分式方程应用题(5篇)
- 格式:docx
- 大小:18.10 KB
- 文档页数:14
分式方程应用题总汇及答案1、A、B 两地的距离是 80 公里.一辆公共汽车从 A 地驶出 3 小时后.一辆小汽车也从A 地出发.它的速度是公共汽车的3 倍.已知小汽车比公共汽车迟20 分钟到达B 地.求两车的速度。
【提示】设共交车速度为 x.小汽车速度为 3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路.甲、乙两工程队承包此项工程。
如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成.现在甲、乙两队先共同施工 4 个月.剩下的由乙队单独施工.则刚好如期完成。
问原来规定修好这条公路需多长时间?【提示】设时间为 x 个月.列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原计划在规定时间内恰好加工 1500 个零件.改进了工具和操作方法后. 工作效率提高为原来的 2 倍.因此加工 1500 个零件时.比原计划提前了五小时.问原计划每小时加工多少个零件?【提示】设原计划每小时加工 x 个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校 4.5 千米的敬老院打扫卫生.甲组学生步行出发半小时后.乙组学生骑自行车开始出发.结果两组学生同时到达敬老院.如果步行的速度是骑自行车的速度的 1/3.求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时 x 千米.则 4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有 48 件合格产品.乙厂有 45 件合格产品.甲厂合格率比乙厂高 5%.求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为 x.则(48/x -45/x)*100%=5%6、某车间加工 1200 个零件后.采用了新工艺.工效提高 50%.这样加工同样多的零件就少用 10 小时.采用新工艺前后每小时分别加工多少个零件?7、A、B 两地相距 48 千米.一艘轮船从 A 地顺流航行至 B 地.又立即从 B 地逆流返回A 地.共用去 9 小时.已知水流速度为 4 千米/时.若设该轮船在静水中的速度为x 千米/时.则可列方程求解。
分式应用题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
分式方程应用题及答案1甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一, 这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天2甲安装队为小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 3有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 4轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是_________5南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 ________ .6某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度. 若设原计划每小时修x m ,则根据题意可得方程 ________7、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
八年级分式方程的应用题精选1、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
2、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。
进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
3、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多五分之三,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
4、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x 元,则xx 9.07002000202000+=+ 解,得x =50 经检验:x =50是原方程的解。
⑵4月份销售件数:2000÷50=40(件)每件进价:(2000-800)÷40=30(元)5月份销售这种纪念品获利:(2000+700)-30×(40+20) =900(元)答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。
一、行程问题:1.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.2.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.3.A、B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,逆流返回所用时间是顺流航行所用时间的2倍,已知水流速度为4千米/时.求:该轮船在静水中的速度多少?4.甲、乙两地相距135千米,大小两辆汽车从甲地开往乙地,大汽车比小汽车早出发4小时,小汽车比大汽车早到30分钟,小汽车和大汽车的速度之比为5∶2,求两车的速度.5.某人骑摩托车从甲地出发,去90km外的乙地执行任务,出发1h后,发现按原来速度前进,就要迟到40min,于是立即将车速增加一倍,因此提前20min到达,求摩托车的原来速度是多少?二、工程问题:6.为进一步加快脱贫攻坚步伐,确保到2021年实现国家标准摘帽目标,旺田村准备用120平方公顷的河滩地发展大棚蔬菜,负责承建大棚的工程队为了不耽误农时,工作效率比原计划提高了1.5倍,结果提前20天完工.求工程队原计划每天建多少公顷大棚?7.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?8.有200个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作2小时后,乙才开始工作,因此比甲迟20分钟完成任务.已知乙每小时加工零件的个数是甲的2倍,问甲、乙两车间每小时各加工多少零件?9.某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.10.目前,我区正在实施的“同城一体化”工程进展顺利区招投标中心在对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,区招投标中心根据甲、乙两队的投标书测算,应有三种施工方案:⑴甲队单独做这项工程刚好如期完成;⑵乙队单独做这项工程,要比规定日期多5天;⑶若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.