(完整word版)初中一次函数习题及例题
- 格式:doc
- 大小:113.00 KB
- 文档页数:4
一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0 图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0) k>0,b>0 一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b (k≠0) k<0,b>0 一、二、四y随x的增大而减小k<0,b<0 二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系—正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.八、一次函数的实际应用1.主要题型: (1)求相应的一次函数表2.用一次函数解决实际问题的一般步骤为(1)设定实际问题中的自变量与因变量的取值范围;(4)利用函数性质解决问题3.方案最值问题:对于求方案问题,通常涉及两个相关量事物的取值范围,再根据另一个事物所要满4.方法技巧求最值的本质为求最优方案,解法有两种(2)直接利用所求值与其变量之间满足的若为分段函数,则应分类讨论,先计算出每显然,第(2)种方法更简单快捷.经典例1.若一次函数22y x =+的图象经过点【答案】8【分析】将点(3,)m 代入一次函数的解析式【解析】解:由题意知,将点(3,)m 代入一即:232=⨯+m ,解得:8m =.故答案【点睛】本题考查了一次函数的图像和性质2.有一个装有水的容器,如图所示.容器中,水面高度以每秒0.2cm 的速度匀速增加关系是( )A .正比例函数关系B .一次函数关系【答案】B【分析】设水面高度为,hcm 注水时间为【详解】解:设水面高度为,hcm 注水时间所以容器内的水面高度与对应的注水时间满【点睛】本题考查的是列函数关系式,判断函数表达式;(2)结合一次函数图象求相关量、求步骤为:变量;(2)通过列方程(组)与待定系数法求一次函数关决问题;(5)检验所求解是否符合实际意义;(6)关量,解题方法为根据题中所要满足的关系式,通过所要满足的条件,即可确定出有多少种方案. 两种:(1)可将所有求得的方案的值计算出来,再进满足的一次函数关系式求解,由一次函数的增减性可算出每个分段函数的取值,再进行比较. 经典例题 一次函数和正比例函数的定义过点(3,)m ,则m =_________. 解析式中即可求出m 的值.代入一次函数22y x =+的解析式中, 故答案为:8.和性质,点在图像上,则将点的坐标代入解析式中即容器内的水面高度是10cm ,现向容器内注水,并同速增加,则容器注满水之前,容器内的水面高度与对关系C .二次函数关系D .反比例函数关系间为t 分钟,根据题意写出h 与t 的函数关系式,从而水时间为t 分钟,则由题意得:0.210,h t =+ 时间满足的函数关系是一次函数关系,故选B . 判断两个变量之间的函数关系,掌握以上知识是解求实际问题的最值等. 函数关系式;(3)确定自变量)答. 通过列不等式,求解出某一个再进行比较;减性可直接确定最优方案及最值;定义式中即可.并同时开始计时,在注水过程度与对应的注水时间满足的函数关系从而可得答案.识是解题的关键.1.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值A .﹣2 B .﹣23【答案】A【分析】根据分段函数的解析式分别计算【解析】解:若x <2,当y =3时,﹣x 若x ≥2,当y =3时,﹣2x=3,解得:x=﹣【点睛】本题考查了反比例函数的性质、键.2.下列函数关系式:(1)y =﹣x ;(2A .1 B .2【答案】B【分析】根据一次函数的定义条件进行逐一【详解】解:(1)y =﹣x 是正比例函数 (2)y =x ﹣1符合一次函数的定义,故正(4)y =x 2属于二次函数,故错误.综上所【点睛】本题主要考查了一次函数的定义b 为常数,k≠0,自变量次数为1.经典1.若m <﹣2,则一次函数()y m x =++A . B .【答案】D【分析】由m <﹣2得出m+1<0,1﹣【解析】解:∵m <﹣2,∴m +1<0,1函数值为3时,自变量x 的值为( )C .﹣2或﹣23D .﹣2或﹣32计算,即可得出结论. +1=3,解得:x =﹣2; ﹣23,不合题意舍去;∴x =﹣2,故选:A .、一次函数的图象上点的坐标特征;根据分段函数)y =x ﹣1;(3)y =1x;(4)y =x 2,其中一次函数C .3D .4行逐一分析即可.函数,是特殊的一次函数,故正确; 故正确;(3)y =1x属于反比例函数,故错误; 综上所述,一次函数的个数是2个.故选:B .定义.本题主要考查了一次函数的定义,一次函数经典例题 一次函数的图象及性质 11m -的图象可能是( )C .D .m >0,进而利用一次函数的性质解答即可. ﹣m >0,段函数进行分段求解是解题的关次函数的个数是( ) 函数y=kx+b 的定义条件是:k 、所以一次函数()11y m x m =++-的图象【点睛】本题考查的是一次函数的图像与性影响是解题的关键 .2.对于一次函数2y x =+,下列说法不正A .图象经过点()1,3 C .图象不经过第四象限 【答案】D【分析】根据一次函数的图像与性质即可求【解析】A.图象经过点()1,3,正确;C.图象经过第一、二、三象限,故错误;【点睛】此题主要考查一次函数的图像与性1.在平面直角坐标系中,已知函数y A . B .【答案】A【分析】求得解析式即可判断.【解析】解:∵函数y =ax +a (a ≠0)的图∴直线交y 轴的正半轴,且过点(1,2,【点睛】此题考查一次函数表达式及图像的2.已知一次函数3y kx =+的图象经过点A .()1,2- B .()1,2-【答案】B【分析】先根据一次函数的增减性判断出【解析】∵一次函数3y kx =+的函数值A .当x=-1,y=2时,-k+3=2,解得选项符合题意;C .当x=2,y=3时,2k+3的图象经过一,二,四象限,故选:D . 像与性质,不等式的基本性质,掌握一次函数y kx +法不正确的是( ) B .图象与x 轴交于点()2,0- D .当2x >时,4y <即可求解.B.图象与x 轴交于点()2,0-,正确 ; D.当2x >时,y >4,故错误;故选D . 像与性质,解题的关键是熟知一次函数的性质特点=ax +a (a ≠0)的图象过点P (1,2),则该函数的 C . D .的图象过点P (1,2),∴2=a +a ,解得a =1,∴),故选:A . 图像的相关知识.经过点A ,且y 随x 的增大而减小,则点A 的坐标可以C .()2,3D .()3,4断出k 的符号,再将各项坐标代入解析式进行逐一判数值y 随x 的增大而减小,∴k ﹤0,k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3b =中的,k b 对函数图像的特点.函数的图象可能是( )∴y =x +1, 标可以是( ) 逐一判断即可. ,k+3=-2,解得k=-5﹤0,此,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B . 【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.经典例题 用待定系数法确定一次函数的解析式1. 小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x (日) 1 2 3 4成绩y (个) 4043 4649小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y =3x +37.【分析】利用待定系数法即可求出该函数表达式. 【解析】解:设该函数表达式为y =kx +b ,根据题意得:40243k b k b +⎧⎨+⎩==,解得337k b ⎧⎨⎩==,∴该函数表达式为y =3x +37.