2019年中考数学试卷分类汇编 四边形(正方形)
- 格式:doc
- 大小:835.00 KB
- 文档页数:37
中考数学试卷大汇编---四边形一、填空题: 1.(06.徐州)如图2,四边形ABCD 是用四个全等的等腰梯形拼成的,则∠A = °.2.(06.苏州)如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点.若再增加一个条件_________,就可推得BE=DF3.(06.盐城)已知平行四边形ABCD 的面积为4,O 为两对角线的交点,则△AOB 的面积是 .4.(06.扬州)若梯形的面积为122cm ,高为3cm ,则此梯形的中位线长为 cm . 5. (06.泰州)在等腰梯形ABCD 中,AD ∥BC ,AD=1,AB=CD=2,BC=3,则∠B= 度. 6.(06.泰州)如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律 .7.(06.宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是 .(结果可用根号表示)8(2007南通).如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB 、BC 为边的菱形ABCD ; (2)填空:菱形ABCD 的面积等于________________.9(2007盐城).菱形的两条对角线长分别是6和8,则菱形的边长为 。
ABC(第8题图)(第7题)第19题图…… ……211= 2363+= 26104+= 2132+= (图2) AB C D10(2007镇江).如图,矩形ABCD 的对角线相交于O ,AB=2,∠AOB=60°,则对角线AC 的长为 .11(2007镇江).如图,菱形ABCD 的对角线相交于O ,AC=8,BD=6,则边AB 的长为_______。
12(08常州).若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n>1,且为整数)的正方体切成n 3个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍.13(08苏州).将一个边长为1的正八边形补成如图所示的正方形, 这个正方形的边长等于 (结果保留根号).14.(08连云港)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,,依此类推,则由正n 边形“扩展”而来的多边形的边数为 .15.(08淮安)如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 1,……,依次下去.则点B 6的坐标是________________. ① ② ③ ④(第14题图)……16.(08盐城)梯形的中位线长为3,高为2,则该梯形的面积为 . 17.(08盐城)将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形,试写出其中一种四边形的名称 .18.(08扬州)如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6㎝,sinA=53,则菱形ABCD 的面积是__________㎝2。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•天津)计算(3)9-⨯的结果等于()A.27-B.6-C.27 D.62.(3分)(2019•天津)2sin60︒的值等于()A.3B.2 C.1 D.23.(3分)(2019•天津)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)(2019•天津)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)(201933的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)(2019•天津)计算2211aa a+++的结果是()A.2 B.22a+C.1 D.41 a a+8.(3分)(2019•天津)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A .5B .43C .45D .209.(3分)(2019•天津)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)(2019•天津)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)(2019•天津)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)(2019•天津)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:x⋯ 2-1-0 1 2⋯ 2y ax bx c=++⋯tm2- 2-n⋯且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)(2019•天津)计算5x x 的结果等于 .14.(3分)(2019•天津)计算(31)(31)+-的结果等于 .15.(3分)(2019•天津)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 . 16.(3分)(2019•天津)对于直线21y x =-与x 轴的交点坐标是 .17.(3分)(2019•天津)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为 .18.(3分)(2019•天津)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于 ;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分,解答写出文字说明、演算步骤或推理过程)19.(8分)(2019•天津)解不等式组11 211 xx+-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2019•天津)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)(2019•天津)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O 上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.22.(10分)(2019•天津)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.23.(10分)(2019•天津)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >.(Ⅰ)根据题意填表: 一次购买数量/kg30 50 150⋯甲批发店花费/元 300 ⋯ 乙批发店花费/元350⋯(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)(2019•天津)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =. (Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当353S 时,求t 的取值范围(直接写出结果即可).25.(10分)(2019•天津)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(2Q b +,)Q y 22QM +332时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.6【考点】有理数的乘法【分析】由正数与负数的乘法法则得(3)927-⨯=-;【解答】解:(3)927-⨯=-;故选:A.2.(3分)2sin60︒的值等于()A B.2C.1D【考点】特殊角的三角函数值【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin602︒==故选:A.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.642310⨯D.4⨯4.2310⨯C.542.310【考点】科学记数法-表示较大的数【分析】科学记数法的表示形式为10na<,n为整数.确定n的值a⨯的形式,其中1||10是易错点,由于4230000有7位,所以可以确定716n=-=.【解答】解:6=⨯.4230000 4.2310故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.6.(333()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小【分析】由于253336<<253336,从而有5336.【解答】解:253336<<,∴2533365336∴<<.故选:D.7.