10.9概率论与数理统计第2章
- 格式:ppt
- 大小:773.50 KB
- 文档页数:18
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
第2章 随机变量及其分布为了更深刻地揭示随机现象的统计规律性,有必要将随机试验的结果数量化,即把随机试验的结果及实数对应起来,可以凭借更多的数学工具研究随机试验的结果,因此需要引入随机变量的概念.2.1 随机变量及其分布函数随机变量的概念定义 2.1 设E 是随机试验,Ω是其样本空间. 如果对每个Ω∈e ,总有一个实值函数)(e X X =及之对应,则称Ω上的实值函数)(e X 为E 的一个随机变量.随机变量常用大写字母Z Y X ,,等表示,其取值用小写字母z y x ,,等表示.若一个随机变量仅取有限个或可列个值,则称其为离散随机变量.若一个随机变量取值充满数轴上的一个区间),(b a ,则称其为连续随机变量,其中a 可以是∞-,b 可以是∞+.通过以下几个例子,可以很好地理解上述随机变量抽象的定义.(1) 掷一颗骰子,出现的点数X . (2) 单位时间内某手机被呼叫的次数Y .(3)某品种杨树的寿命T . (4)测量某物理量的误差ε.(5)若某个试验只有两个结果,例如,播种一颗银杏种子,可以定义随机变量.值得注意的是:(1)对任意实数x ,}{x X ≤表示随机事件;(2)可以求出概率)(x XP ≤.在上面的例子中,,316161)6()5()4(=+==+==>X P X P X P 等;但是不能求得以下概率,如)100(=Y P ,)1500(>T P ,5.1|(|≤εP 等,因此还需要引入随机变量分布函数的概念.随机变量的分布函数定义2.2 设X 是一个随机变量,对任意实数x ,称)()(x X P x F ≤= ()为随机变量X 的分布函数.且称X 服从)(x F ,记为)(~x F X .有时也可用)(x F X (把X 作为F 的下标)以表明是X 的分布函数. 例2.1 向半径为r 的圆内随机抛一点,求此点到圆心之距离X 的分布函数)(x F ,并求.解 事件“x X ≤”表示所抛之点落在半径为)0(r x x ≤≤的圆内,故由几何概率知222)()()(r x rx x X P x F ==≤=ππ,从而43)21(1)2(1)2(1)2(2=-=-=≤-=>r F r X p r Xp . 从分布函数的定义可以看出,任一随机变量X (离散的或连续的)都有一个分布函数.有了分布函数,就可据此计算得及随机变量X 有关事件的概率.下面先给出分布函数的3个基本性质.定理 2.1 任一随机变量的分布函数)(x F 都具有如下三条基本性质:(1)单调性 )(x F 是定义在整个实数轴),(∞+-∞上的单调非减函数,即对任意的21x x <,有)()(21x F x F ≤.(2)有界性 对任意的x ,有1)(0≤≤x F ,且 0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x . (3)右连续性 )(x F 是x 的右连续函数,即对任意的0x ,有 )()0(00x F x F =+.值得注意,满足这3个性质的函数一定是某个随机变量的分布函数.例2.2 设随机变量X 的分布函数为 +∞<<-∞+=x x B A x F ,arctan )(,试求:⑴待定系数B A ,;⑵随机变量X 落在(-1,1)内的概率.解 ⑴ 由0)(=-∞F ,1)(=+∞F , 可得 , 解得 ,于是+∞<<-∞+=x x x F ,arctan 121)(π.⑵ )1()1()11()11(--=≤<-=<<-F F X P X P .利用随机变量X 的分布函数,可以计算有关X 的各种事件的概率.例如,对任意的实数b a ,,有 )()()(a F b F b X a P -=≤<,)0()()(--==a F a F a XP ,)0(1)(--=≥b F b X P , )(1)(b F b XP -=>, )()0()(a F b F b X a P --=<<, )0()()(--=≤≤a F b F b Xa P ,)0()0()(---=<≤a F b F b X a P . 特别当)(x F 在a 及b 连续时,有 )()0(a F a F =-,)()0(b F b F --. 例2.3 设随机变量X 的分布函数为 ,试求:(1))31(≤<X P ;(2))2(>XP ;(3))5.1(=X P . 解 (1)6.04.01)1()3()31(=-=-=≤<F F X p ; (2)4.06.01)2(1)2(=-=-=>F X p ; (3)04.04.0)05.1()5.1()5.1(=-=--==F F X p .§2.2 离散型随机变量的分布律定义2.3 设X 是一个离散型随机变量,其所有可能的取值是 ,,,,21i x x x ,则称X 取i x 的概率 ,2,1,)(===i x X P p i i()为X 的概率分布律或简称为分布律,记为}{~i p X ,分布律也可用列表的方法来表示:或记成⎪⎪⎭⎫ ⎝⎛ii p p px x x X 2121~ 分布律的基本性质: (1) ,2,1,0=≥i p i ;(2).由离散型随机变量X 的分布律很容易写出X 的分布函数:∑≤=≤=xx i i p x X P x F )()(.它的图形是有限级(或无穷级)的阶梯函数.在离散场合,常用分布律来描述分布,很少用到分布函数.因为求离散随机变量X 的有关事件的概率时,用分布律比用分布函数来得更方便.例 设离散型随机变量X 的分布律为试求)5.0(≤X P ,)5.25.1(≤<XP 并写出X的分布函数.解 25.0)1()5.0(=-==≤X P XP ,5.0)2()5.25.1(===≤<X P XP ,⎪⎪⎩⎪⎪⎨⎧≥=++<≤=+<≤-<=3,125.05.025.021,75.05.025.010,25.01,0)(x x x x x F .)(x F 的图形如图2—1所示._x特别地,常量c 可看作仅取一个值的随机变量X ,即 1)(==c XP .这个分布常称为单点分布或退化分布,它的分布函数是 . () 其图形如图2—2.以下例子说明,已知离散型随机变量的分布函数,可以求出它的分布律.例2.5 设随机变量X 的分布函数为 , 则X 的分布律为2.3 常见离散型随机变量分布1.两点分布_ 图 2 — 2_x若离散型随机变量X 的分布律为则称随机变量X 服从参数为p 的两点分布(或10-分布),记为),1(~p B X .例 播种一颗银杏种子,银杏的发芽率为0.9,定义随机变量,则)9.0,1(~B X . 2.