故答案为:y =3x +37.【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.2.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解析】解:∵将函数y =2x 的图象向上平移3个单位,∴所得图象的函数表达式为:y =2x +3.故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.1.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 1112 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【答案】(1)x =7,y =2.75这组数据错误斤.【分析】(1)利用描点法画出图形即可判断【解析】解:(1)观察图象可知:x =7(2)设y =kx +b ,把x =1,y =0.75,x 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当x 答:秤杆上秤砣到秤纽的水平距离为【点睛】此题考查画一次函数的图象的方法解此题的关键.2.把直线y =2x ﹣1向左平移1个单位长度【答案】y =2x +3【分析】直接利用一次函数的平移规律进而【解析】解:把直线y =2x ﹣1向左平移再向上平移2个单位长度,得到y =2x 【点睛】本题考查了一次函数的平移,熟练经典1.在平面直角坐标系xOy 中,对于横、纵坐据错误;(2)秤杆上秤砣到秤纽的水平距离为16厘米可判断.(2)设函数关系式为y =kx +b ,利用待定系,y =2.75这组数据错误.=2,y =1代入可得0.7521k b k b +=⎧⎨+=⎩,=16时,y =4.5,16厘米时,秤钩所挂物重是4.5斤.的方法,待定系数法求一次函数的解析式,一次函数位长度,再向上平移2个单位长度,则平移后所得直律进而得出答案.平移1个单位长度,得到y =2(x +1)﹣1=2x +1, +3.故答案为:y =2x +3. 熟练掌握是解题的关键.经典例题一次函数与一元一次方程 纵坐标相等的点称为“好点”.下列函数的图象中厘米时,秤钩所挂物重是4.5待定系数法解决问题即可. 次函数的实际应用,正确计算是所得直线的解析式为_____. 象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-【答案】B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【解析】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =是原方程的解,即“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.2.在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2 B .3C .4D .6【答案】B【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB 的面积=12⨯3×2=3,故选:B . 【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.1.已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y x +2C .y =4x +2D .y +2 【答案】C【分析】分别求出点A 、B 坐标,再根据各选项解析式求出与x 轴交点坐标,判断即可. 【解析】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0) A. y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B. y x +2与x ,0);故直线y x +2与x 轴的交点在线段AB 上;C.y=4x+2与x轴的交点为(﹣12,D.yx+2与x【点睛】本题考查了求直线与坐标轴的交点2.如图,直线542y x=+与x轴、y轴分则点1A的坐标是_____.【答案】(4,125)【分析】首先根据直线AB来求出点A案.【解析】解:在542y x=+中,令∴A(8-5,0),B(0,4),由旋转可得∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90∴∠OBO1=90°,∴O1B∥x轴,∴点A横坐标为O1B=OB=4,故点A1的坐标是【点睛】本题主要考查了旋转的性质以及一关键.经典例1.如图,直线y=kx+b(k、b是常数k≠00);故直线y=4x+2与x轴的交点不在线段AB上,0);故直线y+2与x轴的交点在线段的交点,注意求直线与x轴交点坐标,即把y=0代入轴分别交于A、B两点,把AOBV绕点B逆时针旋转和点B的坐标,A1的横坐标等于OB,而纵坐标等x=0得,y=4,令y=0,得5042x=+,解得x=-5可得△AOB ≌△A1O1B,∠ABA1=90°,OB=90°,OA=O1A1=85,OB=O1B=4,1的纵坐标为OB-OA的长,即为48-5=125;标是(4,125),故答案为:(4,125).以及一次函数与坐标轴的交点问题,利用基本性质结经典例题一次函数与一元一次不等式)与直线y=2交于点A(4,2),则关于x的不等式上;在线段AB上;故选:C代入函数解析式.针旋转90°后得到11AO BV,坐标等于OB-OA,即可得出答8,性质结合图形进行推理是解题的等式kx+b<2的解集为_____.【答案】x <4【分析】结合函数图象,写出直线y =+【解析】解:∵直线y =kx +b 与直线y ∴关于x 的不等式kx +b <2的解集为:【点睛】本题考查的是利用函数图像解不等2.一次函数y kx b =+的图象如图所示,A .k 0<B .1b =-C .【答案】B【分析】根据一次函数的图象与性质判断即【解析】由图象知,k ﹥0,且y 随x 的增大图象与y 轴负半轴的交点坐标为(0,-1当x ﹥2时,图象位于x 轴的上方,则有【点睛】本题考查一次函数的图象与性质1.如图,直线(0)y kx b k =+<经过点A .1x ≤B .1x ≥ 【答案】A 【分析】将(1,1)P 代入(y kx b k =+【解析】解:由题意将(1,1)P 代入y =+整理kx b x +≥得,()10k x b -+≥,∴【点睛】本题考查了一次函数的图像和性质kx b 在直线y =2下方所对应的自变量的范围即可=2交于点A (4,2),∴x <4时,y <2,x <4.故答案为:x <4.解不等式,理解函数图像上的点的纵坐标的大小对图,则下列结论正确的是( )y 随x 的增大而减小 D .当2x >时,kx b +<判断即可.的增大而增大,故A 、C 选项错误; 1),所以b=﹣1,B 选项正确;则有y ﹥0即+kx b ﹥0,D 选项错误,故选:B . 性质,利用数形结合法熟练掌握一次函数的图象与性过点(1,1)P ,当kx b x +≥时,则x 的取值范围为(C .1x < D .1x >0)<,可得1k b -=-,再将kx b x +≥变形整理,得(0)kx b k <,可得1k b +=,即1k b -=-,∴0bx b -+≥,由图像可知0b >,∴10x -≤和性质,解题关键在于灵活应用待定系数法和不等式围即可.小对图像的影响是解题的关键.0x象与性质是解答本题的关键. ( )得0bx b -+≥,求解即可.,∴1x ≤,故选:A .不等式的性质.1.某公司新产品上市30天全部售完,图销售利润与上市时间之间的关系,则最大日【答案】1800【解析】【分析】从图1和图2中可知,当t=30润=销售量×每件产品销售利润即可求解【详解】由图1知,当天数t=30时,市场从图2知,当天数t=30时,每件产品销售所以当天数t=30时,市场的日销售利润最【点睛】本题考查一次函数的实际应用,利用数形结合法理解题目已知信息是解答的2.