2012理科高考数学试题及解析
- 格式:doc
- 大小:1.03 MB
- 文档页数:13
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131i i-+=+(A )2i +(B )2i - (C )12i +(D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0 (B )0或3 (C )1 (D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C)22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B ) (C (D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a =,C A b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。
2012年全国高考2卷理科数学试题及答案一.选择题:(共12个小题,每小题5分,满分60分) 1. 复数131ii-++= (A) 2+i(B) 2-i(C) 1+2i(D)1-2i2.已知集合A ={1,3,B ={1,m },A ∪B =A ,则m = (A) 0(B) 0或3(C) 1(D) 1或33.椭圆的中心在原点,焦距为4,一条准线为x = - 4,则该椭圆的方程为(A) 221612y +x =1(B) 22168y +x =1(C) 2284y +x =1(D) 22124y +x =14.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB = 2,CC 1E 为CC 1的中点,则直线AC 1与平面BED 的距离为: (A) 2(B)(C)(D) 15.已知等差数列{a n }的前n 项和为S n ,a 5 = 5,S 5 =15,则数列{11n n a a +}的前100项和为(A) 100101(B)99101(C)99100(D)1011006.△ABC 中,AB 边的高为CD ,CB = a ,CA = b ,a •b = 0,| a | = 1,| b | = 2,则AD = (A)13a -13b (B)23a -23b (C)35a -35b (D)45a -45b7.已知α 为第二象限的角,sin α +cos α,则cos2α = (A)(B)(C)(D)8.已知F 1、F 2为双曲线C :x 2-y 2 =2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2 = (A) 14(B)35(C)34(D)459.已知x = ln π,y =log 5 2,z =12e -,则(A) x < y < z(B) z < x < y(C) z < y < x(D) y < z < x10.已知函数y =x 3-3x + c 的图像与x 轴恰有两个公共点,则c =(A) -2或2 (B) -9或3 (C) -1或1 (D) -3或111.将字母a, a, b, b, c, c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同点排列方法共有(A) 12种(B) 18种(C) 24种(D) 36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE = BF =37,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A) 16 (B) 14 (C) 12 (D) 10二.填空题:(共4个小题,每小题5分,满分20分)13.若x、y满足约束条件,则z =3x- y的最小值为14.当函数y = sin x- cos x (0≤x <2π)取得最大值时,x =15.若(x +1x) n的展开式中第三项与第七项的二项式系数相等,则该展开式中21x的系数为16. 三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1= 60o,则异面直线AB1与BC1所成的角的余弦值为二.解答题:(共6个小题,满分70分)17.(本小题满分10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A - C) + cos B = 1,a = 2c,求C .18. (本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,ACP A = 2,E是PC上的一点,PE = 2EC .(Ⅰ)证明:PC⊥平面BED ;(Ⅱ)设二面角A -PB - C为90o,求PD与平面PBCx - y +1≥0 x + y -3≤0 x + 3y -3≥019. (本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换. 每次发球,胜方得1分,负方得0分. 设再甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立. 甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第四次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ 表示开始第四次发球时乙的得分,求ξ 的期望.20. (本小题满分12分)设函数f (x ) = a x + cos x , x∈[0, π] .(Ⅰ)讨论f (x )的单调性;(Ⅱ)设f (x ) ≤1 + sin x,求a的取值范围.21. (本小题满分12分)已知抛物线C:y = (x +1) 2与圆M:(x-1) 2 +( y-12) 2 = r 2 (r > 0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22. (本小题满分12分)函数f (x ) = x 2 - 2x - 3 .定义数列{x n}如下:x1= 2,x n+1是过两点P(4, 5)、Q n(x n, f (x n))的直线PQ n与x轴的交点的横坐标.(Ⅰ)证明:2≤x n < x n+1<3 ;(Ⅱ)求数列{x n}的通项公式.答案1.C2.B3.C4.C5.A6.D7.A8.C9.D 10.A 11.A 12.B。
2012年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数x 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 2. 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 3. 设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,...,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B )9 (C )10 (D )155. 已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2-(B )3[,1]2-- (C )[1,6]- (D )3[6,]2- 6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为 (A )2 (B )3 (C )4 (D )57. 若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35 (B )45 (C (D )348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =。
2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i--===---+-+--1:2p z =,22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C∆21F P F 是底角为30 的等腰三角形221332()224cP F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B -- 得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页.考试结束,务必将试卷和答题卡一并上交.第I卷注意事项:全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. ,B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 (6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则 (A) (B ) (C) (D)(7)已知α为第二象限角,33cos sin =+αα,则cos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,21-=e z ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为(A )16(B )14(C )12(D)10理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.........3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效.........)(13)若x,y满足约束条件则z=3x-y的最小值为_________.(14)当函数取得最大值时,x=___________.(15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.(16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y-)2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。
2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。
绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C∆21F P F 是底角为30 的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