三、商品买卖问题:11.某服装店销售一种服装,若按原价销售,则每月销售额为10000元,若按八五折销售,则每月多卖出20件,且月销售额增加1900元,每件服装的原价为多少元?12.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A 种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?13.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.14.某文化用品商店在开学初用2000元购进一批学生书包,按每个120元出售,很快销售一空,于是商店又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元,仍按120元出售,最后剩下4个按八折卖出,这笔生意该店共盈利多少元?15.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价与去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?16.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?17.某服装专卖店销售的甲品牌西服去年销售总额为50000元,今年每件西服售价比去年便宜400元,若售出的西服件数相同,则销售总额将比去年降低20%.(1)求今年甲品牌西服的每件售价.(2)若该服装店计划需要增进一批乙品牌西服,且甲、乙两种品牌西服共60件,而且乙品牌西服的进货件数不超过甲品牌件数的2倍,请设计出获利最多的进货方案.附:今年乙品牌和甲品牌西服的进货和售价如表:四、其它:18.某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的19.某校九年级两个班各为武汉灾区捐款1 800元,已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%,求两个班人均捐款各多少元?20.为厉行节能减排,倡导绿色出行,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B 两种不同款型,甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8a+240a辆“小黄车”,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.21.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表去年销售总额为80000元,今年A型智能手表的售价每只比去年降低了600元,若售出的数量与去年相同,销售总额将比去年减少了25%. (1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价格与销售价格如表.若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?答案解析部分一、行程问题1. 解:设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得:解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m。
分式方程应用题一、工程问题(1)某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?(2)现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.(3)某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?(4)打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?二、路程问题(1)某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?(2)某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.(3)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.三、水流问题轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.分式方程应用题(拓展题)(1)一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.(2)大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的211倍,求单独浇这块地各需多少时间?(3)一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.(4)假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度.(6)有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?(7)甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?(8)总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1元,比乙种糖果贵5.0元,求甲、乙两种糖果每千克各多少元?综合应用1、玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.2、某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.3、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:4、某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.通过这段对话,请你求出该地驻军原来每天加固的米数.。
分式方程的典型应用题用于过关检测一工程问题1.甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?2.某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?3.某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:(1)甲队单独完成这项工程刚好如期成完成;(2)乙队单独完成这项工程要比规定的日期多用6天;(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.4.丽园开发工司的960件新产品需要精加工才能投放市场,现有甲乙两个工厂都想加工这批产品,已知甲工厂单独加工这批产品比乙工厂单独加工这批产品多用20天,且甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
