数学北师大版九年级下册22.1.2 二次函数y=ax2的图象和性质
- 格式:ppt
- 大小:2.09 MB
- 文档页数:23
22.1.2 二次函数y =a x 2的图象和性质1.二次函数y =ax 2的图象(1)画二次函数y =x 2的图象. 列表:在图22-1-10的平面直角坐标系里画出二次函数y =x 的图象.在平面直角坐标系中描点,然后用光滑的曲线顺次连接各点,便得到了二次函数的图象,我们把这样的图象叫做 ,抛物线有一条对称轴,对称轴与抛物线的交点叫做抛物线的 .(2)在上面的平面直角坐标系里画出二次函数y =-x 2的图象. 2.二次函数y =ax 2图象的性质二次函数y =x 2图象的特点:(1)抛物线的开口向 (填“下”或“上”);(2)图象是中心对称图形还是轴对称图形? ;对称轴是 。
(3)当x <0时,曲线自左向右 (填“下降”或“上升”),即y 值随x 值的增大而 (填“增大”或“减小”); (4)当x >0时,曲线自左向右 (填“下降”或“上升”),即y 值随x 值的增大 而 (填“增大”或“减小”); (5)图象在x 轴的 (填“上方”或“下方”); (6)顶点是抛物线上位置最 (填“高”或“低”)的点,y 有最 (填“大”或“小”)值,顶点坐标是 。
思考:类似地,你能得出二次函数y =-x 2图象的特点吗?► ;探究问题一画二次函数y=ax2的图象例1在同一平面直角坐标系中,分别画出二次函数y=x2,y=12x2,y=2x2的图象,并比较三个图象的相同点与不同点.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y 轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a<0时,抛物线开口向下,顶点时抛物形的最高点. (3)|a|越大,抛物线y==ax2的开口越小课堂小结1.本节所学知识:①二次函数y=ax2的图象的画法 .②二次函数y=ax2的图象特征及其性质.一般地, 抛物线 y = ax 2 的对称轴是 y 轴, 顶点是原点. 当 a >0 时, 抛物线开口向上,顶点是抛物线的最低点; 当 a <0 时, 抛物线开口向下,顶点是抛物线的最高点. 对于抛物线 y = ax 2 ,|a |越大,抛物线的开口越小.如果 a >0,当 x <0 时,y 随 x 的增大而减小,当 x >0 时,y 随 x 的增大而增大;如果 a <0,当 x <0 时,y 随 x 的增大而增大,当 x >0 时,y 随 x 的增大而减小.一、选择题1.关于二次函数y =x 2的图象,下列说法错误的是( )A.它的形状是一条抛物线B.它的开口向上,且关于y 轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0) 2.[毕节中考] 抛物线y =2x 2,y =-2x 2,y =12x 2的共同性质是( )A .开口向上B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大3.如图22-1-14所示,根据图象提供的信息,下列结论正确的是( )A .a 1>a 2>a 3>a 4B .a 1<a 2<a 3<a 4C .a 4>a 1>a 2>a 3D .a 2>a 3>a 1>a 44.[宁夏中考] 已知a ≠0,在同一平面直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )二、填空题5.抛物线y =10x 2的开口方向是 ,顶点坐标是 ,对称轴是 ;抛物线y =-25x 2的开口方向是 ,顶点坐标是 ,对称轴是 W.6.已知抛物线y =-2x 2经过点(1,y 1)和(2,y 2),则y 1与y 2的大小关系是 W.7.如图22-1-16所示,图中抛物线是某个二次函数的图象,则此二次函数的解析式为 ,根据图象知,当x = 时,y 的值最大.22.1.3 二次函数y =ax 2+k 的图像和性质二次函数y =ax 2+k 的图象与性质在同一平面直角坐标系中,分别画出二次函数y =x 2,y =x 2+1,y =x 2-1,的图象,并 比较三个图象的相同点与不同点.归纳:(1)抛物线y =x 2+1:开口向 ,对称轴是 轴,顶点为 . (2)抛物线y =x 2-1:开口向 ,对称轴是 轴,顶点为 . 2.抛物线y =x 2+1,y =x 2-1与抛物线y =x 2的关系:抛物线y =x 2抛物线y =x 2+1;抛物线y =x 2 抛物线y =x 2-1.y =ax 2 y =ax 2+k (k >0). y =ax 2 y =ax 2-k (k >0). 口诀:上加下减.