小华端午节从家里出发,沿笔直道路匀路线匀速回家装载货物,然后按原路原速返从商店出发开始所用时间为t (分钟),图中线段AB 表示小华和商店的距离1y (列问题:(1)填空:妈妈骑车的速度是__________经典例题 一次函数的应用图1表示产品的市场日销售量与上市时间之间的关最大日销售利润是__________元.时,日销售量达到最大,每件产品的销售利润也达求解.市场日销售量达到最大60件;品销售利润达到最大30元,利润最大,最大利润为60×30=1800元,故答案为:,也考查了学生的观察能力、理解能力和解决实际解答的关键.道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮原速返回商店,小华到达商店比妈妈返回商店早5图1表示两人之间的距离s (米)与时间t (分钟(米)与时间t (分钟)的函数关系的图象的一部分______米/分钟,妈妈在家装载货物所用时间是_____间的关系,图2表示单件产品的润也达到最大,所以由日销售利:1800决实际问题的能力,仔细审题,时骑三轮车从商店出发,沿相同分钟.在此过程中,设妈妈分钟)的函数关系的图象;图2一部分,请根据所给信息解答下__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y (米(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2钟)时,两人相距360米.【分析】(1)先求出小华步行的速度,然后达商店比妈妈返回商店早5分钟,即可求出求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <(3)由题意知,小华速度为60米/分钟种情况讨论即可.【解析】解:(1)由题意可得:小华步行的妈妈骑车的速度为:1800601010-⨯∵小华到达商店比妈妈返回商店早5分钟∴装货时间为:35-15×2=5(分钟),即妈妈由题意和图像可得妈妈在M 点时开始返回此时纵坐标为:20×60=1200(米),∴点(2)①当0≤t <15时y 2=120t ,②当将(20,1800),(35,0),代入得1800⎧⎨⎩∴此段的解析式为y 2=-120x+4200,综上其函数图象如图,米)与时间t (分钟)的函数关系式,并在图2中画.)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(然后即可求出妈妈骑车的速度;先求出妈妈回家用可求出装货时间;根据题意和图像可得妈妈在M 点时20时,③当20≤t≤35时三段求出解析式即可,根据解分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后步行的速度为:180030=60(米/分钟), =120(米/分钟);妈妈回家用的时间为:1800120=15分钟,∴可知妈妈在35分钟时返回商店, 即妈妈在家装载货物的时间为5分钟;始返回商店,∴M 点的横坐标为:15+5=20(分钟),点M 的坐标为()20,1200;故答案为:120,5,15≤t <20时y 2=1800,③当20≤t≤35时,设此段函数解20035k b k b =+=+,解得1204200k b =-⎧⎨=⎩, 综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;;中画出其函数图象; ;3)当t 为8,12或32(分回家用的时间,然后根据小华到点时开始返回商店,然后即可根据解析式画图即可;相遇后,③在小华到达以后三(分钟), ),()20,1200;函数解析式为y 2=kx+b ,(3)由题意知,小华速度为60米/分钟①相遇前,依题意有6012036018t t ++②相遇后,依题意有6012036018t t +-③依题意,当20t =分钟时,妈妈从家里出此时小华距商店为180********-⨯=即30t =分钟时,小华到达商店,而此时妈妈距离商店为1800101206-⨯∴()120536018002t -+=⨯,解得∴当t 为8,12或32(分钟)时,两人相距【点睛】本题考查了一次函数的实际应用1.新龟兔赛跑的故事:龟兔从同一地点同遥领先,就躺在路边呼呼大睡起来.当它一S 1、S 2分别表示乌龟和兔子赛跑的路程,A . B .【答案】C【分析】分别分析乌龟和兔子随时间变化它【解析】对于乌龟,其运动过程可分为两段可排除B ,D 选项 对于兔子,其运动过程开始跑得快,所以路程增加快;中间睡觉时【点睛】本题考查了函数图象的性质进行简别作为点的横、纵坐标,那么坐标平面内由2.某种机器工作前先将空油箱加满,然后中,油箱里的油量y (单位:L )与时间(1)机器每分钟加油量为_____L ,机器(2)求机器工作时y 关于x的函数解析式分钟,妈妈速度为120米/分钟, 01800=,解得8t =(分钟); 01800=,解得12t =(分钟); 家里出发开始追赶小华,(米),只需10分钟,20600=(米)360>(米), 32t =(分钟),人相距360米.应用,由图像获取正确的信息是解题关键.地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲当它一觉醒来,发现乌龟已经超过它,于是奋力直追,t 为赛跑时间,则下列图象中与故事情节相吻合的 C . D .变化它们的路程变化情况,即直线的斜率的变化.为两段:从起点到终点乌龟没有停歇,其路程不断增动过程可分为三段:据此可排除A 选项睡觉时路程不变;醒来时追赶乌龟路程增加快.故选进行简单的合情推理,对于一个函数,如果把自变量面内由这些点组成的图形就是这个函数的图象.然后停止加油立即开始工作,当停止工作时,油箱中与时间x (单位:min )之间的关系如图所示.机器工作的过程中每分钟耗油量为_____L .解析式,并写出自变量x的取值范围.骄傲自满的兔子觉得自己遥力直追,最后同时到达终点.用吻合的是( ).问题便可解答.不断增加;最后同时到达终点,故选:C自变量与函数的每一对对应值分油箱中油量为5L.在整个过程(3)直接写出油箱中油量为油箱容积的一半时x 的值.【答案】(1)3,0.5;(2)1352y x =-+,1060x ≤≤;(3)5或40. 【分析】(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可.【解析】(1)由函数图象得:机器每分钟加油量为303()10L = 机器工作的过程中每分钟耗油量为3050.5()6010L -=- 故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y 关于x 的函数解析式y kx b =+ 将点(10,30),(60,5)代入得:1030605k b k b +=⎧⎨+=⎩ 解得1235k b ⎧=-⎪⎨⎪=⎩ 则机器工作时y 关于x 的函数解析式1352y x =-+;(3)设机器加油过程中的y 关于x 的函数解析式y ax =将点(10,30)代入得:1030a = 解得3a = 则机器加油过程中的y 关于x 的函数解析式3y x =油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中:当30152y ==时,315x =,解得5x = ②在机器工作过程中:当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40. 【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.经典例题 一次函数与几何图形综合1.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.。
例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
说明:满足函数关系式的有序数对,在坐标平面内对应的点一定在函数图象上;反之,函数图象上的点,其坐标一定满足函数关系式。
