概率论与数理统计实验报告
- 格式:docx
- 大小:472.44 KB
- 文档页数:8
《概率论与数理统计》实验报告学生姓名李樟取学生班级计算机122学生学号************指导教师吴志松学年学期2013-2014学年第1学期实验报告一成绩 日期 年 月 日实验名称 单个正态总体参数的区间估计实验性质 综合性实验目的及要求1.了解【活动表】的编制方法;2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法.实验原理利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。
1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X 为来自X 的一个样本,12,,,n x x x 为样本的观测值于是得到μ的置信水平为1-α 的置信区间为利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。
2.设总体2~(,)X N μσ,其中2σ未知,12,,,n X X X 为来自X 的一个样本,12,,,nx x x 为样本的观测值整理得/2/21X z X z n n P αασαμσ⎧⎫=-⎨⎬⎩⎭-<<+/2||1/X U z P n ασμα⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭-</2/2,x z x z nn αασσ⎛⎫-+⎪⎝⎭22(1)(1)1/X P t n t n S nααμα⎧⎫---<<-=-⎨⎬⎩⎭22(1)(1)1S S P X t n X t n n n ααμα⎧⎫--<<+-=-⎨⎬⎩⎭故总体均值μ的置信水平为1α-的置信区间为利用【Excel 】中提供的统计函数【CHIINV 】,编制【单个正态 总体方差卡方估计活动表】,在【单个正态总体方差卡方估计活动 表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均 值】和【样本方差】的具体值,就可以得到相应的统计分析结果。
概率论与数理统计数学实验目录实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27实验一 几个重要的概率分布的MATLAB 实现实验目的(1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。
当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。
例1 求正态分布()2,1-N ,在x=1.2处的概率密度。
解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089例2 求泊松分布()3P ,在k=5,6,7处的概率。
解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3)结果为:0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。
解:在MATLAB 命令窗口中输入:unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为:0.75000例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。
解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为:6.1517例5 求t 分布()10t 的期望和方差。
解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v =1.2500例6 生成一个2*3阶正态分布的随机矩阵。
概率论与数理统计上机实验报告实验一【实验目的】熟练掌握 MATLAB 软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形【实验要求】掌握 MATLAB 的画图命令 plot掌握常见分布的概率密度图像和分布函数图像的画法【实验容】2 、设X : U (−1,1)(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)(3 )又已知分布函数F ( x) = 0.45 ,求x(4 )画出X 的分布密度和分布函数图形。
【实验方案】熟练运用基本的MATLAB指令【设计程序和结果】1.计算函数值Fx=unifcdf(0, -1,1)Fx=unifcdf(0.2, -1,1)Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =1Fx =12.产生随机数程序:X=unifrnd(-1,1,3,6)结果:X =0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8049 0.9150 0.9412 0.6006 0.83153.求x程序:x=unifinv(0.45, -1,1)结果:x =-0.10004.画图程序:x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1);plot(x,px,'+b');hold on;plot(x,fx,'*r');legend('均匀分布函数','均匀分布密度');结果:【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验2 圆周率的近似计算——蒲丰投针问题
实验目的:
1.加深理解几何概型的概率的概念和计算方法
2.掌握无理数的近似计算方法
3.了解Excel软件在模拟仿真中的应用
实验要求:
1.掌握Excel自带的随机数发生器产生随机数——(a,b)区间上均匀分布的随机数
2.理解等可能产生区间之内任一个随机数函数命令
3理解条件检测函数命令if
4.理解条件计数函数命令countif
实验内容:
1. 1777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离
为
(0)
a a>
的一些平行直线,现向此平面任意投掷一根长为
()
b b a
<
的针,取4
a=, 3
b=,试求针与某一平行直线相交的概率,并计算圆周率的近似值.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
R:
****************************************
谢翠华阅,2019年10月30日,成绩:90。
温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验3 随机变量的分布 实验目的:
1.加深理解随机变量的概率密度和分布函数的概念
2.掌握二项分布与泊松分布的近似关系
3.了解Excel 软件在模拟仿真中的应用
实验要求:
1.掌握二项分布计算概率函数binomdist 和泊松分布计算概率函数possion
2.掌握计算正态分布概率密度值和分布函数值的命令函数normdist 以及标准正态分布的计算概率密度值和分布函数值的命令函数norm.s.dist
实验内容:
1.画二项分布与泊松分布的近似关系图
其中二项分布中的参数25,n = 0.52,p = 泊松分布中的参数*13n p λ== 2.画正态分布的概率密度函数图和分布函数图 (1)在同一个坐标系中画出均值为3,3,5-,标准差为2的正态分布概率密度图形;
(2)在同一个坐标系中画出均值为6,标准差为1,2,3的正态分布概率密度图形.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
2:
R:
**************************************** 谢翠华阅,2019年10月30日,成绩:90 ****************************************。
温州大学瓯江学院概率论与数理统计实验报告实验名称:实验一频率稳定性实验目的:1.加深理解频率的概念2.理解频率和概率的关系3.了解Excel软件在模拟仿真中的应用实验要求:1.掌握Excel自带的随机数发生器产生随机数—伯努利随机数(0-1分布随机数)和(0,1)区间上均匀分布的随机数2.掌握Excel产生伯努利随机数命令randbtween(0,1)和(0,1)区间上均匀分布的随机数命令rand()3.理解随机数发生器和随机数命令产生随机数的区别,后者按F9会出现动态的随机数4. 理解借用随机数发生器产生已知离散型随机变量的分布律的随机数5. 理解条件计数函数命令countif实验内容:1.利用Excel自带的随机数发生器产生10000个伯努利随机数(即0-1分布随机数)来模拟10000次投币试验的结果,统计其中随机数1(表示出现正面)和0(表示出现反面)出现的次数,并对试验结果进行分析.2. 向桌面上任意投掷一颗骰子,由于骰子的构造是均匀的,可知出现,这六个数(朝上的点数)中任一个数的可能性是相同的.试产生离散均匀1,2,6分布随机数对其进行模拟,并对试验结果进行分析.3. 利用随机数发生器产生10000个均匀分布U(01),随机数,分别记录其中小于0.5(表示出现正面)和不小于0.5(表示出现反面)的随机数的个数,并对试验结果进行分析.实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到2:评定成绩:R语言实现在R语言中,可以通过rbinom函数产生伯努利随机数,通过table函数来统计频数,具体的代码及运行结果如下:> a=table(rbinom(1000,1,0.5))> a0 1506 494> a/10000 10.506 0.494R语言实现下面用R语言sample函数进行随机抽样,具体代码及运行结果如下:> x=1:6> a=table(sample(x,1000,1/6))> a/10001 2 3 4 5 60.152 0.184 0.177 0.178 0.154 0.155。
概率论与数理统计实验报告实验名称: 区间估计姓名 学号 班级 实验日期一、实验名称:区间估计二、实验目的:1. 会用MATLAB 对一个正态总体的参数进行区间估计;2. 会对两个正态总体的均值差和方差比进行区间估计。
三、实验要求:1. 用MATLAB 查正态分布表、χ2分布表、t 分布表和F 分布表。
2. 利用MATLAB 进行区间估计。
四、实验内容:1. 计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
2. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时,χ2(n )的上侧α分位数(注:α与n相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
3. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时, t (n )的上侧α分位数。
4. 计算α=0.1, 0.05, 0.025时, F (8,15)的上侧α分位数; 验证:0.050.95(8,15)1(15,8)F F =;计算概率{}312P X ≤≤。
5. 验证例题6.28、例题6.29、例题6.30、习题6.27、习题6.30。
五、实验任务及结果:任务一:计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
源程序:%1-1x = norminv([0.05 0.95],0,1)%1-2y = norminv([0.025 0.975],0,1)%1-3z = norminv([0.0125 0.9875],0,1)结果:x =-1.6449 1.6449y =-1.9600 1.9600z =-2.2414 2.2414结论:α=0.1时的置信区间为[-1.6449,1.6449],上侧α分位数为1.6449.α=0.05时的置信区间为[-1.9600,1.9600],上侧α分位数为1.9600.α=0.025时的置信区间为[-2.2414,2.2414],上侧α分位数为2.2414.任务二:计算α=0.1, 0.05, 0.025,n=5, 10, 15时,χ2(n)的上侧α分位数(注:α与n 相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
概率论与数理统计
实验报告
概率论部分实验二
《正态分布综合实验》
实验名称:正态分布综合实验
实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。
实验内容:
实验分析:
本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。
实验过程:
1.直方图与累计百分比曲线
1)实验程序
m=[100,1000,10000]; 产生随机数的个数
n=[2,1,0.5]; 组距
for j=1:3
for k=1:3
x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个
正态分布随机数
a=min(x); a为生成随机数的最小值
b=max(x); b为生成随机数的最大值
c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份
hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图
yy=hist(x,c)/1000; yy为各个分组的频率
s=[];
s(1)=yy(1);
for i=2:length(yy)
s(i)=s(i-1)+yy(i);
end s[]数组存储累计百分比
x=linspace(a,b,c);
subplot(1,2,2); 在第二个图形位置绘制累计百分
比曲线
plot(x,s,x,s);xlabel('累积百分比曲线');
grid on; 加网格
figure; 另行开辟图形窗口,为下一个循
环做准备
end
end
2)实验结论及过程截图
实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。
N=100,组距为1的频数分布图与累计百分比曲线
N=100,组距为0.5的频数分布图与累计百分比曲线
N=1000,组距为1的频数分布图与累计百分比曲线
N=1000,组距为0.5的频数分布图与累计百分比曲线
N=10000,组距为2的频数分布图与累计百分比曲线
N=10000,组距为1的频数分布图与累计百分比曲线
N=10000,组距为0.5的频数分布图与累计百分比曲线
1)实验程序
clear all;
x=[-0.15:0.000002:0.2]';
y1=[];y2=[];
mul=[0.05 0.05 0.05];
sigmal=[0.01 0.02 0.03];
for i=1:length(mul)
y1=[y1,normpdf(x,mul(i),sigmal(i))]; y2=[y2,normcdf(x,mul(i),sigmal(i))]; end
subplot(1,2,1);plot(x,y1);
xlabel('(a) 概率密度函数');
subplot(1,2,2);plot(x,y2);
xlabel('(b) 分布函数');
2)实验结果截图
1)实验程序
clear all;
x=[-0.15:0.000001:0.2]';
y1=[];y2=[];
mul=[0.03 0.05 0.07];
sigmal=[0.02 0.02 0.02];
for i=1:length(mul)
y1=[y1,normpdf(x,mul(i),sigmal(i))]; y2=[y2,normcdf(x,mul(i),sigmal(i))]; end
subplot(1,2,1);plot(x,y1);
xlabel('(a) 概率密度函数');
subplot(1,2,2);plot(x,y2);
xlabel('(b) 分布函数');
2)实验结果截图。