二项分布若离散型随机变量X 的分布律为kn k p p k n k X P --⎪⎪⎭⎫ ⎝⎛==)1()(,n k ,,2,1,0 =. (2.4)则称随机变量X 服从参数为p 的二项分布,记为),(~p n B X .两点分布是二项分布中当1=n 时的特例.例2.7 假设银杏移栽的成活率为,现移栽10颗,问至少有8颗成活的概率是多少?解 设移栽银杏的颗数为X ,则)95.0,10(~B X ,而所求概率为)10()9()8()8(=+=+==≥X P X P X P XP9885.005.095.01010010=⎪⎪⎭⎫ ⎝⎛. 3.泊松分布若离散型随机变量X 的分布律为, ,2,1,0=k , (2.5)其中参数0>λ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λP X.例 已知某种产品表面上的疵点数服从参数5.0=λ的泊松分布,若规定疵点数不超过一个的产品为合格品,疵点数至少为两个的产品为不合格品.试求此产品为不合格品的概率. 解 设X 为此产品表面上的疵点数,则)5.0(~P X,即, ,2,1,0=k .于是有)1()0(1)2(1)2(=-=-=<-=≥X P X P X P X P. 4.几何分布若离散型随机变量X 的分布律为 1)(-==k pq k XP , ,2,1=k , (2.6)其中p q p -=<<1,10,则称随机变量X 服从参数为p 的几何分布,记为)(~p G X.设E 为一随机试验,A 为其事件,p A P =)(,q p A P =-=1)(,现作独立重复试验直到A 出现为止. 以X 表示事件A 出现的总次数,则随机变量X 可取值 ,,,2,1k .以k A 表示在第k 重试验中事件A 出现的事件,则 )()(121k k A A A A P k XP -===)()()()()(A P A P A P A P A A A A P = =1-k pq , ,2,1=k . 5. 超几何分布若离散型随机变量X 的分布律为, (2.7) 其中N n N M ≤≤≤≤0,0,k 是满足不等式 ),min(),0max(M n k m N n ≤≤+-的所有整数,则称随机变量X 服从参数为N M n ,,的超几何分布,记为),,(~N M n H X.例 设一批木工板共N 张,其中有M 张次品(N M ≤≤0),M N -n (N n ≤≤0)张,以X表示所取得的次品数,试求随机变量X 的分布律.解 若M N n -=,则X 可取的最小数显然为0;若M N n ->,则X 可取的最小数为)(M N n --. 这样,X 可取的最小数是 ),0max(m N n +-.若M n ≤,则X 可取的最大数为n ;若M n >,则X 可取的最大数为)(M N n --. 这样,X 可取的最大数是 ),min(M n . 按古典概型计算得 ,其中,N n N M ≤≤≤≤0,0,k 是满足不等式),min(),0max(M n k m N n ≤≤+-的所有整数.2.4 连续型随机变量的概率密度函数定义 2.4 设随机变量X 的分布函数为)(x F ,如果存在实数轴上的一个非负可积函数)(x f ,使得对任意实数x ,有⎰∞-=xdt t f x F )()(,(2.8)则称X 为连续型随机变量,称)(x f 为X的概率密度函数,简称为密度函数.在)(x F 的可导点处有 ()()F x f x '=.(2.9)密度函数的基本性质: (1)0)(≥x f ; (2)⎰∞+∞-=1)(dx x f .(3)若X 的密度函数为)(x f ,则 ,其中I 为某一区间.(4)若X 为连续型随机变量,则=<<)(b X a P =<≤)(b X a P =≤<)(b X a P )(b X a P ≤≤.注意及离散情形的区别.例 已知随机变量X 的密度函数为,求(1)常数c ;(2))3/10(<<X p ;(3)分布函数)(x F . 解 (1)由⎰∞+∞-=dx x f )(1,得2=c ; (2)912)3/10(3/1023/10===<<⎰x xdx X p ; (3)根据x 的取值情况来确定积分⎰∞-=x dt t f x F )()(.当0<x 时,00)(==⎰∞-xdt x F ;当10<≤x 时,⎰∞-=00)(dt x F 202x dt t x=+⎰; 当1≥x 时,⎰∞-=00)(dt x F ⎰+102dt t 101=+⎰xdt . 从而得随机变量X 的密度函数为 ,_x)(x F 的图形如图2—3.例2.11 设随机变量X 的密度函数为⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,)(x x x x x f ,试求随机变量X 的分布函数)(x F .解 当0<x 时,0)()(==⎰∞-xdt t f x F ; 当10<≤x 时,;当21<≤x 时,122)2()(2110-+-=-+=⎰⎰x x dt t dt t x F x;当2≥x 时,1)2()(2110=-+=⎰⎰dt t dt t x F . 综上所述,得X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=2,121,12210,20,0)(22x x x x x x x x F)(x F 的图形如图2—4.2.5 常见连续型随机变量分布1.均匀分布若连续型随机变量X 的密度函数(见图2—5(1))为⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a ab x f , (0) 则称X 服从区间],[b a 上的均匀分布,记为),(~b a U X ,其分布函数为(见图2—5(2))._ 图 2 — 4_x0,(),1,x a x aF x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.(2.11)例1 设随机变量X 服从区间]1,0[上的均匀分布,现对X 进行4次独立观测,试求至少有3次观测值大于1/2的概率. 解 设Y 是3次独立观测中观测值大于1/2的次数,则),4(~p B Y ,其中.由)1,0(~U X ,知X的密度函数为.所以211)21(121==>=⎰dx X p p ,于是0413)1(44)1(34)4()3()3(p p p p Y P Y P Y P -⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛==+==≥ 165)21()21()21(443=+⨯=.2.指数分布若连续型随机变量X 的密度函数为(0>θ), (2.12)1/(b-a)a图2—7(1)p(x)x图2—7(2)F(x)x则称X 服从参数为θ的指数分布,记为.