可编辑修改精选全文完整版2012年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2012•陕西)集合M={x|lgx>0},N={x|x2≤4},则M∩N=()A.(1,2)B.[1,2)C.(1,2]D.[1,2]考点:对数函数的单调性与特殊点;交集及其运算.专题:计算题.分析:先求出集合M、N,再利用两个集合的交集的定义求出M∩N.解答:解:∵M={x|lgx>0}={x|x>1},N={x|x2≤4}={x|﹣2≤x≤2},∴M∩N={x|1<x≤2},故选C.点评:本题主要考查对数函数的单调性和特殊点,两个集合的交集的定义和求法,属于基础题.2.(5分)(2012•陕西)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.D.y=x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:探究型.分析:对于A,非奇非偶;对于B,是偶函数;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|=,可判断函数既是奇函数又是增函数,故可得结论.解答:解:对于A,非奇非偶,是R上的增函数,不符合题意;对于B,是偶函数,不符合题意;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函数是增函数故选D.点评:本题考查函数的性质,考查函数的奇偶性与单调性的判断,属于基础题.3.(5分)(2012•陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:复数的基本概念;必要条件、充分条件与充要条件的判断.专题:计算题.分析:利用“ab=0”与“复数为纯虚数”互为前提与结论,经过推导判断充要条件.解答:解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选B.点评:本题考查复数的基本概念,充要条件的判断,考查基本知识的灵活运用.4.(5分)(2012•陕西)已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能考点:直线与圆的位置关系.专题:计算题.分析:将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P 点,可得出直线l与圆C相交.解答:解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,两点间的距离公式,以及点与圆的位置关系,直线与圆的位置关系由d与r的关系来确定:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离(d表示圆心到直线的距离,r为圆的半径).5.(5分)(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:计算题.分析:根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.解答:解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得•=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A点评:本题给出一个特殊的直三棱柱,求位于两个侧面的面对角线所成角的余弦之值,着重考查了空间向量的坐标运算和异面直线及其所成的角的概论,属于基础题.6.(5分)(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m甲>m乙B.,m甲<m乙C.,m甲>m乙D.,m甲<m乙考点:茎叶图;众数、中位数、平均数.专题:计算题.分析:直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项.解答:解:甲的平均数甲==,乙的平均数乙==,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m甲<m乙故选:B.点评:本题考查茎叶图,众数、中位数、平均数的应用,考查计算能力.7.(5分)(2012•陕西)设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:计算题.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,8.(5分)(2012•陕西)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种考点:排列、组合及简单计数问题;计数原理的应用.专题:计算题.分析:根据分类计数原理,所有可能情形可分为三类,在每一类中可利用组合数公式计数,最后三类求和即可得结果解答:解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选C点评:本题主要考查了分类和分步计数原理的运用,组合数公式的运用,分类讨论的思想方法,属基础题9.(5分)(2012•陕西)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.考点:余弦定理.专题:计算题;压轴题.分析:通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.解答:解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.点评:本题考查三角形中余弦定理的应用,考查基本不等式的应用,考查计算能力.10.(5分)(2012•陕西)如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A.B.C.D.考点:循环结构.专题:计算题;压轴题.分析:由题意以及框图的作用,直接推断空白框内应填入的表达式.解答:解:法一:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是.故选D.法二:随机输入xi∈(0,1),yi∈(0,1)那么点P(xi,yi)构成的区域为以O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形.判断框内x2i+y2i≤1,若是,说说明点P(x i,y i)在单位圆内部(圆)内,并累计记录点的个数M若否,则说明点P(x i,y i)在单位圆内部(圆)外,并累计记录点的个数N第2个判断框i>1000,是进入计算此时落在单位圆内的点的个数为M,一共判断了1000个点那么圆的面积/正方形的面积=,即π12÷1=∴π=(π的估计值)即执行框内计算的是.故选D.点评:本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力.二、填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11.(5分)(2012•陕西)观察下列不等式:,,…照此规律,第五个不等式为1+++++<.考点:归纳推理.专题:探究型.分析:由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n 的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式解答:解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<点评:本题考查归纳推理,解题的关键是根据所给的三个不等式得出它们的共性,由此得出通式,本题考查了归纳推理考察的典型题,具有一般性12.(5分)(2012•陕西)(a+x)5展开式中x2的系数为10,则实数a的值为1.考点:二项式系数的性质.专题:计算题.分析:直接利用二项式定理的展开式的通项公式,求出x2的系数是10,得到方程,求出a 的值.解答:解:(a+x)5展开式中x2的系数为,因为(a+x)5展开式中x2的系数为10,所以=10,解得a=1,故答案为:1.点评:本题考查二项式定理系数的性质,考查计算能力.13.(5分)(2012•陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.考点:抛物线的应用.专题:计算题;压轴题.分析:先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.解答:解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.14.(5分)(2012•陕西)设函数,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x﹣2y在D上的最大值为2.考点:利用导数研究曲线上某点切线方程;简单线性规划.专题:计算题;压轴题.分析:先求出曲线在点(1,0)处的切线,然后画出区域D,利用线性规划的方法求出目标函数z的最大值即可.解答:解:当x>0时,f′(x)=,则f′(1)=1,所以曲线y=f(x)及该曲线在点(1,0)处的切线为y=x﹣1,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分.z=x﹣2y可变形成y=x﹣,当直线y=x﹣过点A(0,﹣1)时,截距最小,此时z最大.最大值为2.故答案为:2.点评:本题主要考查了线性规划,以及利用导数研究函数的切线,同时考查了作图的能力和分析求解的能力,属于中档题.15.(5分)(2012•陕西)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是﹣2≤a≤4.B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=5.C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.考点:绝对值不等式的解法;直线与圆相交的性质;与圆有关的比例线段;简单曲线的极坐标方程.专题:计算题;作图题;压轴题.分析:A;利用表示数轴上的x到a的距离加上它到1的距离,它的最大值等于3,作图可得实数a的取值范围.B;利用相交弦定理AE•EB=CE•ED,AB⊥CD可得DE=;在Rt△EDB中,由射影定理得:DE2=DF•DB=5,即得答案;C;将直线与圆的极坐标方程化为普通方程分别为:x=,(x﹣1)2+y2=1,从而可得相交弦长.解答:解:A.∵存在实数x使|x﹣a|+|x﹣1|≤3成立,而|x﹣a|+|x﹣1|表示数轴上的x到a的距离加上它到1的距离,又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x﹣a|+|x﹣1|≤3,∴﹣2≤a≤4,故答案为:﹣2≤a≤4.B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,∴DE•CE=AE•EB=1×5=5,即DE=.在Rt△EDB中,由射影定理得:DE2=DF•DB=5.故答案为:5.C;∵2ρcosθ=1,∴2x=1,即x=;又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,∴(x﹣1)2+y2=1,∴圆心(1,0)到直线x=的距离为,∴相交弦长的一半为=,∴相交弦长为.