例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 。
例3:.已知一次函数的图象经过点A(—3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.例5:某移动通讯公司开设两种业务:若设某人一个月内市内通话x跳次,两种方式的费用分别为z元和y元.①写出z、y与x之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式; ②某人乘坐2。
5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30。
8元,出租车行驶了多少千米?1.A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?一. 填空题1. (-3,4)关于x 轴对称的点的坐标为_________,关于y 轴对称的点的坐标为__________,关于原点对称的坐标为__________。
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
一次函数解析式典型题型一. 定义型(一次函数即X 和Y 的次数为1) 例1. 已知函数y m xm =-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证m -≠30 二. 点斜型(已知斜率和经过的一点)例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数y kx =-3的图像过点(2,-1) ∴-=-123k ,即k =1故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。
三. 两点型(已知图像经过的两点)已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为 解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24 四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为y=-2x+2。
y2O 1 x解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)∴有020=+=+⎧⎨⎩k b b ∴=-=⎧⎨⎩k b 22故这个一次函数的解析式为y x =-+22 五. 斜截型(已知斜率k 和截距b )两直线平行,则k1=k2;两直线垂直,则k1=-1/k2例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。
当k k 12=,b b 12≠时,l l 12// 直线y kx b =+与直线y x =-2平行,∴=-k 2 又 直线y kx b =+在y 轴上的截距为2,∴=b 2 故直线的解析式为y x =-+22六. 平移型(向上/右平移则截距增加;向左平移则截距减小)例6. 把直线y x =+21向下平移2个单位得到的图像解析式为 y=2x-1。
初二数学一次函数超经典试题含答案一、相信你一定能填对!〔每题3分,共30分〕1.以下函数中,自变量x的取值范围是x≥2的是〔〕A.y =2x B.y=1C.y=4x2D.y=x 2·x 2x 22.下面哪个点在函数y=1x+1的图象上〔〕2A.〔2,1〕3.以下函数中,B.〔-2,1〕C.〔2,0〕y是x的正比例函数的是〔〕D .〔-2,0〕A.y=2x -1B.y=x C.y=2x2D .y=-2x+134.一次函数y=-5x+3的图象经过的象限是〔〕A .一、二、三B .二、三、四C .一、二、四D .一、三、四6.假设一次函数y=〔3-k〕x-k的图象经过第二、三、四象限,那么k的取值范围是〔〕A .k>3B .0<k≤3C .0≤k<3D.0<k<37.一次函数的图象与直线y=-x+1平行,且过点〔8,2〕,那么此一次函数的解析式为〔〕A .y=-x-2B .y=-x-6C .y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,那么油箱内余油量y〔升〕与行驶时间t〔时〕的函数关系用图象表示应为以下列图中的〔〕9.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y?〔千米〕与行进时间t〔小时〕的函数图象的示意图,同学们画出的图象如下列图,你认为正确的选项是〔〕10.一次函数y=kx+ b的图象经过点〔2,-1〕和〔0,3〕,?那么这个一次函数的解析式为〔〕A .y=-2x+3B.y=-3x+2C.y=3x-2D.y=1x-32二、你能填得又快又对吗?〔每题3分,共30分〕11.自变量为x的函数y=mx+2-m是正比例函数,那么m=________,?该函数的解析式为_________.12.假设点〔1,3〕在正比例函数y=kx的图象上,那么此函数的解析式为________.13.一次函数 y=kx+b 的图象经过点〔A1,3〕和〔B-1,-1〕,那么此函数的解析式为 14.假设解方程 x+2=3x-2得x=2,那么当x_________时直线y=x+?2?上的点在直线_________. y=3x-2上相应点的上方.15.一次函数y=-x+a 与y=x+b 的图象相交于点〔 m ,8〕,那么a+b=_________.16.假设一次函数 y=kx+b 交于y?轴的负半轴,?且y?的值随x?的增大而减少, ?那么k____0,b______0.〔填“>〞、“<〞或“=〞〕17.直线y=x-3x y 3 0与y=2x+2的交点为〔-5,-8〕,那么方程组y 2的解是________.2x 018.一次函数y=-3x+1的图象经过点〔a ,1〕和点〔-2,b 〕,那么a=________,b=______.y19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积A4是9,那么k 的值为_____.320.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,那么此一次函数的解析式为__________,2△AOC 的面积为_________.1CO1234x-1 -1-2三、认真解答,一定要细心哟!〔共60分〕21.〔14分〕根据以下条件,确定函数关系式:〔1〕y与x成正比,且当x=9时,y=16;〔2〕y=kx+b的图象经过点〔3,2〕和点〔-2,1〕.23.〔12分〕一农民带了假设干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数〔含备用零钱〕的关系如下列图,结合图象答复以下问题:〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克元将剩余土豆售完,这时他手中的钱〔含备用零钱〕是26元,问他一共带了多少千克土豆?24.〔10分〕如下列图的折线ABC?表示从甲地向乙地打长途所需的费y〔元〕与通话时间t〔分钟〕之间的函数关系的图象〔1〕写出y与t?之间的函数关系式.〔2〕通话2分钟应付通话费多少元?通话7分钟呢?25.〔12分〕雅美服装厂现有A种布料70米,B种布料52米,?现方案用这两种布料生产M、N两种型号的时装共 80套.做一套M型号的时装需用A种布料1.?1米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料0.?9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y〔元〕与x〔套〕的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:3第一份4.B4.C5.D6.A7.C8.B9.C10.A11.2;y=2x12.y=3x13.y=2x+114.<215.16x5.±620.y=x+2;4 16.<;<17.18.0;719y821.①y=16x;②y=1x+722.y=x-2;y=8;x=1495523.①5元;②元;③45千克24.①当0<t≤3时,;当t>3时,.元;元25.①y=50x+45〔80-x〕=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.?6〔80-x〕]米,共用B种布料〔80-x〕]米,∴解之得40≤x≤44,而x为整数,x=40,41,42,43,44,y与x的函数关系式是y=5x+3600〔x=40,41,42,43,44〕;②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