例2 设某电子产品的使用寿命X (h )服从参数为500=θ的指数分布,试求该电子产品的使用寿命超过1000h 的概率. 解 由,知 ⎪⎩⎪⎨⎧≤>=-0,00,5001)(500x x e x f x. 于是1353.05001)1000(210005005001000≈===>-∞+--∞+⎰e e dx e X p xx.3.正态分布正态分布是概率论及数理统计中最重要的一个分布,后面还要指出正态分布是一切分布的中心.1)正态分布的密度函数和分布函数 若连续型随机变量X 的密度函数为, +∞<<∞-x , (2.13)则称X 服从参数为2,σμ的正态分布,记为),(~2σμN X.其中参数+∞<<∞-μ,0>σ.其密度函数)(x f 图形如图2—6(1)所示.)(x f 的图形是一条钟形线,其对称轴为μ=x .)(x f 在μ=x 处取最大值,曲线上对应于图2—8(1)x图2—8(2)σμ±=x 的点为拐点.正态分布),(2σμN 的分布函数为⎰∞---=xt dtex F 222)(21)(σμσπ.(2.14)它是一条光滑上升的S 形曲线,见图2—6(2).图2—7给出了在μ和σ变化时,相应正态密度曲线的变化情况.(1)从图2—7(1)中可以看出:如果固定σ,改变μ的值,则图形沿x 轴平移,而不改变其形状.也就是说正态密度函数的位置由参数μ所确定,因此也称μ为位置参数.(2)从图2—7(2)中可以看出:如果固定μ,改变σ的值,则σ越小,曲线越陡峭;σ越大,曲线越扁平.也就是说正态函数的尺度由参数σ所确定,因此也称σ为尺度参数.2)标准正态分布称0=μ,1=σ的正态分布)1,0(N 为标准正态分布. 记标准正态分布的密度函数为)(x ϕ,分布函数为)(x Φ,即,+∞<<∞-x ,图2—9(1)图2—9(2))(x Φ,+∞<<∞-x .由于标准正态分布的分布函数不含任何未知参数,故其值)()(x X P x ≤=Φ完全可以算出,附表2对0≥x 给出了)(x Φ的值,利用这张表可以算得(1)-=-Φ1)(x )(x Φ. (2))(1)(x x XP Φ-=>. (3))()()(a b x Xa P Φ-Φ=<<.(4)1)(2)|(|-Φ=<c c X P . 例3 设)1,0(~N X,利用附表1,求下列事件的概率:(1)8944.0)25.1()25.1(=Φ=≤X p .(2)1056.08944.01)25.1(1)25.1(=-=Φ-=>X p .(3)1056.08944.01)25.1(1)25.1()25.1(=-=Φ-=-Φ=-<X p . (4)7888.018944.021)25.1(2)25.1(=-⨯=-Φ=≤X p . 3)一般正态分布的标准化为了计算及一般正态变量有关的事件的概率,需要将一般正态分布进行标准化,然后再查标准正态分布函数表. 若),(~2σμN X,则(1). (2.15) (2))()()(σμσμ-Φ--Φ=≤<a b b X a P .(2.16)例4 设)4,86(~N X ,试求 (1))9282(<<X p ; (2)常数a ,使得95.0)(=<a XP .解 (1))28682()28692()9282(-Φ--Φ=<<X p1)2()3()2()3(-Φ+Φ=-Φ-Φ= 9759.019772.09987.0=-+=. (2)由95.0)286()(=-Φ=<a a X p ,或,其中1-Φ为Φ的反函数.从附表1由里向外反查得 9495.0)64.1(=Φ,9505.0)65.1(=Φ,再利用线性内插法可得95.0)645.1(=Φ,即645.1)95.0(1=Φ-,故 , 从中解得29.89=a .2.6 随机变量函数的分布设)(x g y =是定义在直线上的一个函数,X 是一个随机变量,那么)(X g Y=作为X 的一个函数,同样也是一个随机变量. 我们所要研究的问题是:已知X 的分布,如何求)(X g Y=的分布.2.6.1 离散型随机变量函数的分布设X 是一个离散型随机变量,X 的分布律为则)(X g Y =也是一个离散型随机变量,此时Y 的分布律可表示为Y)()()(21i x g x g x gPip p p 21当 ),(,),(),(21i x g x g x g 中有某些值相等时,则把那些相等的值分别合并,并将对应的概率相加即可.例2.15 已知X 的分布律为(1)求121+=X Y 的分布律;(2)求X X Y -=32的分布律. 解 (1)121+=X Y 的分布律为(2) X X Y -=32的分布律为再将相等的值合并得2.6.2 连续型随机变量函数的分布通过以下几则例子,介绍求连续型随机变量函数的分布的一种方法,称之为分布函数法.例2.16 设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f X , 试求随机变量12+=X Y 的密度函数)(y f Y .解 )12()()(y X P y Y P y F Y ≤+=≤=))1(21(21)()(-='=y p y F y f X Y Y.一般地,还可以利用分布函数法证明以下定理. 定理 设X 是连续型随机变量,其密度函数为)(x f X .)(X g Y=是另一个随机变量.若)(x g y =严格单调,其反函数)(y h 有连续导函数,则)(X g Y=的密度函数为⎩⎨⎧<<'=其他,0,|)(|)]([)(b y a y h y h f y f X Y .(2.17)其中)}(),(min{+∞-∞=g g a ,)}(),(max{+∞-∞=g g b .证明 不妨设)(x g y =是严格单调递增函数,这时它的反函数)(y h 也是严格单调递增函数,且)(>'y h .记)(-∞=g a ,)(+∞=g b ,这就意味着)(x g y =仅在区间),(b a 取值,于是当a y <时,0)()(=≤=y Y P y F Y ; 当b y >时,1)()(=≤=y Y P y F Y ; 当b y a ≤≤时,))(()()(y X g P y Y P y F Y ≤=≤= =dt t f y h X P y h X ⎰∞-=≤)()())((. 由此得Y 的密度函数为⎩⎨⎧<<'=其他,0,)()]([)(by a y h y h f y f X Y .同理可证当)(x g y =是严格单调递减函数时,结论也成立.但此时应注意0)(<'y h ,所以要加绝对值符号,这时,)(+∞=g a ,)(-∞=g b .利用上述定理,可以证明以下一个很有用的结论. 定理2.3 若),(~2σμN X,则.