例1 抛物线y =ax 2+k 与y =-5x 2的形状、开口方向都相同,且其顶点坐标是(0,3),则其解析式为 ,它是由抛物线y =-5x 2向 平移 个单位长度得到的.例2如图22-1-23所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m .以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m .(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道? 通过计算说明理由.一、选择题1.下列函数中,图象形状、开口方向相同的是( )①y =-x 2;②y =-2x 2;③y =12x 2-1;④y =x 2+2;⑤y =-2x 2+3.A.①④B.②⑤C.②③⑤D.①②⑤2.抛物线y =2x 2-5的顶点坐标为( )A.(2,5)B.(-2,5)C.(0,-5)D.(0,5)3.[上海中考] 如果将抛物线y =x 2+2向下平移1个单位长度,那么所得新抛物线的解析式是( ) A .y =(x -1)2+2 B .y =(x +1)2+2 C .y =x 2+1 D .y =x 2+34.当a <0时,二次函数y =ax 2+a 的图象经过的象限是( )A .第三、四象限B .第一、二象限C .第二、三、四象限D .第一、二、三象限5.对于二次函数y =-13x 2+2,当x 为x 1和x 2时,对应的函数值分别为y 1和y 2.若x 1>x 2>0,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法比较7.抛物线y =x 2-4与x 轴交于B ,C 两点,顶点为A ,则△ABC 的面积是( ) A .16 B .8 C .4 D .2二、填空题8.(1)抛物线y =-12x 2-1的开口方向是 ,顶点坐标是( , ),对称轴是 ,当x>0时,函数值y 随x 的增大而 ;当x<0时,函数值y 随x 的增大而 ;抛物线y =-12x 2-1可由抛物线y =-12x 2向 平移 个单位长度得到;9.若抛物线y =ax 2-1经过点(4,31),则a = ,在这个函数图象上该点关于对称轴对称的点为 .10. 将二次函数y =2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数解析式为.三、解答题11.若抛物线y=ax2+k经过点A(-3,2),B(0,-1),求该抛物线的解析式.12.二次函数y=-12x2+k的图象经过点D⎝⎛⎭⎫-3,92,与x轴交于A,B两点,且点A在点B的左侧.(1)求k的值;(2)求A,B两点的坐标.13.已知抛物线y=12x2,把它向下平移,得到的抛物线与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则原抛物线应向下平移几个单位长度?14.某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图22-1-27所示的平面直角坐标系,设坐标原点为O.已知AB=8米,抛物线的解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.22.1.3 .1 二次函数y=a(x-h)2的图象和性质问题:在同一平面直角坐标系中,画出二次函数y =-12x 2 、 y =-12()x +12和y =-12()x -12的图象。
二次函数y=ax2的图像和性质教案篇一:22.1.2二次函数y=ax2图像与性质教案2123篇二:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,。
北师大版九年级下册数学第 5 讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理【学习目标】1.经历探索二次函数y=ax2 和y=ax2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2 和y=ax2+c 的图象,并能比较它们与y=x2 的异同,理解a 与c 对二次函数图象的影响.3.能说出y=ax2+c 与y=ax2 图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=a x2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y 轴,它的顶点是坐标原点.