故答案为:.点评:本题A考查绝对值不等式的解法,绝对值的意义,求出|x﹣a|+|x﹣1|的最大值是3是解题的关键,考查作图与理解能力,属于中档题.本题B考查与圆有关的比例线段,掌握相交弦定理与射影定理是解决问题的关键,而C着重简单曲线的极坐标方程,化普通方程是关键,属于中档题.三、解答题16.(12分)(2012•陕西)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:三角函数的图像与性质.分析:(1)通过函数的最大值求出A,通过对称轴求出周期,求出ω,得到函数的解析式.(2)通过,求出,通过α的范围,求出α的值.解答:解:(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2,∵函数图象相邻两条对称轴之间的距离为,=,T=π,所以ω=2.故函数的解析式为y=2sin(2x﹣)+1.(2)∵,所以,∴,∵∴,∴,∴.点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,考查计算能力.17.(12分)(2012•陕西)设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.考点:等比数列的通项公式;等差数列的性质.专题:综合题.分析:(1)设{a n}的公比为q(q≠0,q≠1),利用a5,a3,a4成等差数列结合通项公式,可得,由此即可求得数列{a n}的公比;(2)对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0,从而得证.解答:(1)解:设{a n}的公比为q(q≠0,q≠1)∵a5,a3,a4成等差数列,∴2a3=a5+a4,∴∵a1≠0,q≠0,∴q2+q﹣2=0,解得q=1或q=﹣2∵q≠1,∴q=﹣2(2)证明:对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0∴对任意k∈N+,S k+2,S k,S k+1成等差数列.点评:本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.18.(12分)(2012•陕西)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明)考点:向量语言表述线面的垂直、平行关系;四种命题;向量语言表述线线的垂直、平行关系.专题:证明题.分析:(1)证法一:做出辅助线,在直线上构造对应的方向向量,要证两条直线垂直,只要证明两条直线对应的向量的数量积等于0,根据向量的运算法则得到结果.证法二:做出辅助线,根据线面垂直的性质,得到线线垂直,根据线面垂直的判定定理,得到线面垂直,再根据性质得到结论.(2)把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.解答:证明:(1)证法一:如图,过直线b上任一点作平面α的垂线n,设直线a,b,c,n对应的方向向量分别是,则共面,根据平面向量基本定理,存在实数λ,μ使得,则=因为a⊥b,所以,又因为a⊂α,n⊥α,所以,故,从而a⊥c证法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P做PO⊥π,垂足为O,则O∈c,∵PO⊥π,a⊂π,∴直线PO⊥a,又a⊥b,b⊂平面PAO,PO∩b=P,∴a⊥平面PAO,又c⊂平面PAO,∴a⊥c(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于α),c 是直线b在π上的投影,若a⊥c,则a⊥b,逆命题为真命题点评:本题考查用向量的方法证明线线垂直,利用线面垂直的判定和性质证明线线垂直,考查命题的逆命题的写法,本题是一个综合题目,是一个中档题.19.(12分)(2012•陕西)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(x A,y A),(x B,y B),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.解答:解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(x A,y A),(x B,y B),∵∴O,A,B三点共线,且点A,B不在y轴上∴设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴=4,∴,解得k=±1,∴AB的方程为y=±x点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.20.(13分)(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间(分)1 2 3 4 5频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:综合题;压轴题.分析:(1)设Y表示顾客办理业务所需的时间,用频率估计概率,可得Y的分布列,A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟,由此可求概率;(2)确定X所有可能的取值,求出相应的概率,即可得到X的分布列及数学期望.解答:解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.点评:本题考查概率的求解,考查离散型随机变量的分布列与期望,解题的关键是明确变量的取值与含义.21.(14分)(2012•陕西)设函数f n(x)=x n+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=﹣1,证明:f n(x)在区间内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设x n是f n(x)在内的零点,判断数列x2,x3,…,x n的增减性.考点:数列与函数的综合;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)根据fn()f n(1)=(﹣)×1<0,以及f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,由题意可得函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4,分当>1时、当﹣1≤﹣<0时、当0≤﹣≤1 时三种情况,分别求得b的取值范围,再取并集,即得所求.(3)证法一:先求出f n(x n)和f n+1(x n+1)的解析式,再由当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n(x n+1),且f n(x)在区间内单调递增,故有x n<x n+1,从而得出结论.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,由f n+1(x n)f n+1(1)<0可得f n+1(x)的零点在(x n,1)内,从而有x n<x n+1(n≥2),由此得出结论.解答:解:(1)由于n≥2,b=1,c=﹣1,fn(x)=x n+bx+c=x n+x﹣1,∴f n()f n(1)=(﹣)×1<0,∴f n(x)在区间内存在零点.再由f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,函数f2(x)=x2+bx+c,对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,故函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4.当>1时,即b>2或b<﹣2时,M=|f2(﹣1)﹣f2(1)|=2|b|>4,这与题设相矛盾.当﹣1≤﹣<0时,即0<b≤2时,M=f2(1)﹣=≤4 恒成立.当0≤﹣≤1 时,即﹣2≤b≤0时,M=f2(﹣1)﹣=≤4 恒成立.综上可得,﹣2≤b≤2.(3)证法一:在(1)的条件下,x n是f n(x)=x n+x﹣1在内的唯一零点,则有f n(x n)=+x n﹣1=0,f n+1(x n+1)=+x n+1﹣1=0.当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n (x n+1).由(1)知,f n(x)在区间内单调递增,故有x n<x n+1,故数列x2,x3,…,x n单调递增数列.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,f n+1(x n)f n+1(1)=(+x n﹣1)×1=+x n﹣1<+x n﹣1=0,故f n+1(x)的零点在(x n,1)内,∴x n<x n+1(n≥2),故数列x2,x3,…,x n单调递增数列.点评:本题主要考查方程的根的存在性及个数判断,树立与函数的综合,体现了分类讨论、化归与转化的数学思想,属于难题.。
2012年普通高等学校招生全国统一考试数学理科数学(全国二卷)一、选择题1、 复数131i i-++= A 2+i B 2-i C 1+2i D 1- 2i2、已知集合A =},B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列1n a 1+n a 的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a CB =→,b CA=→,a ·b=0,|a|=1,|b|=2,则=→AD (A)b a 31-31(B )b a 32-32 (C)b a 53-53 (D)b a 54-54(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) (B ) (8)已知F 1、F 2为双曲线C :2-x 22=y 的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x 对称得:|PQ |最小值为.故选:B .【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分. 13.(5分)已知向量夹角为45°,且,则= 3.【考点】9O :平面向量数量积的性质及其运算;9S :数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题. 【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得 故答案为:3【点评】本题主要考查了向量的数量积 定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x ,y 满足约束条件:;则z=x ﹣2y 的取值范围为 .【考点】7C :简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y﹣z=0在y 轴上的截距,截距越大,z 越小,结合函数的图形可求z 的最大与最小值,从而可求z 的范围【解答】解:作出不等式组表示的平面区域 由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y ﹣z=0在y 轴上的截距,截距越大,z 越小结合函数的图形可知,当直线x ﹣2y ﹣z=0平移到B 时,截距最大,z 最小;当直线x ﹣2y ﹣z=0平移到A 时,截距最小,z 最大由可得B (1,2),由可得A (3,0)∴Z max =3,Z min =﹣3则z=x ﹣2y ∈[﹣3,3] 故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【考点】CP :正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii )购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD ﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD ∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln (a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.祝福语祝你考试成功!。