(3分)计算2211aa a+++的结果是()A .2B .22a +C .1D .41aa + 【考点】分式的加减法【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )A 5B .43C .45D .20【考点】坐标与图形性质;菱形的性质 【分析】根据菱形的性质和勾股定理解答即可. 【解答】解:A ,B 两点的坐标分别是(2,0),(0,1),22215AB ∴=+, 四边形ABCD 是菱形,∴菱形的周长为5故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【考点】解二元一次方程组 【分析】运用加减消元分解答即可.【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【考点】反比例函数图象上点的坐标特征【分析】分别计算出自变量为3-、2-和1对应的函数值,从而得到1y ,2y ,3y 的大小关系.【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【考点】旋转的性质【分析】根据旋转的性质得到AC CD =,BC CE =,AB DE =,故A 错误,C 错误; 得到ACD BCE ∠=∠,根据三角形的内角和得到1802ACDA ADC ︒-∠∠=∠=,1802BCECBE ︒-∠∠=,求得A EBC ∠=∠,故D 正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故B 错误. 【解答】解:将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠, 1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【考点】二次函数图象与系数的关系;抛物线与x 轴的交点;二次函数图象上点的坐标特征 【分析】①当0x =时,2c =-,当1x =时,0a b +=,0abc >,①正确; ②12x =是对称轴,2x =-时y t =,则3x =时,y t =,②正确; ③44m n a +=-;当12x =-时,0y >,803a <<,203m n +<,③错误;【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--, 22m n a ∴==-, 44m n a ∴+=-, 当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)计算5x x 的结果等于 6x . 【考点】同底数幂的乘法【分析】根据同底数幂相乘,底数不变,指数相加,即可解答. 【解答】解:56x x x =. 故答案为:6x14.(3分)计算1)的结果等于 2 . 【考点】二次根式的混合运算 【分析】利用平方差公式计算. 【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 37. 【考点】概率公式【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率37=. 故答案为37. 16.(3分)对于直线21y x =-与x 轴的交点坐标是 1(2,0) .【考点】一次函数图象上点的坐标特征【分析】当直线21y x =-与x 轴相交时,0y =;将0y =代入函数解析式求x 值. 【解答】解:根据题意,知,当直线21y x =-与x 轴相交时,0y =, 210x ∴-=,解得,12x =; ∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【考点】正方形的性质;PB :翻折变换(折叠问题)【分析】由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,先证ABF DAE ∆≅∆,推出AF 的长,再利用勾股定理求出BF 的长,最后在Rt ADF ∆中利用面积法可求出AH 的长,可进一步求出AG 的长,GE 的长. 【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,222212513BF AB AF =+=+=, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==, 13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上. (Ⅰ)线段AB 的长等于17; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【考点】作图-复杂作图;圆周角定理;勾股定理 【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,于是得到结论. 【解答】解:(Ⅰ)221172()22AB =+=,故答案为:172; (Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 2x - ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【考点】在数轴上表示不等式的解集;解一元一次不等式组【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:(Ⅰ)解不等式①,得2x -; (Ⅱ)解不等式②,得1x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -. 故答案为:2x -,1x ,21x -.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为 40 ,图①中m 的值为 ; (Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数.【考点】众数;扇形统计图;算术平均数;用样本估计总体;条形统计图;中位数【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;(Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=,10%100%25%40m=⨯=,故答案为:40,25;(Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是1.5,中位数是1.5;(Ⅲ)40480072040-⨯=(人),答:该校每天在校体育活动时间大于1h的学生有720人.21.(10分)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.【考点】切线的性质;圆周角定理【分析】(Ⅰ)连接OA、OB,根据切线的性质得到90OAP OBP∠=∠=︒,根据四边形内角和等于360︒计算;(Ⅱ)连接CE,根据圆周角定理得到90ACE∠=︒,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】解:(Ⅰ)连接OA、OB,PA,PB是O的切线,90OAP OBP∴∠=∠=︒,360909080100AOB∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB∠=∠=︒;(Ⅱ)连接CE ,AE 为O 的直径,90ACE ∴∠=︒, 50ACB ∠=︒,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【考点】解直角三角形的应用-仰角俯角问题【分析】根据正切的定义用CD 表示出AD ,根据题意列出方程,解方程得到答案.【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多. 【考点】一次函数的应用【分析】(Ⅰ)根据题意,甲批发店花费1y (元)6=⨯购买数量x (千克);630180⨯=,6150900⨯=;而乙批发店花费2y (元),当一次购买数量不超过50kg 时,2730210y =⨯⨯=元;一次购买数量超过50kg 时,27505(15050)850y =⨯+-=元.(Ⅱ)根据题意,甲批发店花费1y (元)6=⨯购买数量x (千克);而乙批发店花费2y (元)在一次购买数量不超过50kg 时,2y (元)7=⨯购买数量x (千克);一次购买数量超过50kg 时,2y (元)7505(50)x =⨯+-;即:花费2y (元)是购买数量x (千克)的分段函数. (Ⅲ)①花费相同,即12y y =;可利用方程解得相应的x 的值;②求出在120x =时,所对应的1y 、2y 的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当360y =时,两店所对应的x 的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850. (Ⅱ)16y x = (0)x >当050x <时,27y x = (050)x <当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+ (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去; 当12y y =时,也有:65100x x =+,解得100x =, 故他在同一个批发店一次购买苹果的数量为100千克. ②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元, 720700>∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =. (Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当353S 时,求t 的取值范围(直接写出结果即可).