当a>0 时,抛物线的开口向上,顶点是它的最低点;当a<0 时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=a x2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x 的值,求出相应的y 值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x 和y 的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.3.二次函数y=a x2(a≠0)的图象的性质二次函数y=ax2(a≠0)的图象的性质,见下表:要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大,图象两边越靠近x 轴.要点二、二次函数y=a x2+c(a≠0)的图象与性质1.二次函数y=a x2+c(a≠0)的图象(1)a 0yy = ax 2+ c (c > 0)c Oxyy = ax 2 + c (c < 0) Oc x(2) a < 0yc OxyOcx2.二次函数 y =a x 2+c (a ≠0)的图象的性质y = ax 2 + c (c > 0)y = ax 2 + c (关c < 0于) 二 次 函 数y = ax 2 + c (a ≠ 0) 的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数y= ax 2 + c (a > 0, c > 0)y = ax 2 + c (a < 0, c > 0)图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当 x > 0 时,y 随 x 的增大而增大; 当 x < 0 时,y 随 x 的增大而减小.当 x > 0 时,y 随 x 的增大而减小; 当 x < 0 时,y 随 x 的增大而增大.最大(小)当x = 0 时,y最小值=c当x = 0 时,y最大值=c 值【典型例题】类型一、二次函数y=ax2(a≠0)的图象与性质1.(2014 秋•青海校级月考)二次函数y=ax2与直线y=2x﹣1 的图象交于点P(1,m)(1)求a,m 的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.【思路点拨】(1)把点P(1,m)分别代入二次函数y=ax2与直线y=2x﹣1 即可求出未知数的值;(2)把a 代入二次函数y=ax2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P(1,m)在y=2x﹣1 的图象上∴m=2×1﹣1=1 代入y=ax2∴a=1(2)二次函数表达式:y=x2因为函数y=x2的开口向上,对称轴为y 轴,当x>0 时,y 随x 的增大而增大;(3)y=x2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.举一反三:【变式1】二次函数y =ax2与y =-2x2的形状相同,开口大小一样,开口方向相反,则a=.【答案】2.【变式2】(2015•山西模拟)抛物线y=﹣x2不具有的性质是().A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点【答案】A.2.已知y=(m+1)x m2+m 是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax2(a≠0)的图象性质来解答.【答案与解析】⎩⎧m 2 + m = 2由题意, ⎨m +1>0 ,解得 m=1,∴二次函数的解析式为:y= 2x 2 .【总结升华】本题中二次函数还应该有 m+1≠0 的限制条件,但当 m +1>0 时,一定存在 m+1≠0,所以就不再考虑了.类型二、二次函数 y =a x 2+c (a ≠0)的图象与性质3. 求下列抛物线的解析式:(1) 与抛物线 y = - 1 x 2+ 3 形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; 2(2) 顶点为(0,1),经过点(3,-2)并且关于 y 轴对称的抛物线.【思路点拨】抛物线形状相同则| a | 相同,再由开口方向可确定 a 的符号,由顶点坐标可确定 c 的值,从而确定抛物线的解析式 y = ax 2 + c .【答案与解析】(1) 由于待求抛物线 y = -1x 2 + 3 21形状相同,开口方向相反,可知二次项系数为 , 2又顶点坐标是(0,-5),故常数项 k = -5 ,所以所求抛物线为 y = 1x 2 - 5 .2(2) 因为抛物线的顶点为(0,1),所以其解析式可设为 y = ax 2 +1 ,又∵该抛物线过点(3,-2),∴ 9a +1 = -2 ,解得 a = - 1.3∴所求抛物线为 y = - 1x 2 +1.3【总结升华】本题考察函数 y = ax 2 + c (a ≠ 0) 的基本性质,并考察待定系数法求简单函数的解析式.4. 