范文范例精心整理求一次函数解析式专项练习1.A〔2,﹣1〕,B〔3,﹣2〕,C〔a,a〕三点在同一条直线上.1〕求a的值;2〕求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A〔﹣,0〕,与y轴交于点B〔0,3〕1〕求直线l的解析式;2〕过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.一次函数的图象经过〔 1,2〕和〔﹣2,﹣1〕,求这个一次函数解析式及该函数图象与x轴交点的坐标.4.如下列图,直线l是一次函数y=kx+b的图象.1〕求k、b的值;2〕当x=2时,求y的值;3〕当y=4时,求x的值.5.一次函数y=kx+b的图象与x轴交于点A〔﹣6,0〕,与y轴交于点B.假设△AOB的面积为12,求一次函数的表达式.6.一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.word完美格式范文范例精心整理7.y与x+2成正比例,且x=0时,y=2,求:1〕y与x的函数关系式;2〕其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.〔1〕写出y与x之间的函数关系式;〔2〕画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A〔﹣2,6〕,且与x轴交于点B.〔1〕求这条直线的解析式;〔2〕直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.y与x+2成正比例,且x=1时,y=﹣6.1〕求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;2〕结合图象求,当﹣1<y≤0时x的取值范围.11.y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.一次函数的图象经过点A〔,m〕和B〔,﹣1〕,其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.(14.一次函数y=〔k﹣1〕x+5的图象经过点〔1,3〕.(1〕求出k的值;(2〕求当y=1时,x的值.word完美格式范文范例精心整理15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点〔2,﹣1〕.1〕分别求出这两个函数的表达式;2〕求这两个函数的图象与x轴围成的三角形的面积.16.y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.1〕求y与x的函数关系式.2〕如果y的取值范围为3≤y≤5时,求x的取值范围.17.假设一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.,直线AB经过A〔﹣3,1〕,B〔0,﹣2〕,将该直线沿y轴向下平移3个单位得到直线MN.1〕求直线AB和直线MN的函数解析式;2〕求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A〔0,﹣2〕,且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.〔1〕求出y与x的函数关系式.〔2〕自变量x取何值时,函数值为4?23.y﹣3与4x﹣2成正比例,且当x=1时,y=5,〔1〕求y与x的函数关系式;word完美格式范文范例精心整理2〕求当x=﹣2时的函数值:3〕如果y的取值范围是0≤y≤5,求x的取值范围;4〕假设函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.y﹣3与x成正比例,且x=2时,y=7.〔1〕求y与x的函数关系式;〔2〕当时,求y的值;〔3〕将所得函数图象平移,使它过点〔2,﹣1〕.求平移后直线的解析式.25.:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A〔2,1〕点,求它的解析式.26.一次函数y=〔3﹣k〕x+2k+1.〔1〕如果图象经过〔﹣1,2〕,求k;〔2〕假设图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点〔2,a〕,求一次函数的解析式.28.y+5与3x+4成正比例,且当x=1时,y=2.1〕求出y与x的函数关系式;2〕设点P〔a,﹣2〕在这条直线上,求P点的坐标.29.一次函数y=kx+b〔k≠0〕在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.word完美格式范文范例精心整理30.:关于x的一次函数y=〔2m﹣1〕x+m﹣2假设这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.〔1〕求这个函数的解析式.〔2〕求直线y=﹣x和〔1〕中函数的图象与x轴围成的三角形面积.word完美格式范文范例精心整理一次函数的解析式30题参考答案:1.〔1〕设直线AB解析式为y=kx+b,4.〔1〕由图象可知,直线l过点〔1,0〕和〔0,〕,依题意,得,解得那么,解得:,∴直线AB解析式为y=﹣x+1∵点C〔a,a〕在直线AB上,∴a=﹣a+1,解得a=;即k=,b=;〔2〕直线AB与x轴、y轴的交点分别为〔1,0〕,〔0,〔2〕由〔1〕知,直线l的解析式为y=x+,1〕∴直线AB与坐标轴围成的三角形的面积为当x=2时,有y=×2+=;2.〔1〕设直线l的解析式为y=kx+b,〔3〕当y=4时,代入y=x+得:4=x+,∵直线l与x轴交于点A〔﹣,0〕,与y轴交于点B〔0,3〕,解得x=﹣5.5.∵图象经过点A〔﹣6,0〕,∴代入得:,∴0=﹣6k+b,解得:k=2,b=3,即b=6k①,∴直线l的解析式为y=2x+3;∵图象与y轴的交点是B〔0,b〕,∴?OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,〔2〕代入①式,得,,解:分为两种情况:①当P在x轴的负半轴上时,∵A〔﹣,0〕,B〔0,3〕,一次函数的表达式是或∴OP=2OA=3,0B=3,∴AP=3﹣,6.根据题意,得,∴△ABP的面积是×AP×OB=××;②当P在x轴的正半轴上时,解得.∵A〔﹣,0〕,B〔0,3〕,∴OP=2OA=3,0B=3,∴,故该一次函数的关系式是y=﹣x+.∴△ABP的面积是×AP×OB=××.7.〔1〕根据题意,得y=k〔x+2〕〔k≠0〕;3.设一次函数的解析式为y=kx+b〔k≠0〕,由x=0时,y=2得2=k〔0+2〕,解得k=1,所以y与x的函数关系式是y=x+2;由得:,〔2〕由,得;解得:,由,得,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,所以图象与x轴的交点坐标是:〔﹣2,0〕;与y轴的交∴x=﹣1,点坐标为:〔0,2〕.∴该函数图象与x轴交点的坐标是〔﹣1,0〕8.〔1〕∵y+3与x+2成正比例,word完美格式范文范例精心整理∴设y+3=k〔x+2〕〔k≠0〕,∵当x=3时,y=7,7+3=k〔3+2〕,解得,k=2.