证明 是严格递增函数,仍在),(∞+-∞上取值,其反函数为μσ+==y y h x )(,σ=')(y h ,由定理可得2221)()()]([)(y X X Y e y f y h y h f y f -=+='=πσμσ,所以.定理 设随机变量X 服从正态分布),(~2σμN X ,则当0≠a 时,有~b aX Y +=),(~22σμa b a N X +.证明 当)0(0<>a 时,b ax y +=是严格递增(减)函数,仍在),(∞+-∞上取值,其反函数为a b y y h x /)()(-==,a y h /1)(=',由定理可得|1|)(|)(|)]([)(aa b y f y h y h f y f X X Y -='= }2)]([exp{)|(|21222σμσπa b a y a +--=. 这是正态分布),(22σμa b a N +的密度函数,结论得证.这个定理表明:正态变量的线性函数仍为正态变量.特别地,取σ/1=a ,σμ/-=b ,则~b aX Y +=)1,0(N ,此即定理2.3.定理 若X 的分布函数)(x F X 为连续严格递增的连续函数,则)(X F YX =服从区间)1,0(上均匀分布)1,0(U .证明 由于分布函数)(x F X 仅在区间]1,0[上取值,所以 当0<y 时,0))(()()(=≤=≤=y X F P y Y P y F X Y . 当1≥y 时,1))(()()(=≤=≤=y X F P y Y P y F X Y . 当10<≤y 时,))(()()(y X F P y Y P y F X Y ≤=≤= y y F F y F X P X X X ==≤=--)(()((11.从而⎩⎨⎧<<='=其他,010,1)()(x y F y f Y Y ,所以~Y )1,0(U .前面的例子及定理,都要求)(x g 严格单调,这在有些场合不能满足.以下的两个例子是更一般的情形.例 设随机变量X 服从标准正态分布)1,0(N ,试求2X Y =的分布.解 由于02≥=X Y ,所以当0≤y 时,0)()(=≤=y Y P y F Y . 当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤= , 从而21)()21)((21)()()(-=---='=yy yy yy y F y f Y Y ϕϕϕ,于是 ⎪⎩⎪⎨⎧≤>=--0,00,21)(221y y e y y f y Y π.(2.6.2)具有上述密度函数的分布称为自由度为1的卡方分布,记为)1(~2χY .例 设随机变量X 的密度函数为 ⎪⎩⎪⎨⎧<<=其他,00,2)(2ππx x x f X ,求X Y sin =的密度函数)(y f Y .解 由于X 在区间),0(π内取值,所以X Y sin =的可能取值为区间)1,0(.在Y 的可能取值区间外,0)(=y F Y .当10<<y 时,)(sin )()(y X P y Y P y F Y ≤=≤=)arcsin ()arcsin 0(ππ≤≤-+≤≤=X y P y X Pdt t f y X )(arcsin 0⎰=dt t f y X )(arcsin ⎰-+ππ 从而 22222121)arcsin (21arcsin 2)()(y y y y y y F y f Y Y -=--+-='=ππππ.综合得 ⎪⎩⎪⎨⎧<<-=其他,010,12)(2y yy f Y π.。
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。
第二章 随机变量及其分布第一节 离散型随机变量离散型随机变量:若随机变量的取的值是有限个或可列无限多个,就叫做离散型随机变量 离散型随机变量的分布律:1)等式形式{},1,2,===k k P X x p k 且11∞==∑kk p2)表格形式:分布律性质:1. 0,1,2.....≥=k p k 2. 11∞==∑kk p步骤:1.找到所有可能取值2.算出每种取值的概率3.概率相加为1 方法:1.定取值:取值点就是分断点.2.概率:挨着减.3.三种重要的离散型随机变量: 1.(0-1)分布{}1(1),0,1(01)-==-=<<k k P X k p p k p2.二项分布(,)XB n p1)背景:独立地重复进行n 次实验,成功的次数服从二项分布. 2)若(,)XB n p ,则1(,1)--XB n p定义:若随机变量X 的可能有取值为0.1.2…n,而X 的分布律为()(1),0,1,2,...-==-=k kn k n P X k C p p k n其中01,1<<+=P p q 则称X 服从参数为n,p 的二项分布,记为(,)X B n pn 重伯努利试验伯努利试验:设试验E 只有两个可能结果:A 及A ,则称E 为伯努利试验,设P(A)=p(0<p<1),此时P(A )=1-p. 二项分布的应用:产品的合格与不合格,机器故障等 3.泊松定理:当X 服从二项分布,(,)XB n p ,若:lim 0(为常数),λλ→+∞=>n n np 则有:2lim ()(1),0,1,2,...!()λ--→+∞==-==k kk n knn e P X k C p p k n k泊松分布X ~P(λ)设随机变量X 所以可能取的值为0,1,2,…,而取各个值的概率为{}!λλ-===k k e p P X k k ,k=0,1,2,……其中λ>0是常数,则称X 服从参数为λ的泊松分布,记为X ~P(λ) 泊松分布的应用:某一时段时段内某一事件所发生的次数 第二节 非离散型随机变量:非离散型随机变量取任一指定点的实数值的概率都等于01.分布函数:设X 是一个随机变量,x 是任意实数,函数F(x)=P{X ≤x},(,)∈-∞+∞x 称为X 的分布函数 对于任意实数1x ,2x (1x <2x ),有122121{}{}{}()()<≤=≤-<=-P x X x P X x P X x F x F x随机变量的分布函数:定义:设X 是一个随机变量,对于任意实数x,令{}(),=≤-∞<<+∞F x P X x x 称()F x 为随机变量的概率分布函数,简称分布函数.利用分布函数()=X f x 求各种随机事件的概率: 1.{}()≤=P X a F a2.{}{}11()>=-≤=-P X a P X a F a3. {}(0)lim ()-→<=-=x aP X a F a F a 4. {}{}11(0)≥=-<=--P X a P X a F a5. {}{}{}()(0)==≤-<=--P X a P X a P X a F a F a6. {}{}{}()()<≤=≤-≤=-P a X b P X b P X a F b F a7. {}{}{}(0)(0)≤<=<-<=---P a X b P X b P X a F b F a8. {}{}{}(0)()<<=<-≤=--P a X b P X b P X a F b F a 9.