在同一直角坐标系中,画出 y = -x 2 和 y = -x 2 +1的图象,并根据图象回答下列问题.(1)抛物线y =-x2+1向平移个单位得到抛物线y =-x2;(2)抛物线y =-x2+1开口方向是,对称轴为,顶点坐标为;(3)抛物线y =-x2+1,当x时,随x 的增大而减小;当x时,函数y 有最值,其最值是.【思路点拨】利用描点法画出函数图象,根据图象进行解答.【答案与解析】函数y =-x2与y =-x2+1的图象如图所示:(1)下;l ;(2)向下;y 轴;(0,1);(3)>0;=0;大;大; 1.【总结升华】本例题把函数y =-x2+1与函数y =-x2的图象放在同一直角坐标系中进行对比,易得出二次函数y =ax2+c(a ≠ 0) 与y =ax2 (a ≠ 0) 的图象形状相同,只是位置上下平移的结论.y =ax2+c(a ≠ 0) 可以看作是把y =ax2 (a ≠ 0) 的图象向上(k > 0) 或向下(k < 0) 平移| k | 个单位得到的.举一反三:【变式】函数y = 3x2可以由y = 3x2-1 怎样平移得到?【答案】向上平移1 个单位.。
22.1.2二次函数y=ax2的图象和性质课前预习1.二次函数y=ax2的图象是一条,对称轴是轴,顶点坐标是.当a>0时,抛物线开口,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,此时抛物线有最点,即当x=0时,y取得最值;当a<0时,抛物线开口,在对称轴的左侧y随x的增大而,在对称轴的右侧,y随x的增大而,此时抛物线有最点,即当x=0时,y取得最值.|a|越大,抛物线的开口越小,|a|相等说明抛物线的开口大小相同.课堂练习知识点1 二次函数y=ax2的图象1.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.2.某同学画二次函数y=ax2的图象时,列下列表格:(1)将表格中的空格补全;(2)这个二次函数的解析式为;(3)在平面直角坐标系中画出二次函数的图象.知识点2 二次函数y=ax2的性质3.已知二次函数y=(m-2)x2的图象开口向上,则m的取值范围是.4.下列各点在二次函数y=-2x2图象上的是()A.(-1,2)B.(-1,-2)C.(-2,-4)D.(-2,4)5.关于函数y=x2的图象,下列说法错误的是()A.它的图象是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0)课时作业1.与二次函数y=x2开口大小相同,方向相反的二次函数是.2.二次函数y=-0.2x2的图象是一条开口向的抛物线,对称轴是,顶点坐标为.当x= 时,函数有最值;当x 0时,y随x的增大而减小.3.关于函数y=3x2的性质,下列说法正确的是()A.无论x为任何实数,y的值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、第三象限内4.已知A(-1,y₁),B(-2,y₂)都在二次函数y=x2上,则y₁,y₂之间的大小关系是()A.y₁>y₂B.y₁=y₂C.y₁<y₂D.不能确定5.二次函数y=ax2(a>0)的图象经过点(3,4),则其图象一定经过点()A.(3,-4)B.(-3,-4)C.(-3,4)D.(4,3)6. 如图,当ab>0时,函数y=ax2与函数y=bx+a的大致图象是()7.二次函数y=2x2,y=-2x2,y=1x2的共同性质是()2A.开口向上B.对称轴是y轴C.都有最高点D.y随x的增大而增大8.已知函数y=(m+2)226m mx+-是关于x的二次函数.(1)求m的值;(2)当m为何值时,函数图象的顶点为最低点?(3)当m为何值时,函数图象的顶点为最高点?x2;③y=-x2;9.在同一个平面直角坐标系中,画出下列函数的图象:①y=x2;②y=12④y=-1x2.2从图象上对比,说出解析式中二次项系数a对抛物线的形状有什么影响?10.如图,A,B为抛物线y=x2上的两点,且AB∥x轴,与y轴交于点C,以点O为圆心,OC为半径画圆,若2.11.函数y=ax2(a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)x在什么范围时,二次函数y=ax2中的y随x的增大而增大?(3)求抛物线y=ax2与直线y=-2的两个交点及顶点所围成的三角形的面积.。