2012年全国卷新课标——数学理科(适用地区:吉林 黑龙江 山西、河南、新疆、宁夏、河北、云南、内蒙古) 本试卷包括必考题和选考题两部分,第1-21题为必考题,每个考生都必须作答.第22题~第24题,考生根据要求作答.一、选择题:本大题共12小题,在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为 A. 3B. 6C. 8D. 10【解析】选D.法一:按x y -的值为1,2,3,4计数,共432110+++=个;法二:其实就是要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.2. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有 A. 12种 B. 10种 C. 9种 D. 8种 【解析】选A.只需选定安排到甲地的1名教师2名学生即可,共1224C C 种安排方案. 3. 下面是关于复数iz +-=12的四个命题: :1P 2||=z:2P i z 22= :3P z的共轭复数为i +1:4P z的虚部为1-其中的真命题为A. 2P ,3PB. 1P ,2PC. 2P ,4PD. 3P ,4P【解析】选C.经计算, 221,21 z i z i i ==--=-+.4. 设21,F F 是椭圆:E12222=+by ax )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为A.21 B.32 C.43 D.54【解析】选C.画图易得,21F PF △是底角为30 的等腰三角形可得212PF F F =,即3222a c c ⎛⎫-= ⎪⎝⎭, 所以34c e a==.5. 已知}{n a 为等比数列,274=+a a ,865-=a a ,则=+101a a A.7B. 5C.5-D. 7-【解析】选D.472a a +=,56478a a a a ==-,474,2a a ∴==-或472,4a a =-=,14710,,,a a a a 成等比数列,1107a a ∴+=-. 6. 如果执行右边的程序框图,输入正整数N )2(≥N 和实数N a a a ,,,21 ,输出A ,B ,则A. B A +为N a a a ,,,21 的和B.2B A +为N a a a ,,,21 的算术平均数C. A 和B 分别是N a a a ,,,21 中最大的数和最小的数D. A 和B 分别是N a a a ,,,21 中最小的数和最大的数 【解析】选C.7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 18【解析】选B.由三视图可知,此几何体是底面为俯视图三角形,高为3的三棱锥,113932V =⨯⨯=.8. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为A.2B. 22C. 4D. 8【解析】选C.易知点(4,-在222x y a -=上,得24a =,24a =. 9. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A. ]45,21[B. ]43,21[C. ]21,0(D. ]2,0(【解析】选A. 由322,22442Zk k k ππππππωπωπ+≤+<+≤+∈得,1542,24Zk k k ω+≤≤+∈,15024ωω>∴≤≤.10. 已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为【解析】选B.易知ln(1)0y x x =+-≤对()1,x ∈-+∞恒成立,当且仅当0x =时,取等号. 11. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63C.32 D.22【解析】选A.易知点S到平面ABC的距离是点O到平面ABC的距离的2倍.显然O A B C-是棱长为1的正四面体,其高为3,故1234312O A B CV-=⨯⨯=,26S ABC O ABCV V--==12. 设点P在曲线x ey21=上,点Q在曲线)2ln(xy=上,则||PQ的最小值为A. 2ln1- B. )2ln1(2- C. 2ln1+ D. )2ln1(2+【解析】选B.12xy e=与ln(2)y x=互为反函数,曲线12xy e=与曲线ln(2)y x=关于直线y x=对称,只需求曲线12xy e=上的点P到直线y x=距离的最小值的2倍即可.设点1,2xP x e⎛⎫⎪⎝⎭,点P到直线y x=距离d=令()12xf x e x=-,则()112xf x e'=-.由()0f x'>得ln2x>;由()0f x'<得ln2x<,故当l n2x=时,()f x取最小值1ln2-.所以d=1xe x-=,mind=所以)min min||21ln2PQ d==-.二、填空题.本大题共4小题,每小题5分.13.已知向量a,b夹角为︒45,且1=||a,102=-||ba,则=||b.【解析】由已知得,()22222244||-=-=-a b a b a a b+b2244cos45=-a a b+b2410=-=+b,解得=b14.设y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x Z 2-=的取值范围为 .【解析】[]3,3-.画出可行域,易知当直线2Z x y =-经过点()1,2时,Z 取最小值3-;当直线2Z x y =-经过点()3,0时,Z 取最大值3.故2Z x y =-的取值范围为[]3,3-.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.使用寿命(单位:小时)服从正态分布)50,1000(2N 那么该部件的使用寿命超过1000小时的概率为 . 【解析】38 .由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为211311228⎡⎤⎛⎫--⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.16. 数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 . 【解析】1830.由1(1)21n n n a a n ++-=-得,22143k k a a k --=-……① 21241k k a a k +-=-……②,再由②-①得, 21212k k a a +-+=……③由①得, ()()()214365S S a a a a a a -=-+-+-+奇偶…()6059a a +-159=+++…117+()11173017702+⨯==由③得, ()()()3175119S a a a a a a =++++++奇…()5959a a ++21530=⨯=所以, ()217702301830S S S S S S =+=-+=+⨯=60奇奇奇偶偶.三、解答题:解答题应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分) 已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,0s i n 3c o s =--+c b C a C a .(Ⅰ) 求A ;(Ⅱ) 若2=a ,ABC △的面积为3,求b ,c .解:(Ⅰ)法一:由cos sin 0a C C b c +--=及正弦定理可得sin cos sin sin sin 0A C A CBC +--=,()sin cos sin sin sin 0A C A C A C C +-+-=,sin cos sin sin 0A C A C C --=,sin 0C > ,cos 10A A ∴--=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-=⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=法二:由正弦定理可得sin sin a Cc A=,由余弦定理可得 222cos 2a b cC ab+-=.再由cos sin 0a C C b c +--=可得,222sin 02a b ca Abc ab+-⋅+--=,即2222sin 220a b c A b bc +-+--=,2222sin 220a b c A b bc +-+--=22212b c aA bc+--+=cos 1A A -=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-=⎪⎝⎭, 0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=(Ⅱ)ABC S = △,1sin 24bc A bc ∴==4bc ∴=,2,3a A π==, 222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=.解得2b c ==. 