大学物理振动和波动知识点总结
- 格式:doc
- 大小:391.00 KB
- 文档页数:4
振动基础必学知识点
以下是振动基础必学的知识点:
1. 振动的定义:振动是物体围绕某个平衡位置来回周期性地运动。
2. 振动的周期和频率:振动的周期是振动一个完整循环所需要的时间,单位是秒;频率是单位时间内振动的次数,单位是赫兹。
它们之间有
以下关系:频率 = 1/周期。
3. 振动的幅度:振动的幅度是指物体离开平衡位置的最大距离。
4. 简谐振动:简谐振动是指物体在没有阻力的情况下,围绕平衡位置
做匀速往复运动的振动。
简谐振动的特点是周期恒定、频率固定且幅
度不断变化。
5. 谐振:谐振是指当外力作用频率与物体固有频率相同时,物体容易
发生共振现象,振幅会明显增大的现象。
6. 弹簧振子:弹簧振子是指一个质点通过与弹簧连接,形成一个可以
进行振动的系统。
弹簧振子的运动方程可以用简谐振动的方程表示。
7. 摆钟:摆钟是指一个由质点与一个固定的绳或杆连接,形成可以进
行振动的系统。
摆钟的运动方程可以用简谐振动的方程表示。
8. 声音的传播和振动:声音是由物体的振动引起的机械波。
声音的传
播需要介质的存在,并且介质中的分子通过相互振动来传递能量。
9. 波动的特征:波动的特征包括传播速度、波长、频率和振幅。
10. 波的类型:根据波动传播介质的性质,波可以分为机械波和电磁波两种类型。
以上是振动基础必学的知识点,掌握这些知识可以帮助理解振动和波动以及它们在不同物理现象中的应用。
振动与波知识点总结一、振动的基本概念振动是物体围绕某一平衡位置来回摆动或者来回重复运动的现象。
振动是物体相对平衡位置的周期性运动,也就是说,振动是由物体周期性地向着某一方向偏离平衡位置,然后再向着相反方向偏离平衡位置并且这个过程一直不断地重复。
振动的基本要素包括振动物体、平衡位置和振动的幅度、周期和频率等。
振动的产生是由于外力的作用或者物体本身的内部力的作用。
二、振动的表征和描述1. 振动的幅度:振动物体在振动过程中离开平衡位置的最大距离称为振幅,用A表示。
振幅是一个振动过程中最大的位移值,代表了振动物体最大偏离平衡位置的距离。
2. 振动的周期:振动物体完成一个完整的往复运动所需要的时间称为振动周期,用T表示。
振动周期是一个振动过程完成一次往复运动所需要的时间。
3. 振动的频率:振动物体完成一个往复运动所需要的次数称为振动频率,用f表示。
振动频率是一个振动过程在单位时间内完成的往复运动的次数。
4. 振动的角速度:振动物体单位时间内完成的角度偏移称为角速度,用ω表示。
角速度是一个振动过程单位时间内振动物体完成的角度偏移。
5. 振动的相位:描述振动在某一时刻相对于起始位置的位置状态的概念,通常用角度来表示。
相位是一种描述振动物体在振动过程中某一时刻相对于起始位置的相对状态的概念。
三、振动的共振现象当外力的频率与振动系统自身的振动频率相同时,振动系统会出现共振现象。
共振现象会使振动系统产生很大的振幅,甚至导致系统的破坏。
共振现象在实际生活中有很多应用,比如音乐中的共振现象会增加声音的响亮度,而机械振动中的共振现象则可能导致机械系统的破坏。
四、波的基本概念波是由物质的振动或者波的传播介质本身的运动所产生的,波是一种传播能量和动量的方式。
波可以分为机械波和电磁波两种类型。
1. 机械波:需要通过介质来传播的波称为机械波,比如水波、声波等。
2. 电磁波:不需要介质来传播的波称为电磁波,比如光波、无线电波等。
波的传播可以分为横波和纵波两种类型。
大学物理波动光学知识点总结.doc波动光学是物理学中的重要分支,涉及到光的反射、折射、干涉、衍射等现象。
作为大学物理中的一门必修课程,波动光学是大学物理知识体系重要的组成部分。
以下是相关的知识点总结:1. 光的波动性光可以被看作是一种电磁波。
根据电磁波的性质,光具有波动性,即能够表现出干涉、衍射等现象。
光的波长决定了其在物质中能否传播和被发现。
2. 光的反射光在与物体接触时会发生反射。
根据反射定律,发射角等于入射角。
反射给人们带来很多视觉上的感受和体验,如反光镜、镜子等。
当光从一种介质向另一种介质传播时,光的速度和方向都会发生改变,这个现象称为折射。
光在空气、玻璃、水等介质中的折射现象被广泛应用到光学、通信等领域中。
4. 光的干涉当两束光相遇时,它们会相互干涉,产生干涉条纹。
这是因为两束光的干涉条件不同,它们之间产生了相位差,导致干涉现象。