那么y+3=2〔x+2〕,即y=2x+1;〔2〕从图上可以知道,当﹣1<y≤0时x的取值范围﹣〔2〕由〔1〕知,y=2x+1.2≤x<﹣.令x=0,那么y=1,.令y=0,那么x=﹣,11.∵y﹣2与2x+1成正比例,∴设y﹣2=k〔2x+1〕〔k≠0〕,所以,该直线经过点〔0,1〕和〔﹣,0〕,其图象如∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k〔﹣4+1〕,图所示:∴k=3,∴y=6x+5.12.设y=k〔x﹣1〕,把x=﹣5,y=2代入,得2=〔﹣5﹣1〕k,解得.所以y与x之间的函数关系式是由图示知,当x<﹣时,y<013.设过点A,B的一次函数的解析式为y=kx+b,9.〔1〕一次函数y=kx+b的图象经过点〔﹣2,6〕,且那么m=k+b,﹣1=k+b,与y=﹣x的图象平行,那么y=kx+b中k=﹣1,两式相减,得m+1=k+k,即m+1=〔m+1〕,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.∵m≠﹣1,那么k=2,那么直线的解析式为:y=﹣x+4;∴b=m﹣1,那么函数的解析式为y=2x+m﹣1〔m≠﹣1〕,其图象是平面〔2〕如下列图:内平行于直线y=2x〔但不包括直线y=2x﹣2〕的一切直∵直线的解析式与x轴交于点B,线∴y=0,0=﹣x+4,14.〔1〕∵一次函数y=〔k﹣1〕x+5的图象经过点〔1,∴x=4,3〕,∴B点坐标为:〔4,0〕,∴3=〔k﹣1〕×1+5.∵直线y=mx+n经过点B,且y随x的增大而减小,∴k=﹣1.∴m<0,此图象与y=﹣x+4增减性相同,〔2〕∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴关于x的不等式mx+n<0的解集为:x>4∴x=2.15.〔1〕把点〔2,﹣1〕代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,10.〔1〕设y=k〔x+2〕,所以解析式为:y=x﹣4;∵x=1时,y=﹣6.把点〔2,﹣1〕代入y=k2x∴﹣6=k〔1+2〕得:2k2=﹣1,k=﹣2.解得:k2=﹣,∴y=﹣2〔x+2〕=﹣2x﹣4.图象过〔0,﹣4〕和〔﹣2,0〕点所以解析式为:y=﹣x;word完美格式范文范例精心整理〔2〕因为函数y=x﹣4与x轴的交点是〔,0〕,且∴函数解析式为y=﹣x+4.两图象都经过点〔2,﹣1〕,因此,函数解析式为y=x﹣6或y=﹣x+4所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.19.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,16.〔1〕设y﹣3=k〔4x﹣2〕,〔2分〕当x=1时,y=﹣1,∴﹣1﹣3=k〔4×1﹣2〕,∴k=﹣2〔4分〕,∴y﹣3=﹣2〔4x﹣2〕,∴函数解析式为y=﹣8x+7.〔5分〕〔2〕当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x的取值范围是≤x≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为〔0,b〕〔﹣,0〕,∴三角形面积为:×|b|×|﹣|=24,2即b=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣1218.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数的解析式为:y= x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y= x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A〔﹣3,1〕,B〔0,﹣2〕,∴,k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;2〕∵直线MN与x轴的交点为〔﹣5,0〕,与y轴的交点坐标为〔0,﹣5〕,∴直线MN与两坐标轴围成的三角形面积为×|﹣5|×||﹣.21.设与x轴的交点为B,那么与两坐标轴围成的直角三角形的面积=AO?BO,AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B 〔3,0〕,把A〔0,﹣2〕,B〔3,0〕代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B〔﹣3,0〕,把A〔0,﹣2〕,B〔﹣3,0〕代入y=kx+b,word完美格式范文范例精心整理y=kx﹣3,得k=﹣,b=﹣2,过A〔2,1〕,1=2k﹣3,所以:y=﹣x﹣2.k=2.22.〔1〕依题意,设y+2=k〔x+1〕,故解析式为:y=2x﹣3.将x=1,y=﹣5代入,得26.〔1〕∵一次函数y=〔3﹣k〕x+2k+1的图象经过〔﹣k〔1+1〕=﹣5+2,1,2〕,解得k=﹣,∴2=〔3﹣k〕×〔﹣1〕+2k+1,即2=3k﹣2,∴y+2=﹣〔x+1〕,解得k=;即y=﹣﹣;〔2〕把y=4代入y=﹣﹣中,得〔2〕〕∵一次函数y=〔3﹣k〕x+2k+1的图象经过一、﹣﹣3.5=4,二、四象限,解得x=﹣5,即当x=﹣5时,函数值为4∴,23.〔1〕设y﹣3=k〔4x﹣2〕,∵x=1时,y=5,解得,k>3.∴5﹣3=k〔4﹣2〕,故k的取值范围是k>3.解得k=1,27.根据题意,得∴y与x的函数关系式y=4x+1;,解得,,〔2〕将x=﹣2代入y=4x+1,得y=﹣7;所以一次函数的解析式是y=﹣x+3.〔3〕∵y的取值范围是0≤y≤5,28.〔1〕∵y+5与3x+4成正比例,∴0≤4x+1≤5,∴设y+5=k〔3x+4〕,即y=3kx+4k﹣5〔k是常数,且k≠0〕.∵当x=1时,y=2,解得﹣≤x≤1;∴2+5=〔3×1〕k,解得,k=1,〔4〕令x=0,那么y=1;令y=0,那么x=﹣,故y与x的函数关系式是:y=3x﹣1;〔2〕∵点P〔a,﹣2〕在这条直线上,∴A〔0,1〕,B〔﹣,0〕,∴﹣2=3a﹣1,∴S AOB=××1=.解得,a=﹣,△24.〔1〕∵y﹣3与x成正比例,∴P点的坐标是〔﹣,﹣2〕∴y﹣3=kx〔k≠0〕成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;29.把〔1,5〕、〔6,0〕代入y=kx+b中,得∴y与x的函数关系式为:y=2x+3,,解得,〔2〕把x=﹣代入得:y=2×〔﹣〕+3=2;∴一次函数的解析式是y=﹣x+6.〔3〕设平移后直线的解析式为y=2x+3+b,把点〔2,﹣1〕代入得:﹣1=2×2+3+b,30.〔1〕由题意得:,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣5解得:<m<2,25.根据题意得:当b=3时,又∵m为正整数,y=kx+3,过A〔2,1〕.∴m=1,函数解析式为:y=x﹣1.1=2k+3〔2〕由〔1〕得,函数图象与x轴交点为〔1,0〕与yk=﹣1.轴交点为〔0,﹣1〕,∴解析式为:y=﹣x+3.∴所围三角形的面积为:×1×1=当b=﹣3时,word完美格式。