18. (本小题满分12分) 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ) 若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 解:(Ⅰ)()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N∈);(Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.X X的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花.19. (本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BDDC ⊥1(Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.(Ⅰ) 证明:设112A CBC A A a ===, 直三棱柱111C B A A B C -,1DC DC ∴==, 12C C a=,22211D C D C C C ∴+=,1D C D C ∴⊥.又1D C BD ⊥ ,1D C D C D = ,1DC ∴⊥平面B D C .B C ⊂平面B D C ,1D C BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC =,1BC =,又已知BD DC ⊥1,BD ∴=. 在R t A B D △中,,,90BD AD a D AB ==∠= ,AB ∴=. 222AC BC AB ∴+=,A C B C ∴⊥.法一:取11A B 的中点E ,则易证1C E ⊥平面1B D A ,连结D E ,则1C E ⊥B D , 已知BD DC ⊥1,B D ∴⊥平面1D C E ,B D ∴⊥D E ,1C D E∴∠是二面角11C BD A --平面角.在1Rt C D E △中,1111sin 2C E C D E C D∠===,130C D E ∴∠= .即二面角11C BD A --的大小为30 .法二:以点C 为坐标原点,为x 轴,C B 为y 轴,1C C 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B a D a a C a .()()1,,,,0,DB a a a DC a a =--=- ,设平面1D B C 的法向量为()1111,,n x y z =,则1111110n D B ax ay az n D C ax az ⎧=-+-=⎪⎨=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取()11,2,1n =. 同理,可求得平面1D B A 的一个法向量()21,1,0n =.设1n 与2n 的夹角为θ,则1212cos 2n n n n θ⋅===, 30θ∴= .由图可知, 二面角的大小为锐角,故二面角11C BD A --的大小为30 . 20. (本小题满分12分)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F为圆心,FA 为半径的圆F 交l 于B 、D 两点(Ⅰ) 若90B F D ∠=︒,ABD △面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l的距离d FB FD ===.由ABD S =△, 11222B D d p ⨯⨯=⨯⨯=2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段A B 是圆F 的在直径,90oADB ∠=,2BD p ∴=,32A y p∴=,代入抛物线:C py x 22=得A x =.直线m的斜率为3AF k ==直线m的方程为02x -+=.由py x 22= 得22xy p=,x y p'=.由3x y p'==, 3x p =.故直线n 与抛物线C的切点坐标为,36p ⎛⎫⎪⎪⎝⎭, 直线n的方程为06x --=.所以坐标原点到m ,n312=.21. (本小题满分12分)已知函数121()(1)(0)2x f x f e f x x-'=-+.(Ⅰ) 求)(x f 的解析式及单调区间;(Ⅱ) 若b ax x x f ++≥221)(,求b a )1(+的最大值解: (Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令1x =得,(0)1f =, 再由121()(1)(0)2x f x f e f x x-'=-+,令0x =得()1f e '=.所以)(x f 的解析式为21()2x f x e x x=-+.()1xf x e x'=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔<所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞. (Ⅱ) 若b ax x x f ++≥221)(恒成立, 即()()21()102xh x f x x ax b e a x b =---=-+-≥恒成立,()()1xh x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时,()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1x h x e a '=-+为增函数,由()0h x '=得()ln 1x a =+,故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-. 依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥, 即()()11ln 1b a a a ≤+-++,10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-,()00()0u x x u x x ''>⇔<<<⇔>所以当x =, ()u x 取最大值2e u =.故当12a b +==, ()1a b +取最大值2e.综上, 若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e .请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号.22. (本小题满分10分)选修4—1:几何证明选讲 如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的 外接圆于F ,G 两点.若AB CF //,证明: (Ⅰ) BC CD =;(Ⅱ) GBD BCD ∽△△.证明:(Ⅰ) ∵D ,E 分别为ABC △边AB ,AC 的中点, ∴//D E B C .//C F A B ,//D F BC,∴且 =C F B D ,又∵D 为AB 的中点,∴且 =C F A D ,C D A F ∴=.//C F A B,B C A F ∴=.C D B C ∴=.(Ⅱ)由(Ⅰ)知,BC GF ,G B C F BD ∴==, B G D B D G D B C B D C ∠=∠=∠=∠B C D G B D∴△∽△.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ) 设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围.解:(Ⅰ)依题意,点A ,B ,C ,D 的极坐标分别为.所以点A ,B ,C ,D 的直角坐标分别为(1,、(、(1,-、1)-; (Ⅱ) 设()2cos ,3sin P ϕϕ,则 2222||||||||PD PC PB PA +++())2212cos 3sin ϕϕ=-+()()222cos 13sin ϕϕ++-()()2212cos 3sin ϕϕ+--+)()222cos 13sin ϕϕ++--2216cos 36sin 16ϕϕ=++[]23220sin 32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52. 24. (本小题满分10分)选修4—5:不等式选讲已知函数|2|||)(-++=x a x x f .(Ⅰ) 当3a =-时,求不等式3)(≥x f 的解集;(Ⅱ) |4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥. (Ⅱ) ()|4|f x x ≤-的解集包含]2,1[, 即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立, 即||2x a +≤对[]1,2x ∈恒成立, 即22a x a --≤≤-对[]1,2x ∈恒成立,所以2122aa--≤⎧⎨-≥⎩,即30a-≤≤.所以a的取值范围为[]3,0-.。
2012年普通高等学校招生全国统一考试(山东卷)理科数学一选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z满足z(2i)=11+7i(i为虚数单位),则z为 ( )A.3+5iB.35iC.3+5iD.35i【测量目标】复数的四则运算.【考查方式】给出含复数z的一个等式,化简求复数z.【难易程度】容易【参考答案】A【试题解析】.答案选A.另解:设,则,根据复数相等可知,解得,于是.2.已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则为 ( )A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}【测量目标】集合间的关系,集合的基本运算.【考查方式】给出三个集合,考查它们之间补集与并集.【难易程度】容易【参考答案】C【试题解析】由题意可知,,故而选择答案C.3.设a>0 ,a≠1 ,则“函数f(x)= a x在R上是减函数 ”,是“函数g(x)=(2a)在R上是增函数”的 ( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【测量目标】充分、必要条件.【考查方式】给出两个命题,判断它们之间的关系.【难易程度】容易【参考答案】A【试题解析】由题意可知,在R上单调递减,故而所以故在R上单调递增,(步骤1)反之,由于在R上单调递增,可知,(步骤2)当时,,函数并不单调递减,故而“函数f(x)= a3在R上是减函数”,是“函数g(x)=(2a) 在R上是增函数”的充分不必要条件,答案选A.(步骤3)4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为 ( )A. B.9 C.10 D.15【测量目标】系统抽样.【考查方式】构造数学模型,利用系统抽样解决问题.【难易程度】容易【参考答案】C【试题解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即,(步骤1)第k组的号码为451,令451,而,解得,(步骤2)则满足的整数k有10个,故答案应选C.(步骤3)5.设变量x,y满足约束条件则目标函数的取值范围是()A. B. C. D.