{}{}{}()(0)≤≤=≤-<=--P a X b P X b P X a F b F a2. 分布函数的基本性质: 1) 非负性:0()1≤≤F x2) 规范性:()lim ()0,()lim ()1→-∞→+∞-∞==+∞==x x F F x F F x3) 单调不减性:对任意1212,()()<≤x x F x F x (函的的单调性判断可通过求导:导数大0,增,小于0,减) 4) 右连续性:()(0)lim ()()+→=+=+=x F x F x F x x F x性质2.4可用来确定分布函数中的未知参数.(只要分布函数含有未知参数,就用这两条来推得) 1.2.3.4是一个函数能够成为某一随机变量分布函数的充要条件.(4条共用以判定是否为分布函数)已知X 的分布函数F(x),可求出:{}{}{}()()()1()≤=<≤=->=-P X b F b P a X b F b F a P X b F b第三节 连续型随机变量1. 连续型随机变量及其概率密度定义:若对于随机变量X 的分布函数F(x),存在非负函数f(x),使对于任意实数x 有()()-∞=⎰xF x f t dt,则称X 为连续型随机变量, 概率密度的性质:1.f(x)≥0,(-∞≤≤+∞x )(非负性)2.()1∞-∞=⎰f x dx (规范性)(作用:可用来定义未知参数)(介于()=y f x 与X 轴之间在面积等G .)(1.2是判断一个函数是否是密度函数的充要条件) 3.{}()()(),<≤=-=≤⎰ba P a Xb F b F a f x dx a b(作用:求概率)(落在区间(a.b ]的概率是曲边梯形的积) (不论区间开闭,都一样,离散型无这性质) 4.分布函数()()-∞=⎰x F x f t dt是连续函数.5.连续型随机变量在任意点0x 取值概率0{}0==P X x6.若f(x)在点x 处连续,则有F ′(x)=f(x)(结合变上限积分的求导法则()*()()()-∞'==⎰xf x f t dtF x )(可用于已知分段函数求概率密度) 注意: 1.()()-∞=⎰x F t f t dt()F t 一定连续,但()f t 不一定连续.2. 0()1≤≤F x ()f x 不是概率,概率密度.()∆f x x 是概率.3. ()f x 大小可以反映概率的大小.当()f x 为分段函数时,F(x)也是分段函数,二者有相同的分段点. 均匀分布~(a,b)X U密度函数 1,,()0,其它⎧≤≤⎪-⎨⎪⎩a xb f x b a~(a,b)X U ,≤<≤a c d b ,则()-<<=-d c P c x d b a分布函数0,F(),,0,其它<⎧⎪-⎪≤≤⎨-⎪⎪⎩x a x a x a x b b a指数分布~()λX E密度函数 ,0(),0,0λλ-⎧>=⎨≤⎩x e x f x x分布函数1,0(),0,0λ-⎧->=⎨≤⎩x e x F x x正态分布2~(,)μσX N )密度函数22()21(),,2μσπσ--=-∞<<∞x f x ex标准正态~(0,1)X N概率密度 ()ϕx =2212πx e ,(-∞<<∞x )分布函数()Φx =2212π-∞⎰t xe dt (-∞<<∞x )正态分布曲线的性质:a) 曲线关于直线=x u 对称.对于任何0>h ,有:{}{},-<≤=≤<+P u h X u P u X u hb) 当=x u 取到最大值的时候,1(),2πσ=f u 在σ=±x u 处,曲线有拐点,曲线以x 轴为渐近线.c) 当σ取定,12<u u 时,212222()21()221()21()2μσμσπσπσ----==x x f x ef x e两条曲线可互相沿着X 轴平行移动而得,不改变形状,可见正太分布典线的位置完全由u 决定.d) 当u 取定,12σσ<时,221222()231()2421()21()2μσμσπσπσ----==x x f x ef x e可见,当σ越小,图形越尖锐.σ越大,图形越平缓,可见σ值刻画了正态随机变量取值的分散程度,σ越小分散程度越小,σ越大分散程度越大.其分布函数为:22()21()2μσπσ--=-∞⎰t x F x e dt()ϕx 的图形关于Y 轴对称.()ϕx 在x =0时取得最大值12π.特例:2()-∞=-∞⎰x F x e dx (2=tx )222()()22()212212πππ---∞∞⇒⇒-∞-∞∞⇒⇒-∞⎰⎰⎰t t t ted e dte dt标准正态分布函数的性质: a) ()1()Φ-=-Φx x b) ()()ϕϕ-=x x c)1(0)2Φ=d) {}2()1≤=Φ-P X a a 解决正态分布的步骤:1) 正态标准化. 一般分布:X ~N(μ,2σ)通过线性变换:σ-=x uz 化成标准正态.2) 利用标准正态的对称性 3) 查表计算引理:若X ~N(μ,2σ),其分布函数为F(x),则: 1.{}()()σ-=≤=Φx uF x P X x (从一般正态到标准正态)2.{}{}{}{}()()σσ<≤=≤≤=≤<--=<<=Φ-ΦP a X b P a X b P a X b b ua uP a X b3. {}{}1()σ->=≥=-Φa uP X a P X a第四节 随机变量函数的概率分布1. 离散型随机变量函数的概率分布概率对应 顺序重排2. 连续型随机变量函数的概率分布其概率密度为 '[()](),(),0,其他αβ⎧<<⎪=⎨⎪⎩X Y f h y h y y f y()h y 是根据()=Y g x 所求得的反函数()=x h y()'h y 是对反函数求导。