中考数学《一次函数》专项练习题及答案一、单选题1.已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2−4ac与反比例函数y=4a+2b+cx在同一平面直角坐标系中的图象大致是()A.B.C.D.2.已知一次函数y=kx−k的图象过点(−3,4),则下列结论正确的是()A.y随x增大而增大B.k=1C.直线过点(1,0)D.直线过原点3.如图,正比例函数y1=−2x与一次函数y2=ax+3的图象相交于点A(−1,m),则关于x 的不等式−2x>ax+3的解集是()A.x>2B.x<2C.x>−1D.x<−14.如图,若一次函数y1=x+a与一次函数y2=kx+b的图象交于点P(1,3),则关于x的不等式x+a≤kx+b的解集为()A.x≤1B.x≥1C.x≤0D.x≥35.已知y1=2x﹣5,y2=﹣2x+3,如果y1<y2,则x的取值范围是()A.x>2B.x<2C.x>﹣2 D.x<﹣26.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点A,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1C.0<x<1D.x>17.已知:抛物线y=−x2−4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.平行于x轴的直线l与该抛物线交于点D(x1,y1),E(x2,y2),与线段AC交于点F(x3,y3),令g=x3x1+x2,则g的取值范围是()A.0≤g≤52B.−52≤g≤0C.0≤g≤54D.−54≤g≤08.如果一元一次方程3x﹣b=0的根x=2,那么一次函数y=3x﹣b的图象一定过点()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)9.如图是一次函数y=-32x+3的图象,当-3<y<3时,x的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<410.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2B.x<﹣2 C.x>﹣4 D.x<﹣411.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的周长C随着边长x的变化而变化B.正方形的面积S随着边长x的变化而变化C.面积为20的三角形的一边a随着这边上的高h的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量VL随着放水时间tmin的变化而变化12.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元二、填空题13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.14.一次函数y=kx+b的图象如图所示,当x>0时,y的取值范围为.15.一个正方形的边长为3 cm,它的边长减少xcm后,得到新正方形的周长为y,y与x之间的函数表达式为.16.若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是.17.一次函数y=2x-6的图象与坐标轴围成的三角形面积为。
一次函数复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ;当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例讲解 基本题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x 32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.基础应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x ≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1).再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式. [分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.[分析]图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解:由题意可设所求函数表达式为y=2x+b,∴图象经过点(2,-1),∴-l=2×2+b.∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?[分析]判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k ≠0)即可.解:(1)y是x的一次函数.∵y+a与x+b是正比例函数,∴设y+a=k(x+b)(k为常数,且k≠0)整理得y=kx+(kb-a).∵k≠0,k,a,b为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb时,y是x的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?[分析]这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y1=50+0.4x(其中x≥0,且x是整数)y2=0.6x(其中x≥0,且x是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;x0 -2(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2. ∴当k=-3时,它的图象经过原点. (2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为 y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k ∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4.②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例,当x=20时y=160O ;当x=3O 时,y=200O .(1)求y 与x 之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?[分析] 设举办乒乓球比赛的费用y (元)与租用比赛场地等固定不变的费用b (元)和参加比赛的人数x (人)的函数关系式为y=kx+b (k ≠0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k ,b 的值,进而求出y 与x 之间的函数关系式,当x=50时,求出y 的值,再求得y ÷50的值即可.解:(1)设y 1=b ,y 2=kx (k ≠0,x >0),∴y=kx+b .又∵当x=20时,y=1600;当x=30时,y=2000,∴⎩⎨⎧+=+=,302000,201600b k b k ∴⎩⎨⎧==.800,40b k∴y 与x 之间的函数关系式为y=40x+800(x >0).(2)当x=50时,y=40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕答:每名运动员需支付56元.例2 已知一次函数y=kx+b ,当x=-4时,y 的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。
初二一次函数与几何题(附答案)1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?A B C O x y xyA B O6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
一次函数知识点总结(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
例1:已知一次函数y=kx+b(k ≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
说明:满足函数关系式的有序数对,在坐标平面内对应的点一定在函数图象上;反之,函数图象上的点,其坐标一定满足函数关系式。
例2:.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .
例3:.已知一次函数的图象经过点A (-3,2)、B (1,6).
①求此函数的解析式,并画出图象.
②求函数图象与坐标轴所围成的三角形面积.
例4:某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,•求此函数的关系式.
例5:某移动通讯公司开设两种业务:
若设某人一个月内市内通话x 跳次,两种方式的费用分别为z 元和y 元.
①写出z 、y 与x 之间的函数关系式;
②一个月内市内通话多少跳次时,两种方式的费用相同?
③某人估计一个月内通话300跳次,应选择哪种方式合算?
例6:如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )•之间的函数关系图象.
①根据图象,写出该图象的函数关系式;
②某人乘坐2.5km ,应付多少钱?
③某人乘坐13km ,应付多少钱?
④若某人付车费30.8元,出租车行驶了多少千米?
1.A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?
一. 填空题
1. (-3,4)关于x 轴对称的点的坐标为_________,关于y 轴对称的点的坐标为__________,关于原点对称的坐标为__________.
2. 点B (-5,-2)到x 轴的距离是____,到y 轴的距离是____,到原点的距离是____
3. 小华用500元去购买单价为3元的一种商品,剩余的钱y (元)与购买这种商品的件数x (件)
之间的函数关系是______________, x 的取值范围是__________
4. 当a=____时,函数y=x 23 a 是正比例函数
5. 函数y=-2x +4的图象经过___________象限,它与两坐标轴围成的三角形面积为_________,
周长为_______
6. 一次函数y=kx +b 的图象经过点(1,5),交y 轴于3,则k=____,b=____
7. 已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.
8.若点(m ,m +3)在函数y=-2
1x +2的图象上,则m=____ 9. y 与3x 成正比例,当x=8时,y=-12,则y 与x 的函数解析式为___________
10.若函数y=4x +b 的图象与两坐标轴围成的三角形面积为6,那么b=_____
11.如图1,该直线是某个一次函数的图象,•则此函数的解析式为_________.
(1) (2)
12.如图2,线段AB 的解析式为____________.
二. 选择题:
1、下列说法正确的是( )
A 、正比例函数是一次函数;
B 、一次函数是正比例函数;
C 、正比例函数不是一次函数;
D 、不是正比例函数就不是一次函数.
2、下面两个变量是成正比例变化的是( )
A 、正方形的面积和它的面积;
B 、变量x 增加,变量y 也随之增加;
C 、矩形的一组对边的边长固定,它的周长和另一组对边的边长;
D 、圆的周长与它的半径
3.已知一次函数y=mx+│m+1│的图象与y 轴交于(0,3),且y 随x•值的增大而增大,则m 的值为( )
A .2
B .-4
C .-2或-4
D .2或-4
4、直线y=kx +b 经过一、二、四象限,则k 、b 应满足( )
A 、k>0, b<0;
B 、k>0,b>0;
C 、k<0, b<0;
D 、k<0, b>0.
5.一次函数y=-5x+3的图象经过的象限是( )
A .一、二、三
B .二、三、四
C .一、二、四
D .一、三、四
6.一次函数的图象经过点A (-2,-1),且与直线y=2x-3平行,•则此函数的解析式为( )
A .y=x+1
B .y=2x+3
C .y=2x-1
D .y=-2x-5
7、已知正比例函数y=kx (k ≠0),当x=-1时, y=-2,则它的图象大致是( )
y y
y
x x A 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次
函数的图象(如图所示),则所解的二元一次方程组是 ( )
A .203210x y x y +-=⎧⎨--=⎩,
B .2103210x y x y --=⎧⎨--=⎩,
C .2103250x y x y --=⎧⎨+-=⎩,
D .20210x y x y +-=⎧⎨--=⎩, 9、一次函数y=kx -b 的图象(其中k<0,b>0)大致是( ) y y y
x x A 10、已知一次函数y=(m +2)x +m 2
-m -4的图象经过点(0,2),则m 的值是( ) (第8题)
A 、 2
B 、 -2
C 、 -2或3
D 、 3
11、若点A (2-a ,1-2a )关于y 轴的对称点在第三象限,则a 的取值范围是( )
A 、 a<21
B 、 a>2
C 、 21<a<2
D 、a<2
1或a>2 12、下列关系式中,表示y 是x 的正比例函数的是( ) A 、 y=
x 6 B 、 y=6x C 、 y=x +1 D 、 y=2x 2 13、函数y=4x -2与y=-4x -2的交点坐标为( )
A 、(-2,0)
B 、(0,-2)
C 、(0,2)
D 、(2,0)
三.解答题
1.已知一次函数的图象经过点A (-1,3)和点(2,-3),(1)求一次函数的解析式;
(2)判断点C (-2,5)是否在该函数图象上。
2.已知直线m 与直线y=2x+1的交点的横坐标为2,与直线y=-x+2•的交点的纵坐标为1,求直线m 的函数关系式.
3.一个一次函数的图象,与直线y=2x +1的交点M 的横坐标为2,与直线y=-x +2的
交点N 的纵坐标为1,求这个一次函数的解析式.
4.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠
条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.
(1)小明要买20个练习本,到哪个商店购买较省钱?
(2)写出甲、乙两个商店中,收款y (元)关于购买本数x (本)(x>10)的关系式,它们都是正比例函数吗?
(3)小明现有24元钱,最多可买多少个本子?。