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出二元不等式组,画出可行域求目标函数的最值.【难易程度】中等【参考答案】A【试题解析】由所给的不等式组可知所表示的可行域如图所示,第5题图(步骤1)而目标函数可以看做,截距最小时值最大,当截距最大时值最小,根据条件,故当目目标函数过时,取到的最大,,(步骤2)由,当目标函数经过时,取到最小值,,故而答案为A.(步骤3)6.执行下面的程序图,如果输入a=4,那么输出的n的值为()第6题图A.2 B.3 C.4 D.5【测量目标】循环型程序框图.【考查方式】给出程序框图的输入值,求输出值.【难易程度】容易【参考答案】B【试题解析】;(步骤1);(步骤2).(步骤3)答案应选B.7.若,,则sin= ( )A.B.C.D.【测量目标】二倍角.【考查方式】给出一个角的取值范围及其二倍正弦值,求此角在范围内的正弦值.【难易程度】容易【参考答案】D【试题解析】由可得,,,答案应选D.另解:由及可得,(步骤1)而当时,结合选项即可得.答案应选D.(步骤2)8.定义在R上的函数f(x)满足f(x+6)=f(x),当3x<1时,f(x)=,当1x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)= ( )A.335B.338C.1678D.2012【测量目标】函数的周期性.【考查方式】给出分段函数周期性及其解析式,求此函数一系列函数值的和.【难易程度】中等【参考答案】B【试题解析】根据条件可知函数是周期为6的周期函数,由因为当3x<1时,f(x)=,当1x<3时,f(x)=x可知,,(步骤1)故而,故而f(1)+f(2)+f(3)+…+f(2012)=(步骤2)故选B.9.函数的图象大致为 ( )A B C D【测量目标】三角函数的图象.【考查方式】给出三角函数解析式判断其图象.【难易程度】中等【参考答案】D【试题解析】函数,为奇函数,(步骤1)当,且时;当,且时;(步骤2)当,,;当,,.答案应选D.(步骤3)10.已知椭圆C:的离心率为,双曲线x²y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为 ( )A. B. C. D.【测量目标】椭圆的简单几何性质.【考查方式】给出椭圆的离心率及与已知抛物线形成的位置关系,求椭圆方程.【难易程度】中等【参考答案】D【试题解析】双曲线x²y²=1的渐近线方程为,(步骤1)代入可得,则,(步骤2)又由可得,则,于是.椭圆方程为,答案应选D.(步骤3)11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 ( )A.232B.252C.472D.484【测量目标】排列组合.【考查方式】给出数学模型利用排列组合判断取法的种数.【难易程度】中等【参考答案】C【试题解析】由题意可知,抽取的三张卡可以分为两类,一类为不含红色的卡,一类是含一张红色的卡片,(步骤1)第一类的抽取法的种数为,第二类抽取法的种数为,故而总的种数为(步骤2)12.设函数(x)=,g(x)=ax2+bx若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是 ( )A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时, x1+x2>0, y1+y2<0C.当a>0时,x1+x2<0, y1+y2<0D.当a>0时,x1+x2>0, y1+y2>0【测量目标】函数图象的应用.【考查方式】给出含参量的两个函数解析式,讨论参量的不同取值,通过两图象的交点判断交点坐标的关系.【难易程度】较难【参考答案】B【试题解析】令,则,(步骤1)设,令,则,(步骤2)要使y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点只需,整理得,于是可取来研究,(步骤3)当时,,解得,此时,此时;当时,,解得,此时,此时.答案应选B.(步骤4)另解:令可得.(步骤 1)设(步骤2)不妨设,结合图形可知,当时如右图,第12题图此时,即此时,即;同理可由图形经过推理可得当时.答案应选B.(步骤3)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若不等式的解集为,则实数k=__________.【测量目标】绝对值不等式.【考查方式】通过含参量的绝对值不等式的解集判断未知参量的值.【难易程度】容易【参考答案】2【试题解析】,(步骤1)根据解集为,故而,这是故而得(步骤2)另解:由题意可知是的两根,则解得.14.如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1EDF的体积为____________.第14题图【测量目标】立体几何空间几何体的体积.【考查方式】给出正方体的棱长,求正方体内几何体的体积.【难易程度】中等【参考答案】【试题解析】由题意可知,15.设a>0.若曲线与直线x=a,y=0所围成封闭图形的面积为a,则a=______.【测量目标】微积分的应用.【考查方式】给出曲线与直线函数解析式,求图象所围成的面积.【难易程度】中等【参考答案】【试题解析】.16.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为______________.第16题图【测量目标】弧度制.【考查方式】通过三角函数与向量知识,求平面点坐标的变化.【难易程度】较难【参考答案】【试题解析】根据题意可知圆滚动了2单位个弧长,点P旋转了弧度,此时点的坐标为另解1:根据题意可知滚动自圆心为(2,1)时的圆的参数方程为且,(步骤1)则点P的坐标为,即.(步骤2)三、解答题:本大题共6小题,共74分.17.(本小题满分12分)已知向量m=(sin x,1),函数的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图象向左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在上的值域.【测量目标】向量的坐标运算,函数的图象及变换.【考查方式】给出两向量,通过它们的乘积运算得三角函数关系式,讨论图象及值域.【难易程度】中等【试题解析】(Ⅰ),则;(步骤1)(Ⅱ)函数y=f(x)的图象向左平移个单位得到函数的图象,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数.(步骤2)当时,.故函数g(x)在上的值域为.(步骤3)另解:由可得,(步骤1)令,则,(步骤2)而,则,于是,故,即函数g(x)在上的值域为.(步骤3)18.(本小题满分12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.第18题图(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F-BD-C的余弦值.【测量目标】立体几何线面垂直及二面角.【考查方式】给出几何体中线线、线面关系,求证线面垂直及二面角的余弦值.【难易程度】中等【试题解析】(Ⅰ)在等腰梯形ABCD中,AB∥CD,∠DAB=,CB=CD,由余弦定理可知,即,(步骤1)在中,∠DAB=,,则为直角三角形,且.(步骤2)又AE⊥BD,平面AED,平面AED,且,故BD⊥平面AED;(步骤3)(Ⅱ)由(Ⅰ)可知,设,则,(步骤4)建立如图所示的空间直角坐标系,,向量为平面的一个法向量.(步骤5)设向量为平面的法向量,则即(步骤6)取,则,则为平面的一个法向量.(步骤7),而二面角F-BD-C的平面角为锐角,则二面角FBDC的余弦值为.(步骤8)第18题图19.(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.【测量目标】简单的随机抽样,用样本数字特征估计总体数字特征.【考查方式】给出数学模型,运用随机变量、分布列和数学期望求解事件概率及数学期望.【难易程度】容易【试题解析】(Ⅰ);(步骤1)(Ⅱ)(步骤2)X012345P20.(本小题满分12分)在等差数列{a n}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N,将数列{a n}中落入区间(9m,92m)内的项的个数记为,求数列{b m}的前m项和S m.【测量目标】等差数列的通项及数列的前n项和.【考查方式】给出等差数列几项的和及某一项的值,求等差数列的通项,并求新定义的数列的前n项和.【难易程度】中等【试题解析】(Ⅰ)由a3+a4+a5=84,=73可得(步骤1)而a9=73,则,于是即.(步骤2)(Ⅱ)对任意m∈N﹡,,则,即,(步骤3)而,由题意可知,(步骤4)于是,即.(步骤5)21.(本小题满分13分)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当时,的最小值.【测量目标】抛物线的简单几何性质,圆锥曲线中的探索性问题.【考查方式】给出含未知参量的抛物线方程及点线之间的位置关系,求抛物线方程,并探索点的存在问题和线段最短问题.【难易程度】较难【试题解析】(Ⅰ)F抛物线C:x2=2py(p>0)的焦点F,(步骤1)设M,,由题意可知,则点Q到抛物线C的准线的距离为,解得,于是抛物线C的方程为.(步骤2)(Ⅱ)假设存在点M,使得直线MQ与抛物线C相切于点M,而,,(步骤3),,(步骤4)由可得,,则,即,解得,点M的坐标为.(步骤5)(Ⅲ)若点M的横坐标为,则点M,.(步骤6)由可得,(步骤7)设,(步骤8)圆,,(步骤9)于是,令,(步骤10)设,,当时,,即当时.故当时,.(步骤11)22.(本小题满分13分)已知函数f(x) =(k为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x),其中为f(x)的导函数,证明:对任意x>0,.【测量目标】导数的几何意义,利用导数求函数的单调区间,利用导数解决不等式问题.【考查方式】给出含参量的函数解析式及函数图象上某点的切线,通过导数的应用求未知参量及函数单调区间.【难易程度】较难【试题解析】由f(x) = 可得,而,即,解得;(步骤1)(Ⅱ),令可得,当时,;当时,.于是在区间内为增函数;在内为减函数.(步骤2)(Ⅲ),(步骤3)当时,.当时,要证.只需证,然后构造函数即可证明.(步骤4)。