(1)甲、乙两工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由两个工厂单独完成,也可以由两个工厂合作完成,在加工的过程中,公司派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助,请帮公司选择一种即省时又省钱的加工方案。
二行程问题5.八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.6.小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25 米,求小明从商店到学校的速度。
分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,通过这段对话,请你求出该地驻军原来每天加固的米数.求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 49.563415.-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =.6分 9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+%13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。
分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).解:设通车后火车从福州直达温州所用的时间为x 小时. 依题意,得29833122x x =⨯+. 解这个方程,得14991x =. 经检验14991x =是原方程的解. 148 1.6491x =≈.2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 解:设每盒粽子的进价为x 元,由题意得20%x ×50-(x2400-50)×5=350 化简得x 2-10x -1200=0解方程得x 1=40,x 2=-30(不合题意舍去)经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.答: 每盒粽子的进价为40元.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D )A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( D )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( C )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完解:设原来每天加固x 米,根据题意,得 926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400)解得 300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x=1解这个方程,得x =25经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了通过这段对话,请你求出该地驻军原来每天加固的米数.20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为22402240220x x-=-.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程240024008(120)x x-=+% .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x += 解得:5x =经检验5x =是原方程的解所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分解这个方程,得80x =.5分经检验,80x =是所列方程的根.6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得111220x x +=,解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意.∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是20千米/时.。
分式方程应用题(5篇)分式方程应用题(5篇)分式方程应用题范文第1篇一、营销类应用性问题例1 某校办工厂将总价值为2 000元的甲种原料与总价值为4 800元的乙种原料混合后,其单价比原甲种原料每斤少3元,比原乙种原料每斤多1元,问:混合后的原料每斤是多少元?分析:市场经济中,常遇到营销类应用性问题,这类问题中与价格有关的量是单价、总价、平均价等,要了解它们各自的意义,从而建立它们之间的关系式.解:设混合后的原料单价为每斤 [x]元,则原甲种原料的单价为每斤([x]+3)元,原乙种原料的单价为每斤([x]-1)元,混合后的总价值为(2 000+4 800)元,混合后的重量为[2 000+4 800x]斤,甲种原料的重量为[2 000x+3]斤,乙种原料的重量为[4 800x-1]斤,依题意,得[2 000x+3]+[4 800x-1]=[4 800+2 000x]解得[x]=17经检验,[x]=17是原方程的根.所以[x]=17. 即混合后的原料每斤 17元.总结:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们各自表述的意义有所了解.同时,要把握好基本公式,奇妙建立关系式.这类问题与现实生活息息相关,因而成为中考常考的热点问题.【练习1】A、B两名选购员去同一家饲料公司购买同一种饲料两次,两次饲料的价格有变化.两名选购员的购货方式不同,其中选购员A每次购买1 000千克,选购员B每次用去800元而不管购买饲料多少,问:谁的购货方式合算?为什么?二、工程类应用性问题例2 某工程由甲,乙两队合做6天完成,厂家需付甲,乙两队共8 700元;乙,丙两队合做10天完成,厂家需付乙,丙两队共9 500元;甲,丙两队合做5天完成全部工程的[23],厂家需付甲,丙两队共5 500元. (1)求:甲,乙,丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问:由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般状况下把整个工作量看成1,设甲,乙,丙各队完成这项工程所需时间分别为x天,y天,z天,可列出分式方程组.解:(1)设甲队单独做需x天,乙队单独做需y天,丙队单独做需z 天,依题意,得[ 6([1x+1y])=110([1y]+[1z])=15([1x]+[1z])=[23] ][解得x=10y=15z=30]经检验,[x]=10,[y]=15,[z]=30是原方程组的解.(2)设甲队做一天厂家需付a元,乙队做一天厂家需付b元,丙队做一天厂家需付c元,依据题意,得[6(a+b)=8 70010(b+c)=9 5005(c+a)=5 500 ][解得a=800b=650c=300]由(1)可知完成此工程不超过既定工期只有两个队:甲队和乙队. 