
根据叠加原理,网口电流可由分量电流叠加而得。
在图6-1-1(b )、(c )分量电路中,由线性网络的比例性知,1U (或2U )单独作用产生的分量电流与1U (或2U )成正比,且其网络常数属导纳性质,即: ⎪⎩⎪⎨⎧='='12121111U Y I U Y I⎪⎩⎪⎨⎧=''=''22222121U Y I U Y I 式中的网络常数Y 11、Y 12、Y 21、及Y 22决定于二端口网络的内部结构和元件参数。
(a )(b )(c )图6-1-1由叠加原理得:⎪⎩⎪⎨⎧''+'=''+'=222111I I I I I I即22212122121111UY U Y I U Y U Y I +=+=其矩阵形式为..111112..212222Y Y U I Y Y U I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦此方程称为Y 参数方程。
〔Y 〕称为Y 参数,其元素定义为: .111.1.20|U I Y U ==.221.1.20|U I YU ==.112.2.10|U I Y U ==.222.2.10|U I YU ==式中:Y 11-为二端口短路时,一端口的入端导纳; Y 22-为一端口短路时,二端口的入端导纳;Y 12-为一端口短路时,一端口对二端口的转移导纳; Y 21-为二端口短路时,二端口对一端口的转移导纳。
【例】求图中所示 二端口网络的Y 参数,其中R 1=5Ω,R 2=5Ω,R 3=5Ω。
5Ω121'2'1I ∙∙方法一:根据定义求解 (1)Y 参数方程为:22212122121111UY U Y I U Y U Y I +=+=(2)根据Y 参数的定义:.111.1.20|U I Y U ==.221.1.20|U I YU ==根据替代定理,在端口1-1’上外施电压1U ,而把端口2-2’短路,即令02=U ,如图所示:1U ∙2U ∙1∙2∙=Y 11表示端口2-2’短路时,端口1-1’处的输入导纳或驱动导纳;Y 21表示端口2-2’短路时,端口2-2’与端口1-1’之间的转移导纳。
电路基础原理概述二端口网络的特性和参数电路是现代科技中必不可少的基础,其中二端口网络是其中一种常见的电路类型。
在电路中,二端口网络是由两个输入端和两个输出端组成的电路元件,它能够传输和转换电信号。
本文将概述二端口网络的特性和参数。
一、传输特性二端口网络的传输特性是指输入电压与输出电压之间的相互关系。
传输特性可以通过观察输入和输出之间的电流和电压变化来确定。
通常,二端口网络的传输特性可以表示为一个线性的数学方程组。
这个方程组可以用来描述二端口网络的传输函数,即输入和输出之间的关系,通常表示为Vout = H Vin。
其中,H 表示传输函数,Vin 表示输入电压,Vout 表示输出电压。
二、阻抗特性阻抗是描述二端口网络响应外部电路的能力的参数。
一个二端口网络的输入阻抗和输出阻抗是反映网络与外部电路相互连接时的特性。
输入阻抗反映了二端口网络对外部电路输入信号的响应,输出阻抗反映了二端口网络对外部电路输出信号的响应。
阻抗特性的数学表示为Zin = Vin / Iin 和 Zout = Vout / Iout,其中 Zin 表示输入阻抗,Vin 表示输入电压,Iin 表示输入电流,Zout 表示输出阻抗,Vout 表示输出电压,Iout 表示输出电流。
三、特性曲线特性曲线是描述二端口网络输入和输出关系的图形,可以通过实验或者计算得到。
在特性曲线上,通常会有一些重要的特性点,例如截止点、饱和点等。
这些特性点可以用来判断二端口网络的工作状态和性能。
特性曲线可以帮助工程师了解二端口网络的行为和特点,进而进行电路设计和优化。
四、常见参数二端口网络有一些常见的参数,例如增益、带宽、相位等。
增益是指输出电压与输入电压之间的比例关系。
带宽是指在特定增益范围内的频率范围。
相位是指输入信号和输出信号之间的相对时间差。
这些参数可以帮助我们了解二端口网络的性能和应用范围。
总结:二端口网络在电路中有广泛的应用,它的特性和参数对于电路设计和分析非常重要。
二端口网络的参数与特性分析二端口网络是指由两个端口构成的电路网络,常见于各种电子电路中。