2012年全国统一高考数学试卷(新课标版)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种考点:排列、组合及简单计数问题.专题:计算题.分析:将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果解答:解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A点评:本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4考点:复数的基本概念;命题的真假判断与应用.专题:计算题.分析:由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.解答:解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.解答:解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.点评:本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题5.(5分)已知{a n} 为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数考点:循环结构.专题:计算题.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.解答:解:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12 D.18考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.解答:解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选B.点评:本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8考点:圆锥曲线的综合.专题:计算题.分析:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.解答:解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)(2012•黑龙江)已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.解答:解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.点评:本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数;则y=f(x )的图象大致为()A.B.C.D.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题.分析:考虑函数f(x )的分母的函数值恒小于零,即可排除A,C,D,这一性质可利用导数加以证明解答:解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,D故选B点评:本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径,∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.考点:点到直线的距离公式;反函数.专题:计算题.分析:由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求解答:解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称函数上的点到直线y=x的距离为设g(x)=,(x>0)则由≥0可得x≥ln2,由<0可得0<x<ln2∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增∴当x=ln2时,函数g(x)min=1﹣ln2由图象关于y=x对称得:|PQ|最小值为故选B点评:本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].考点:简单线性规划.专题:计算题.分析:先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围解答:解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]点评:平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.考点:解三角形.专题:计算题.分析:(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA 可求b+c,进而可求b,c解答:解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2点评:本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点:概率的应用;离散型随机变量的期望与方差.专题:综合题.分析:(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.解答:解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7X的分布列为X 60 70 80P 0.1 0.2 0.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4 ∵76.4>76,∴应购进17枝点评:本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:综合题.分析:(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.解答:(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.考点:圆锥曲线的综合;圆的标准方程;抛物线的简单性质.专题:综合题.分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD 的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;探究型;转化思想.分析:(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值解答:解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为点评:本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,难度较大,计算量也大,易马虎出错四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•黑龙江)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.考点:综合法与分析法(选修).专题:证明题.分析:(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,根据等弧对等角,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.解答:证明:(1)∵AB∥CF,∴∠DAE=∠ECF.根据等弧对等角可知,,∴∠BDC=∠ADF.∵D,E分别为△ABC边AB,AC的中点∴DE∥BC∴∠ADF=∠DBC.∴∠BDC=∠DBC∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.点评:本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.考点:椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:综合题.分析:(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解答:解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]点评:本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:计算题.分析:(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.解答:解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;刘长柏;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2013年5月30日。
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y ∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D2.(5分)(2012•新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A3.(5分)(2012•新课标)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.9.(5分)(2012•新课标)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.10.(5分)(2012•新课标)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选B11.(5分)(2012•新课标)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,=,∴S△ABC∴V==.三棱锥S﹣ABC故选:C.12.(5分)(2012•新课标)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:314.(5分)(2012•新课标)设x,y满足约束条件:;则z=x﹣2y的取值范围为.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]15.(5分)(2012•新课标)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为16.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前60项和为15×2+(15×8+)=1830,故答案为:1830.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S=bcsinA=,所以bc=4,△ABCa=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝19.(12分)(2012•新课标)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D 是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的=,知距离,由△ABD的面积S△ABD=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。