干涉可以分为光程干涉和振幅干涉。
光经过狭缝或小孔时,其波动性会导致光将会分散成多个波阵面。
这种现象称为衍射。
衍射可以改变光的方向和能量分布,被广泛应用于成像和光谱分析等领域。
6. 偏振偏振是光波沿着一个方向振动的现象,产生偏振的方式可以通过折射、反射、散射等途径实现。
光的偏振性质在光学通信、材料研究等领域有着广泛的应用。
总结波动光学是大学物理学知识体系不可或缺的一部分,它涉及到光的波动性、光的反射、折射、干涉、衍射等现象。
对于工程、光学、材料等领域的学生和研究者来说,深入了解波动光学的基本原理和理论,都有助于提高知识和技术水平。
大学物理(波动光学知识点总结)contents•波动光学基本概念与原理•干涉理论与应用目录•衍射理论与应用•偏振光理论与应用•现代光学技术发展动态简介波动光学基本概念与原理01光波是一种电磁波,具有横波性质,其振动方向与传播方向垂直。
描述光波的物理量包括振幅、频率、波长、波速等,其中波长和频率决定了光的颜色。
光波的传播遵循波动方程,可以通过解波动方程得到光波在不同介质中的传播规律。
光波性质及描述方法干涉现象是指两列或多列光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。
产生干涉的条件包括:两列光波的频率相同、振动方向相同、相位差恒定。
常见的干涉现象有双缝干涉、薄膜干涉等,可以通过干涉条纹的形状和间距等信息来推断光源和介质的性质。
干涉现象及其条件衍射现象及其分类衍射现象是指光波在传播过程中遇到障碍物或小孔时,偏离直线传播的现象。
衍射现象可以分为菲涅尔衍射和夫琅禾费衍射两种类型,其中菲涅尔衍射适用于障碍物尺寸与波长相当或更小的情况,而夫琅禾费衍射适用于障碍物尺寸远大于波长的情况。
常见的衍射现象有单缝衍射、圆孔衍射等,可以通过衍射图案的形状和强度分布等信息来研究光波的传播规律和介质的性质。
偏振现象与双折射偏振现象是指光波在传播过程中,振动方向受到限制的现象。
根据振动方向的不同,光波可以分为横波和纵波两种类型,其中只有横波才能发生偏振现象。
双折射现象是指某些晶体在特定方向上对光波产生不同的折射率,使得入射光波被分解成两束振动方向相互垂直的偏振光的现象。
这种现象在光学器件如偏振片、偏振棱镜等中有重要应用。
通过研究偏振现象和双折射现象,可以深入了解光与物质相互作用的基本规律,以及开发新型光学器件和技术的可能性。
干涉理论与应用02杨氏双缝干涉实验原理及结果分析实验原理杨氏双缝干涉实验是基于光的波动性,通过双缝产生的相干光波在空间叠加形成明暗相间的干涉条纹。
结果分析实验结果表明,光波通过双缝后会在屏幕上产生明暗相间的干涉条纹,条纹间距与光波长、双缝间距及屏幕到双缝的距离有关。
大学物理振动和波动 知识点总结1.简谐振动的基本特征(1)简谐振动的运动学方程: cos()x A t ϖϕ=+(2)简谐振动的动力学特征: F kx =- 或 2220d x x d tϖ+= (3)能量特征: 222111222k p E E E mv kx KA =+=+=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A 在x 轴上的投影点的运动可用来表示简谐振动。
旋转矢量的长度A 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。
2.描述简谐振动的三个基本量(1)简谐振动的相位:t ωϕ+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ϕω=-(2)简谐振动的振幅:A ,它取决于振动的能量。
其中:A =(3)简谐振动的角频率:ω,它取决于振动系统本身的性质。
3.简谐振动的合成(1)两个同方向同频率简谐振动的合成:合振动的振幅:A =合振幅最大: 212,0,1,2....k k ϕϕπ-==;合振幅最小:21(21),0,1,2....k k ϕϕπ-=+=(2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν∆=-;合振动不再是谐振动,其振动方程为21210(2cos 2)cos 222x A t t ννννππ-+=(3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。
(4)与振动的合成相对应,有振动的分解。