了解二端口网络的参数与特性对于分析电路性能、设计电路以及解决电路问题的能力至关重要。
本文将对二端口网络的参数与特性进行详细分析。
一、二端口网络的基本参数二端口网络的基本参数包括:传输函数、散射参数、混合参数、过渡参数等。
这些参数能够描述电路的输入与输出之间的关系。
1. 传输函数传输函数描述了二端口网络的输入与输出之间的传输关系。
通常用H(s)表示,其中s为复变量。
传输函数可以通过拉普拉斯变换或者其它等效方法求得。
2. 散射参数散射参数(S参数)是描述二端口网络中波的散射过程的参数。
它们包括反射系数和传输系数。
S参数可以通过测量回波系数和透射系数等实验数据计算得到。
3. 混合参数混合参数(H参数)是描述二端口网络中电流和电压关系的参数。
它们包括双端口输入电阻、输出电阻以及互阻和互导。
H参数可以通过测量电压和电流的关系得到。
4. 过渡参数过渡参数(T参数)是描述二端口网络中电流和电压关系的另一组参数。
它们包括双端口输入电阻、输出电阻以及互阻和互导。
T参数可以通过测量电压和电流的关系得到。
二、二端口网络的特性分析除了基本参数外,二端口网络还具有一些特性,这些特性可以帮助我们更好地理解二端口网络的工作原理、性能和应用。
1. 平衡与非平衡二端口网络可以分为平衡网络和非平衡网络。
在平衡网络中,输入端和输出端的特性相同;而在非平衡网络中,输入端和输出端的特性不同。
平衡与非平衡对于分析电路性能和设计电路具有重要影响。
2. 带宽与通频带带宽是指二端口网络能够传输的频率范围。
通频带是指在这个频率范围内,二端口网络的传输特性基本保持不变。
带宽和通频带决定了二端口网络的信号传输能力。
3. 稳定性与不稳定性稳定性是指二端口网络在一定条件下保持正常工作的能力。
不稳定性则指在特定条件下,二端口网络出现性能失效或者不可控的情况。
稳定性是电路设计和应用中需要考虑的一个重要因素。
二端口参数转换表
二端口网络参数转换表如下:
二端口参数转换公式
:--: :--:
Z参数 Z = R + jX
Y参数 Y = G + jB
H参数 H = 2/(ZY)
A参数 A = 1/[(R+jX)(G-jB)]
B参数 B = (R-jX)(G+jB)
S参数 S = AH
其中,Z、Y、H、A、B和S分别是二端口的Z参数、Y参数、H参数、A 参数、B参数和S参数,R、X、G和B分别是二端口的电阻、电感和电容值。
在二端口网络参数的转换中,常用的有Z参数与S参数的转换,Y参数与S 参数的转换等。
其中,Z参数与S参数的转换公式为:S = [Z/(Z+1)]^2,其中Z是二端口的Z参数。
Y参数与S参数的转换公式为:S =
(1/2)[(Y+1)/(Y-1)]^2,其中Y是二端口的Y参数。
在具体应用中,可以根据实际需要选择适当的转换公式进行计算。
同时,需要注意的是,二端口网络参数的转换是有条件的,只有在特定的频率和特定的幅度条件下才能进行准确的转换。
因此,在实际应用中,需要确保测试条件的一致性,以获得准确的测试结果。
二端口网络的网络参数
1、带宽:是指数据在物理链路上传输的速率,通常以比特每秒(bps 或 b/s)来表示,它可以定义为一端口网络中有效传输的最大数据流量速率。
2、全双工:指网络单根线路可以实现双向传输的功能,是指其中一段信道上,端点上的数据设备既可以接收另一端的数据发送,又可以传输自己的数据。
3、延时:指数据在网络中传输的时间,这种时间波动幅度较小的网络延迟又被称为带宽延迟。
它取决于物理链路的参数,网络负载,封包大小以及传输速率等因素。
4、丢包率:丢包率是一个衡量网络性能的重要指标,它是指发出去的网络封包在网络环境中无法被正常接收的比例。
丢包率反映了网络传输的稳定性和可靠性,用以衡量和评价网络的实时性能。
5、OSI参考模型:OSI(Open System Interconnection)参考模型是网络通信进行参考和分析的标准,包括物理层、数据链路层、网络层、传输层、会话层、表示层、应用层7层结构。
6、TCP/IP协议:TCP/IP(Transmission Control
Protocol/Internet Protocol)协议是网络传输的基础,它规定了网络节点之间的通信语言和网络传输的基本过程。