此工程由甲队单独完成需花费10a=8 000元;此工程由乙队单独完成需花费15b=9 750元.所以,由甲队单独完成此工程花钱最少.技巧点拨:在(1)的求解时,把[1x],[1y],[1z]分别看成一个整体,可把分式方程组转化为整式方程组来解.【练习2】某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期3天才能完成.现由甲、乙两队合做2天,剩下的工程由乙队独做,恰好在规定日期内完成,问:规定的日期是多少天?【练习3】今年某高校在招生录用时,为了防止数据输入出错,2 640名同学的成果数据由两位老师分别向计算机输入一遍,然后让计算机比较两人的输入是否全都.已知老师甲的输入速度是老师乙的2倍,结果甲比乙少用2小时输完.问:这两位老师每分钟各能输入多少名同学的成果?三、浓度应用性问题例3 有含盐15%的盐水40千克,要使盐水含盐20%,还需要加入多少千克盐?分析:浓度问题的基本关系是[溶质溶液=浓度].此问题中变化前后三个基本量的关系如下表:[\&溶液\&溶质\&浓度\&加盐前\&40\&40×15%\&15%\&加盐后\&40+[x]\&40×15%+[x]\&20%\&]解:设还需要加入[x]千克盐.依据浓度问题的基本关系可列方程[40×15%+x40+x=20%]解得[x]=2.5经检验,[x]=2.5是方程的解,即再加入2.5千克盐,盐水的含盐量就能达到20%.【练习4】甲容器有浓度为20%的盐水40L,乙容器有浓度为25%的盐水30L,假如往两个容器中加入了等量的水后,它们的浓度相等,那么应加入多少升水?四、货物运输应用性问题例4 一批货物预备运往某地,有甲,乙,丙三辆卡车可雇用.已知甲,乙,丙三辆车每次运货量不变,且甲,乙两车每次运货物的吨数为1∶3,若甲,丙两车合运相同次数运完这批货物时,甲车共运了120吨;若乙,丙两车合运相同次数运完这批货物时,乙车共运了180吨.这批货物共有多少吨?分析:货物总吨数和三种车每种车可运吨数均为未知数,但可依据所用次数得到等量关系[120甲车每次运货吨数=剩余货物吨数丙车每次运货吨数;][180乙车每次运货吨数=剩余货物吨数丙车每次运货吨数.]这两个式子可整理成仅含货物总吨数这一未知数的方程,求解即可. 解:设货物的总吨数为[x]吨,甲车每次运a吨,乙车每次运3a吨,丙车每次运b吨.依据题意可得[120a=x-120b ①1803a=x-180b ②]解得[x]=240经检验,[x]=240是方程的解,即这批货物共有240吨.分式方程应用题范文第2篇新课标高考理科综合化学试题总分100分,其中选择题42分,主观题58分。
主观题26、27、28三题为必考题,涉及试验、元素化合物、化学反应原理模块学问。
主观题36、37、38三题是选考题,三题选一作答,分别是选修2《化学与技术》、选修3《物质结构与性质》、选修5《有机化学基础》。
本文对2021年至2021年高考新课标理科综合化学必考试题及选考有机化学试题做粗略分析,探究命题规律,提高复习效率。
1必考题1.1化学试验2021~2021年高考化学试验考核详细内容,见表1。
2021年用SO2学问为载体,要求写出蒸馏烧瓶名称,解释SO2通入酸性高锰酸钾溶液褪色缘由并写出离子反应式,解释SO2通入H2S溶液产生沉淀的缘由,推断SO2具有氧化性和还原性,探究SO2 与品红反应的可逆性,环境爱护,尾气处理。
2021年以登山运动中的供氢剂CaH2为载体,要求连接试验仪器组装试验装置,写出试验详细操作过程,写CaH2与水反应方程式,试验设计区分钙与氢化钙,评价用氢化钙作为登山能源的优点。
2021年试验室合成溴苯,考查仪器装置用途,溴苯的分别提纯方式,写出反应原理。
2021年Ⅰ卷环己醇制备环己烯,要求写出冷凝管名称,说明碎瓷片作用,写出试验副产物结构简式,考查分液漏斗的使用方法,分别提纯方法,计算环己烯产率。
2021年Ⅱ卷用正丁醇制取正丁醛,考查浓硫酸稀释问题,沸石作用,未加沸石补救措施,写出冷凝管和分液漏斗名称,分液漏斗使用,分液操作,液体分层分析,计算正丁醛产率。
2021年Ⅰ卷环己醇制备乙酸异戊酯,要求写出冷凝管名称,洗涤作用,萃取分别物质方法,化学平衡,仪器连接(识图)正误推断,计算产率,误差分析。
2021年Ⅱ卷以CoCl2·6H2O、NH4Cl、H2O2、浓氨水,合成晶体X,主要考查平安瓶作用,中和滴定原理,指示剂选择,选取滴定管,装置气密性差对测定的影响,多步反应的化学计算,化合价,化学方程式书写,试验评价。
新课标高考化学试验试题,总体上注意对试验基本操作、试验基本技能、试验设计力量的考查,达到了《考试大纲》的相关要求。
考查了常见仪器的结构、性能、用途,试验仪器名称,如2021年两套课标卷试题都要求考生写出试验仪器名称;考查了化学试验基本操作,如2021年Ⅱ卷浓硫酸的稀释问题、分液操作;考查试验设计力量,如2021年设计一个试验,区分钙和氢化钙;试验中考查化学计算,如2021年两套课标卷试题都要计算产物的产率;考查对试验的评价力量,如2021年评价登山中用氢化钙比用氢气做能源的优点;考查试验中的情感、态度、价值观,如2021年的尾气处理问题。
在高考试验备考中,要留意试验基础的复习,留意化学试验常见仪器结构用途,记住常见仪器的名称,规范常见试验操作,考前重温教材试验操作过程,加强试验设计力量培育,加强试验方案进行评价训练,加强运用数学学问处理试验数据训练,多关注分别提纯物质各种方式,关注老教材试验。
1.2元素及化合物2021~2021年高考化学对元素及化合物的考核内容,见表2。
2021年第26题,以硫及其化合物、铜及其化合物学问为背景,以元素框图题形式消失,推断物质化学式;利用铜的电解精炼原理推断电极材料,计算平衡常数,书写浓硫酸与铜的化学反应方程式,计算平衡浓度,计算转化率。
2021年第26题,以硫及其化合物学问为载体,题目给出硫酸铜晶体受热分解曲线,推断不同温度下固体产物分别是什么,书写浓硫酸与铜的化学反应方程式,利用溶度积常数计算c(Cu2+) 、c(H+)。
2021年第26题,以金属铁及其化合物学问为载体,利用酸碱中和滴定原理计算FeClx中的X值,计算FeCl2和FeCl3混合物中FeCl3的质量分数,FeCl3与氢碘酸反应的离子方程式, FeCl3与KClO在强碱性条件下反应制取K2FeO4的离子方程式,K2FeO4-Zn电池正极反应式和电池总反应的离子方程式。
2021年Ⅰ卷第27题,废旧电池回收,铝及其化合物学问。
题目设计好回收提纯反应流程,要求标出LiCoO2中Co元素的化合价;写出“正极碱浸”中发生反应的离子方程式;写出“酸浸”中发生的全部氧化还原反应的化学方程式;评价盐酸代替H2SO4和H2O2混合液的缺点;写出“沉钴”过程中发生反应的化学方程式;写出放电时电池反应方程式;“放电处理”有利于锂在正极回收的缘由;写出整个回收工艺中回收到的金属化合物。
2021年Ⅱ卷第27题,题目设计好回收提纯反应流程,要求推断出流程②中除掉的杂质离子并写出反应的离子方程式;酸碱性对除杂的影响;推断流程③的反应类型;设计试验“检验沉淀是否洗涤洁净”;计算产物ZnCO3·xZn(OH)2的x值。
2021年Ⅰ卷第27题,以次磷酸及其化合物为载体,要求写次磷酸电离方程式,推断次磷酸中磷元素化合价,写利用次磷酸化学镀银的氧化还原反应推断氧化产物,推断盐次磷酸二氢钠的类别,推断次磷酸二氢钠溶液的酸碱性,写次磷酸二氢钡与硫酸的化学反应式。