4.阻尼振动与受迫振动、共振:阻尼振动: 220220d x dx x dt dt βϖ++=;受迫振动 220022cos d x dx x f t dt dtβϖϖ++= 共振: 当驱动力的频率为某一特定值时,受迫振动的振幅将达到极大值.5.波的描述(1)机械波产生条件:波源和弹性介质(2)描述机械波的物理量:波长λ、周期T (或频率ν)和波速u ,三者之间关系为:uT λ= u λν=(3)平面简谐波的数学描述:(,)cos[()]xy x t A t uωϕ=±+; 2(,)cos()x y x t A t πωϕλ=±+;(,)cos 2()t x y x t A T πϕλ=±+ 其中,x 前面的±号由波的传播方向决定,波沿x 轴的正(负)向传播,取负(正)号。
大学物理——振动、波动与光学振动、波动与光学是物理学中非常重要的领域。
它们的研究不仅拓宽了我们对于自然界的认知,而且在很多领域中有着广泛的应用。
本文将一一介绍这三个方面的内容。
一、振动振动是指物体不断改变位置,并围绕平衡位置来回摆动的运动形式。
物体的振动可以是机械的,也可以是电磁的。
例如,钟摆的摆动就是一种常见的机械振动,而电子的震荡则是一种电磁振动。
振动的基本概念包括周期、频率、振幅和相位。
周期是指一个完整的振动所需要的时间;频率是指单位时间内振动的次数;振幅是指物体振动的最大位移,即它距离平衡位置的最大距离;相位是指一组振动中,两个振动之间的位置关系。
振动的重要性在于它的广泛应用。
例如,振动可用于精确计时,作为传感器对于机械振动的检测,改善音频和视频的质量,以及控制许多不同系统中的运动。
二、波动波动是指一组连续的、周期性的物理事件,其中能量在空间中传递,而非物质。
分类别波动的不同形式包括机械波、声波、电磁波等等。
波动的特点是传播速度、频率、波长和振幅。
根据他们的形式,波可以按照它们需要的介质区分为不同的类型。
例如,机械波需要介质,用于振动传递,大气、水和弹性材料都可以被看作机械波的传播介质。
而电磁波则不需要物质中介介质,可以通过真空中传播。
它们的能量传递是因为它们的磁场和电场的相互作用。
波动有着广泛的应用。
例如,在地震和海啸的研究中,波动是非常重要的。
在对于许多电磁波利用的实践中,例如无线电、电视和雷达,波动的性质帮助了我们对于这些技术的使用。
三、光学光学是研究光的行为和性质的学科。
光的本质是一种电磁波,它能够传递电磁能量。
我们所能感知的大部分信息来自于眼睛,眼睛通过眼球中的屈光系统将光线聚焦到视网膜上,使我们看到世界。
光学的基本概念包括折射、反射、散射和吸收。
折射是指入射角度不同时,光线通过介质界面时发生的偏折。
反射是指光线遇到物体跟踪原路线反弹回来。
散射是指光线遇到物体时发生方向相反的偏折,吸收则是指当光线与物体接触时能量被传递给物体。
大学物理振动和波动 知识点总结1.简谐振动的基本特征(1)简谐振动的运动学方程: cos()x A t ϖϕ=+(2)简谐振动的动力学特征: F kx =-r r 或 2220d x x d tϖ+= (3)能量特征: 222111222k p E E E mv kx KA =+=+=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A r 在x 轴上的投影点的运动可用来表示简谐振动。
旋转矢量的长度A r 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。
2.描述简谐振动的三个基本量(1)简谐振动的相位:t ωϕ+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ϕω=-(2)简谐振动的振幅:A ,它取决于振动的能量。
其中:A =(3)简谐振动的角频率:ω,它取决于振动系统本身的性质。
3.简谐振动的合成(1)两个同方向同频率简谐振动的合成:合振动的振幅:A =合振幅最大: 212,0,1,2....k k ϕϕπ-==;合振幅最小:21(21),0,1,2....k k ϕϕπ-=+=(2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν∆=-;合振动不再是谐振动,其振动方程为21210(2cos 2)cos 222x A t t ννννππ-+=(3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。