习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p k P(X=1) + P(X=2) +…..+ P(X=N) =1N*=1, 即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解: 12c+34c+58c+716c=1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求X23的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k6.设离散型随机变量X的分布律为X-123P141214解:求P{X≤12}, P{23<X≤52}, P{2≤X≤3}, P{2≤X<3} P{X≤12}=14P{23<X≤52}=12P{2≤X≤3}=12+14=34P{2≤X<3}=127.设事件A在每一次试验中发生的概率分别为0.3.当A发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X为事件A发生的次数,(1)P{X≥3}=P{X=3}+P{X=4}+P{X=5}=C35(0.3)3(0.7)2+C45(0.3)4(0.7)1+C55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X 表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λ P{X ≥2}=1‒P{X =0}‒P{X =1}=1‒C 01000(0.0001)0(0.9999)1000‒C 11000(0.0001)1(0.9999)999=1‒e ‒0.1‒0.1e ‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X =8}=P{X ≥8}‒P{X ≥9}=0.051134‒0.021363=0.029771 (2) P{X >10}=P{X ≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x <0q, 0≤x <11,x ≥12.设离散型随机变量X 的分布律为:X -123P0.250.50.25求X 的分布函数,以及概率,.P{1.5<X ≤2.5} P{X ≥0.5}解:當x <‒1時,F(x)=P{X ≤x}=0;當‒1≤x <2時,F(x)=P{X ≤x}=P{X =‒1}=0.25;當2≤x <3時,F(x)=P{X ≤x}=P{X =‒1}+P{X =2}=0.25+0.5=0.75;當x ≥3時,F(x)=P{X ≤x}=P{X =‒1}+P{X =2}+P{X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F(x)={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P{1.5<X ≤2.5}=F(2.5)‒F(1.5)=0.75‒0.25=0.5 P{X ≥0.5}=1‒F(0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F(+∞)=aF(+∞)‒bF(+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x)={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x)={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x)={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x)={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P{‒1<X ≤1}解: (1)由分布函数的基本性质 得:F(‒∞)=0,F(+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1解之a=, b=121π(2)P{‒1<X ≤1}=F(1)‒F(‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F(x)={0, x <1lnx, 1≤x <e1, x ≥e求P{X ≤2},P{0<X ≤3},P{2<X ≤2.5}解: 注: P{X ≤2}=F(2)=ln2 F(x)=P{X ≤x} P{0<X ≤3}=F(3)‒F(0)=1‒0=1;P{2<X ≤2.5}=F(2.5)‒F(2)=ln2.5‒ln2=ln 2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f(x)={acosx, |x|≤π20, 其他.(2)P{0≤X ≤1}=F(1)‒F(0)=12(1‒e ‒1)(3)X 的分布函数F(x)={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x)=12+1πarctanx , ‒∞<x <+∞;解: (柯西分布)f 1(x)=1π(1+x 2)(2)F 2(x)={1‒e ‒x 22, x >00, x ≤0解: (指数分布)f 2(x)={x e ‒x 22, x >00, x ≤0(3)F 3(x)={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x)={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f(x)={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2) P{12<X <32}=F (32)‒F (12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f(K)={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P{K ≤‒1}+P{K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解: P{K >3}=1‒F(3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P{X ≤1}=F(1)=1‒e ‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待15服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P{Y ≥1}.解:“未等到服务而离开的概率”为P{X ≥10}=1‒F(10)=1‒(1‒e‒15∗10)=e ‒2P{Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k, (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P{Y ≥1}=1‒P{Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P{2<X ≤5}, P{‒4<X ≤10}, P{|X|>2}, P{X >3}(2).