2012高考全国卷理科数学(附答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试..题卷上作答无效.......。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为 (A ) 3 (B ) 6 (C ) 8 (D ) 10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有(A ) 12种 (B ) 10种 (C ) 9种 (D )8种 (3)下面是关于复数21z i=-+的四个命题 1p :||2z = 2p : 22z i = 3p :z 的共轭复数为1i + 4p :z 的虚部为1-其中真命题为(A ) 2p , 3p (B ) 1p , 2p (C ) 2p ,4p (D ) 3p , 4p(4)设12,F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上的一点,21F PF ∆是底角为30的等腰三角形,则 E 的离心率为(A) 12 (B) 23 (C) 34 (D) 45(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=(A) 7 (B) 5 (C) 5- (D) 7- (6)如果执行右边的程序图,输入正整数(2)N N ≥和实数12,,...,N a a a 输入,A B ,则 (A)A B +为12,,...,N a a a 的和 (B )2A B+为12,,...,N a a a 的算式平均数 (C )A 和B 分别是12,,...,N a a a 中最大的数和最小的数(D )A 和B 分别是12,,...,N a a a 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B)9 (C )12 (D )18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于,A B 两点,||43AB =,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (9)已知0ω>,函数()sin()4f x x πω=+在,2ππ⎛⎫⎪⎝⎭单调递减,则ω的取值范围 (A) 15[,]24 (B) 13[,]24 (C) 1(0,]2(D)(0,2](10)已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为O的直径,且2SC =,则此棱锥的体积为(A)26 (B)36 (C)23 (D)22(12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为 (A)1ln 2- (B)2(1ln 2)- (C)1ln 2+ (D)2(1ln 2)+第Ⅱ卷本卷包括必考题和选考题两部分。
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=13Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P (B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A 3+5iB 3-5iC -3+5iD -3-5i2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}3 设a>0 a≠1 ,则“函数f(x)= a3在R上是减函数”,是“函数g(x)=(2-a) 3x在R上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为(A)7 (B)9 (C)10 (D)15(5)的约束条件2x y44x-y-1+⎧⎨⎩≤≥,则目标函数z=3x-y的取值范围是(A )(B)3,12⎡⎤--⎢⎥⎣⎦(C )[-1,6] (D )3-62⎡⎤⎢⎥⎣⎦,(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35(B )45(C 4(D )34(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2),当-1≤x <3时,f (x )=x 。
则f (1)+f (2)+f (3)+…+f (2012)=(A )335(B )338(C )1678(D )2012(9)函数的图像大致为(10)已知椭圆C :的离心学率为。
双曲线x ²-y ²=1的渐近线与径有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆c 的方程为(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,延求这卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)484 (12)设函数f (x )=,g (x )=ax 2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A (x 1,y 1),B(x 2,y 2),则下列判断正确的是 A.当a<0时,x 1+x 2<0,y 1+y 2>0 B. 当a<0时, x 1+x 2>0, y 1+y 2<0 C.当a>0时,x 1+x 2<0, y 1+y 2<0 D. 当a>0时,x 1+x 2>0, y 1+y 2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
(13)若不等式的解集为,则实数k=__________。
(14)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________。
(15)设a >0.若曲线与直线x =a ,y=0所围成封闭图形的面积为a ,则a=______。
(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,的坐标为______________。
三、解答题:本大题共6小题,共74分。
(17)(本小题满分12分)已知向量m=(sinx ,1),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y=f (x )的图象像左平移12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g (x )的图象。
求g (x )在上的值域。
(18)(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF 。
(Ⅰ)求证:BD ⊥平面AED ; (Ⅱ)求二面角F-BD-C 的余弦值。
(19)(本小题满分12分)先在甲、乙两个靶。
某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。
该射手每次射击的结果相互独立。
假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX (20)(本小题满分12分)在等差数列{a n }中,a 3+a 4+a 5=84,a 5=73. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9n ,92n )内的项的个数记为bm ,求数列{b n }的前m 项和S n 。
(21)(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线C :x2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34。
(Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 的横坐标为l :y=kx+14与抛物线C 有两个不同的交点A ,B ,l 与圆Q有两个不同的交点D ,E ,求当12≤k ≤2时,的最小值。
22(本小题满分13分) 已知函数f(x) =2ln x k e(k 为常数,c=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行。
(Ⅰ)求k 的值; (Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,g(x)<1+e -2。
2012年普通高等学校招生全国统一考试(山东卷)理科数学答案解析第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i ii z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2、已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。
答案选C 。
3、设a >0 a ≠1 ,则“函数f(x)= a x 在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件解析:p :“函数f(x)= a x 在R 上是减函数 ”等价于10<<a ;q :“函数g(x)=(2-a) 3x 在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件. 答案选A 。
4、采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15解析:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满点)3,21(处有最小值,即623≤≤-z .答案应选A 。
6、执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5解析:312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3。
答案应选B 。
7、若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=8θ,则sin θ=(A )35(B )45(C 4(D )34解析:由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈, 812sin12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D 。
另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2=8θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ,而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D 。