(4)与振动的合成相对应,有振动的分解。
4.阻尼振动与受迫振动、共振:阻尼振动: 220220d x dx x dt dt βϖ++=;受迫振动 220022cos d x dx x f t dt dtβϖϖ++= 共振: 当驱动力的频率为某一特定值时,受迫振动的振幅将达到极大值.5.波的描述(1)机械波产生条件:波源和弹性介质(2)描述机械波的物理量:波长λ、周期T (或频率ν)和波速u ,三者之间关系为:uT λ= u λν=(3)平面简谐波的数学描述:(,)cos[()]xy x t A t uωϕ=±+; 2(,)cos()x y x t A t πωϕλ=±+;(,)cos 2()t x y x t A T πϕλ=±+ 其中,x 前面的±号由波的传播方向决定,波沿x 轴的正(负)向传播,取负(正)号。
振 动 学 基 础内容提要一、振动的基本概念1、振动 某物理量随时间变化,如果其数值总在一有限范围内变动,就说该物理量在振动;2、周期振动 如果物理量在振动时,每隔一定的时间间隔其数值就重复一次,称为周期振动;3、机械振动 物体在一定的位置附近作往复运动称为机械振动;4、简谐振动 如果物体振动的位移随时间按余(正)弦函数规律变化,即:()0cos ϕω+=t A x这样振动称为简谐振动;5、周期T 物体进行一次完全振动所需的时间称为周期,单位:秒。
一次完全振动指物体由某一位置出发连续两次经过平衡位置又回到原来的状态。
6、振动频率ν 单位时间内振动的次数,单位:次/秒,称为赫兹〔Hz 〕;7、振动圆频率ω 振动频率的π2倍,单位是弧度/秒〔rad /s 〕,即Tππνω22== 8、振幅A 物体离开平衡位置〔0=x 〕的最大位移的绝对值; 9、相位ϕ0ϕωϕ+=t 称为相位或相,单位:弧()rad 。
它是时间的单值增函数,每经历一个周期T ,相位增加π2,完成一次振动; 10、初相位0ϕ 开始计时时刻的相位;11、振动速度v 表示振动物体位移快慢的物理量,即:()⎪⎭⎫ ⎝⎛++=+-==2cos sin 00πϕωωϕωωt A t A dt dx v 说明速度的相位比位移的相位超前2π; 12、振动加速度a 表示振动物体速度变化快慢的物理量,即:()()πϕωωϕωω++=+-===020222cos cos t A t A dtx d dt dv a加速度的相位比速度的相位超前2π,比位移的相位超前π; 13、初始条件 在0=t 时刻的运动状态〔位移和速度〕称为初始条件,它决定振动的振幅和初位相,即:⎪⎩⎪⎨⎧-======000000sin cos ϕωϕA v v A x x t t 则可求得: ⎪⎪⎩⎪⎪⎨⎧-=+=00022020x v tg v x A ωϕω二、旋转矢量法简谐振动可以用一旋转矢量在x 轴上的投影来表示。
振动波动知识点总结振动波动是物理学中的基础概念之一,涉及到物体在空间中振动和波动的运动规律。
振动波动不仅在日常生活中随处可见,而且在工程技术和科学研究中也有着重要的应用。
本文将从振动和波动的基本概念、波动类型、传播特性、波动在不同领域的应用等方面进行总结和介绍。
1. 振动的基本概念振动是物体在围绕平衡位置发生周期性的往复运动。
振动的特征包括振幅、周期、频率和相位等。
振幅是振动的最大位移,周期是振动完成一个往复运动所需的时间,频率是单位时间内振动的循环次数,相位是指振动的相对起点。
振动是物体表现出来的一种运动形式,包括机械振动、电磁振动等。
2. 振动的类型根据振动形式的不同,可以将振动分为机械振动、电磁振动和弹性体振动等。
机械振动是物体在受到外力作用下产生的振动,有自由振动和受迫振动之分。
电磁振动是指电场和磁场交替变化而产生的振动,包括交流电路振动和电磁波振动。
弹性体振动是由弹性体弹性形变引起的振动,包括弹簧振子、摆动等。
3. 波动的基本概念波动是能量在空间中传播的形式,包括机械波动和非机械波动。
机械波动是由介质的振动引起的能量传播,如水波、声波和地震波等;非机械波动是指在真空中能量传播,包括电磁波和引力波等。
波动波峰是波浪的最高点,波谷是波浪的最低点,波长是两个相邻波峰或波谷之间的距离,波速是波动传播的速度。
4. 波动的传播特性波动在传播过程中会遇到反射、折射、干涉和衍射等现象。