常数c,使P{X >c }=P{X ≤c}解:(1)P{2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P{‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P{|X|>2}= 1‒P{‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P{X >3}= P{X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P{X >c }=P{X ≤c}P{X >c }=1‒P{X ≥c}P{X >c }+P{X ≥c}=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P{|X|>x }<0.1.求x 的取值范围.解:P{|X|>x }<0.12[1‒Φ(x)]<0.1‒Φ(x)<‒1920Φ(x)≥1920Φ(x)≥0.95经查表当 1.65时x ≥Φ(x)≥0.95即 1.65时x ≥P{|X|>x }<0.111.X ~ N(10,),求: 22(1)P{7<X ≤15};(2)常数d,使P{|X ‒10|<d }<0.9.解:(1)P{7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P{|X ‒10|<d }=P{10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d 2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内为 0.062±合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P{10.05‒0.12<X <10.05+0.12}=P{9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求: 402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m 的概率.解:(1)绝对值不超过30m 的概率为:P{‒30<X <30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m 的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m 的概率为:C 13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X 的分布律为X -2023P 0.20.20.30.3求(1)的分布律.Y 1=‒2X +1的分布律; (2)Y 2=|X|解: (1)的可能取值为5,1,-3,-5.Y 1由于P {Y 1=5}=P{‒2X +1=5}=P{X =‒2}=0.2P {Y 1=1}=P{‒2X +1=1}=P{X =‒2}=0.2P {Y 1=‒3}=P{‒2X +1=‒3}=P{X =2}=0.3P {Y 1=‒5}=P{‒2X +1=‒5}=P{X =3}=0.3从而的分布律为:Y 1X -5-315Y 10.30.30.20.2(2)的可能取值为0,2,3.Y 2由于P {Y 2=0}=P{|X|=0}=P{X =0}=0.2P {Y 2=2}=P{|X|=0}=P{X =‒2}+P{X =2}=0.2+0.3=0.5P {Y 2=3}=P{|X|=3}=P{X =3}=0.3从而的分布律为:Y 2X 023Y 20.20.50.32.设X 的分布律为X -1012P0.20.30.10.4求Y =(X ‒1)2的分布律.解:Y 的可能取值为0,1,4.由于P{Y =0}=P {(X ‒1)2=0}=P{X =1}=0.1P{Y =1}=P {(X ‒1)2=1}=P{X =0}+P{X =2}=0.7P{Y =4}=P {(X ‒1)2=4}=P{X =‒1}=0.2从而的分布律为:Y X 014Y0.10.70.23.X~U(0,1),求以下Y 的概率密度:(1) Y =‒2lnX; (2)Y =3X +1; (3)Y =e x .解: (1) Y =g(x)=‒2lnX, 值域為(0,+∞),X =h(y)=e‒Y2, h '(y)=12 e‒Y2f Y (y)=f x (h(y))| h '(y)|=1∗12 e ‒Y 2=12 e ‒Y2.即f Y (y)={12e ‒Y2, y >0,0, y ≤0(2) Y =g(x)=3X +1,值域為(‒∞,+∞), X =h(y)=Y ‒13, h '(y)=13当X=-Y 时: f Y (y)=f x (h(y))| h '(y)|=12πe ‒y 22故f Y (y)=12πe ‒y 22+12πe ‒y 22=22πe ‒y 22=42πe ‒y 22=2πe‒y 22f Y (y)={2πe ‒y 22, y >00, y ≤0(2)Y =g(x)=2X 2+1, X =h(y)=Y ‒12,h '(y)=12Y ‒12f Y (y)=f x (h(y))| h '(y)|=12πe ‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y)={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A.B.C.D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F(+∞)=1 F(‒∞)=00≤F(x)≤14.下列各函数中是随机变量分布函数的为 B .A.B. F 1(x)=11+x 2, ‒∞<x <+∞F 2(x)={0, x ≤0x1+x , x >0解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=. 解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则= .P{ X ≤4}3132解: P{ X ≤4}=1‒P{ X =5}=1‒C 55(12)5(12)04.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P{ X =0}=12P{ X =2}解:分别将.P{ X =0},P{ X =2}帶入P k =P{ X =k }=λk k!e‒λ5.