当波动遇到边界时,会发生反射现象,波动的方向会发生改变;当波动从一种介质传播到另一种介质时,会发生折射现象,波动的速度和方向都会发生改变;当波动受到干涉现象时,会出现波峰和波谷的叠加现象,波动的幅度会发生改变;当波动受到衍射现象时,波动会向波源周围扩散。
5. 波动在不同领域的应用波动在物理学、工程技术、地质学、天文学和医学等领域具有广泛的应用价值。
在音响和通讯领域,声波和电磁波的传播特性被广泛应用于声音的放大和信号的传输;在地震学领域,地震波的传播特性被用于地下构造的勘测;在医学领域,超声波的传播特性被用于医学成像和治疗。
大学物理振动和波动
知识点总结
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
大学物理振动和波动 知识点总结
1.简谐振动的基本特征
(1)简谐振动的运动学方程: cos()x A t ϖϕ=+
(2)简谐振动的动力学特征: F kx =- 或 2220d x x d t
ϖ+= (3)能量特征: 222111222
k p E E E mv kx KA =+=+=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A 在x 轴上的投影点的运动可用来表示简谐振动。
旋转矢量的长度A 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。
2.描述简谐振动的三个基本量
(1)简谐振动的相位:t ωϕ+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ϕω=-
(2)简谐振动的振幅:A ,它取决于振动的能量。
其中:A =(3)简谐振动的角频率:ω,它取决于振动系统本身的性质。
3.简谐振动的合成
(1)两个同方向同频率简谐振动的合成:
合振动的振幅:A =合振幅最大: 212,0,1,2....k k ϕϕπ-==;合振幅最小:
21(21),0,1,2....k k ϕϕπ-=+=
(2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν∆=-;合振动不再是谐振动,其振动方程为
21
21
0(2cos 2)cos 222x A t t ννννππ-+=
(3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。
(4)与振动的合成相对应,有振动的分解。
4.阻尼振动与受迫振动、共振:
阻尼振动: 220220d x dx x dt dt
βϖ++=;受迫振动 220022cos d x dx x f t dt dt
βϖϖ++= 共振: 当驱动力的频率为某一特定值时,受迫振动的振幅将达到极大值.
5.波的描述
(1)机械波产生条件:波源和弹性介质
(2)描述机械波的物理量:波长λ、周期T (或频率ν)和波速u ,三者之间关系为:
uT λ= u λν=
(3)平面简谐波的数学描述:(,)cos[()]x y x t A t u
ωϕ=±+; 2(,)cos()x y x t A t πωϕλ=±+;(,)cos 2()t x y x t A T πϕλ
=±+ 其中,x 前面的±号由波的传播方向决定,波沿x 轴的正(负)向传播,取负(正)号。
6.惠更斯原理:波面上的任意一点都可看作是新的次波源,它们发出的次波的包络面就是以后某一时刻新的波面.
7.波的能量
波的平均能量密度:2212
w A ρω=;能量密度(波的强度):2212
P I wu A u S ρω=== 8.波的叠加原理
(1) 波的相干条件:频率相同、振动方向相同、相位差恒定
(2)波的叠加:12cos()y y y A t ωϕ=+=+
相干波加强: 21212()()2,r r k π
ϕϕϕπλ
∆=---=± 0,1,2...k = 相干波减弱: 2121
2()()(21),r r k πϕϕϕπλ∆=---=±+0,1,2...k = (3)驻波方程:(2cos 2)cos 2x y A t π
πνλ= 波腹位置:,0,1,2,...2x k k λ==±±;波节位置: (21),0,1,2,...4x k k λ
=+=±± 9.半波损失:当波从波疏介质传入波密介质时,反射波在反射点的发生了π的相位突变.
10.多普勒效应 '0s
u v u v νν±=,其中,为波速,分别为观察者、波源相对于介质的运动速度,均为代数量,相向运动取正,远离运动取负。