设随机变量X 的分布函数为F(x)={0, x <a0.4, a ≤x <b1, x ≥b 其中0<a<b,则= 0.4.P {a2<X <a +b2}解: P { a2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P{ X =c }7. 设连续型随机变量X 的分布函数为F(x)={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13ex8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F(x)={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f(x)={12a ,‒a < x <a 0, 其他P{ X >1}=133 .解: P{ X >1}=1‒P{ X ≤1}=13,P{ X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x)+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F(x),Φ(x)Φ(x)=.F(x)Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P{ X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P{ X <a }<0.6915常数a< 6.5. 解:, F(a)=Φ(a ‒μσ)=a ‒53 a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y)122πe ‒(Y ‒1)28解:Y =g(x)=2X +1, X =h(y)=Y ‒12,h '(y)=12f Y (y)=f x (h(y))| h '(y)|=12πe ‒(Y ‒12)22∗12=122πe ‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时, P{ X =0}=C 03∗C 22C 25=110当X=1时, P{ X =1}=C 13∗C 12C 25=610当X=2时, P{ X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f(x)={|x|, ‒1≤ x ≤10, 其他 P{ X <0.5},P{ X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)= ∫x ‒1‒x dx =‒x 22|x‒1=12‒x 22当0≤x <1时,F(x)=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1。
概率论与数理统计内容提要第二章概率论与数理统计内容提要第二章第二章随机变量及其分布1.离散随机变量的概率函数及其两个性质,计算未知数离散随机变量的概率分布表2几何分布,0-1分布,二项分布,Poisson分布的概率模型,记号参数,取值,概率函数,数学期望,方差超几何分布的概率模型及其概率函数超几何分布与二项分布的近似关系二项分布与Poisson分布的近似关系3(一维)随机变量的分布函数,定义,四个性质及其应用,判断,计算未知数,利用分布函数计算随机事件发生的概率,典型例题离散随机变量的概率函数与分布函数的相互计算4连续型随机变量的概率密度的两个性质及其应用,计算未知数连续型随机变量的概率密度与分布函数的相互计算利用概率密度计算随机事件的概率5均匀分布,指数分布,正态分布的记号,参数,概率密度,概率分布函数,数学期望,方差6一维离散随机变量的函数的概率分布的计算一维连续随机变量的函数的概率密度和概率分布函数的计算步骤特殊的,函数是严格单调函数和线性函数时的公式7二维离散随机变量的联合概率函数及其性质,计算未知数,边缘概率函数,条件概率函数的计算两个离散随机变量相互独立的定义,等价条件,性质8二维随机变量的联合分布函数及其性质9二维连续型随机变量的联合概率密度及其性质和应用,计算未知数二维连续随机变量的联合分布函数与联合密度及其计算二维连续随机变量的边缘分布函数与边缘密度及其计算二维连续随机变量的条件分布函数与条件密度及其计算已知联合,求边缘已知边缘(或已知两个一维连续随机变量)且独立,求联合随机变量独立性的概念,应用随机变量的独立性进行概率计算10两个离散随机变量的函数的分布的计算两个连续随机变量的(简单的)函数的联合分布函数和联合密度函数的计算。
第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计第⼆章_随机变量及其分布第⼆章随机变量及其分布⼀、学习要求、重点难点1、随机变量的概念、类型、引⼊随机变量的意义;2、离散型随机变量的概率分布,⼏种常⽤的离散型分布;3、连续型随机变量的概率分布,⼏种常⽤的连续型分布;4、分布函数的概念及计算;5、随机变量函数的分布;6、随机变量的⼏种数字特征:期望、⽅差等的概率及其计算;7、⼆元随机变量的概念及相关计算;8、⼤数定理及中⼼极限定理。
⼆.内容提要随机变量及其分布通过随机事件及其概率的讨论,使我们对随机现象的统计规律有了初步的认识。
但是⼀个随机现象常常涉及很多事件,如果孤⽴地、静⽌地去研究某个事件,很难对随机现象的整体有所了解。
为此,可引⼊随机变量的概念,这样就能⾮常⽅便地研究随机现象的各种可能结果,以及各种可能结果能以多⼤的概率发⽣等问题。
引⼈随机变量的基本思想就是为了更好地研究随机现象,对随机现象的结果(即样本空间中每⼀个样本点)进⾏量化处理,这样⼀来对随机现象的研究就转为对随机变量的研究。
第⼀节随机变量⼀、随机变量及其类型1.概念⼀般地,设A 为某个随机事件,则⼀定可以通过如下⽰性函数使它与数值发⽣联系每⼀个随机试验的结果⾃然地对应着⼀个实数,⽽在后两个例⼦中,这种对应关系是⼈为地建⽴起来的。
这样⼀来,随机事件的研究就可化为对随机变量的研究。
因此事件的运算就可化为数值的运算。
特别是进⾏了这样⼀步数学抽象以后,许多随机试验就可统⼀起来概括成各种数学模型加以研究。
例如,统计上“正态模型”、“指数模型”、“贝努利实验模型”等可以概括现实⽣活中⼤批实际问题,我们通过对这些典型的数学模型的研究就能更加深⼊研究随机现象,对随机现象的研究成果具有很强的现实和理论意义。
由此可见,⽆论哪⼀种性质,所谓随机变量,不过是随机试验的结果(即样本点)和实数之间的⼀⼀对应关系。
这与数学分析中函数的概念本质上是⼀致的。
只不过在函数概念中,f(x)的⾃变量x 为实数,⽽随机变量的概念中,随机变量)(ωξ的⾃变量为样本点ω,因为对每个试验结果ω都有函数)(ωξ与之对应,所以)(ωξ的定义域是样本空间,值域是实数域。