【考点】四边形综合题【分析】(Ⅰ)由已知得出4AD OA OD =-=,由矩形的性质得出30AED ABO ∠=∠=︒,在Rt AED ∆中,28AE AD ==,由勾股定理得出43ED =,即可得出答案; (Ⅱ)①由平移的性质得:2O D ''=,43E D ''=ME OO t '='=,////D E O C OB '''',得出30E FM ABO ∠'=∠=︒,在Rt MFE ∆'中,22MF ME t ='=,2222(2)3FE MF ME t t t '-'-=,求出2113322MFE t S ME FE t t ∆'=''=⨯=,24383C O D E S O D E D ''''=''⋅''=⨯=矩形②当3S 6O A OA OO t ''=-=-,由直角三角形的性质得出33(6)O F O A t ''==-,得出方程,解方程即可;当53S =6O A t '=-,624D A t t '=--=-,由直角三角形的性质得出3(6)O G t '=-,)D F t '=-,由梯形面积公式得出1))]22S t t =-+-⨯= 【解答】解:(Ⅰ)点(6,0)A ,6OA ∴=,2OD =,624AD OA OD ∴=-=-=,四边形CODE 是矩形,//DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED === 2OD =,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE '=,1122MFE S ME FE t ∆'∴=''=⨯,2C O D E S O D E D ''''=''⋅''=⨯矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S ③所示:6O A OA OO t ''=-=-,90AO F '∠=︒,30AFO ABO '∠=∠=︒,)O F A t ''∴==- 1(6))2S t t ∴=--=,解得:6t =6t =,6t ∴=S =④所示:6O A t '=-,624D A t t '=--=-, 3(6)O G t '∴=-,3(4)D F t '=-,1[3(6)3(4)]2532S t t ∴=-+-⨯=, 解得:52t =, ∴当353S 时,t 的取值范围为5622t -.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 22QM +的最小值为3324时,求b 的值. 【考点】二次函数综合题【分析】(Ⅰ)将点(1,0)A -代入2y x bx c =-+,求出c 关于b 的代数式,再将b 代入即可求出c 的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点(,)D D b y 代入抛物线21y x bx b =---,求出点D 纵坐标为1b --,由0b >判断出点(,1)D b b --在第四象限,且在抛物线对称轴2b x =的右侧,过点D 作DE x ⊥轴,可证ADE ∆为等腰直角三角形,利用锐角三角函数可求出b 的值;(Ⅲ)将点1(2Q b +,)Q y 代入抛物线21y x bx b =---,求出Q 纵坐标为324b --,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,点(0,1)N ,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0),在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,设点(,0)M m ,则可用含b 的代数式表示m ,24QM +=1112[()(1)])()]242244b b b ---++--=,解方程即可.【解答】解:(Ⅰ)抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=,即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--,由0b >,得02bb >>,10b --<,∴点(,1)D b b --在第四象限,且在抛物线对称轴2bx =的右侧,如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b ,1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--, 可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧, 2222()2AM QM AM QM +=+, ∴可取点(0,1)N , 如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M , 由45GAM ∠=︒,得22AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒, QH MH ∴=,2QM MH =, 点(,0)M m ,310()()242b b m ∴---=+-, 解得,124b m =-, 332224AM QM +=, ∴1113322[()(1)]22[()()]242244bb b ---++--=, 4b ∴=.(。
专题10 图形的性质之选择题参考答案与试题解析一.选择题(共19小题)1.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.2.(2019•常州)如图,在线段P A、PB、PC、PD中,长度最小的是()A.线段P A B.线段PB C.线段PC D.线段PD【答案】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.3.(2019•苏州)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【答案】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【点睛】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.4.(2019•宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【答案】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点睛】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(2019•徐州)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点睛】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.6.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【答案】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.7.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【答案】解:根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.8.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【答案】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点睛】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2 B.C.3 D.【答案】解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE AC=1.5.故选:D.【点睛】此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.10.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于()A.B.C.D.3【答案】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.∵E(﹣2,0),F(0,6),∴OE=2,OF=6,∴EF2,∵∠FGE=90°,∴FG≤EF,∴当点G与E重合时,FG的值最大.如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.∵P A=PB,BE=EC=a,∴PE∥AC,BJ=JH,∵四边形ABCD是菱形,∴AC⊥BD,BH=DH,BJ,∴PE⊥BD,∵∠BJE=∠EOF=∠PEF=90°,∴∠EBJ=∠FEO,∴△BJE∽△EOF,∴,∴,∴a,∴BC=2a,故选:A.【点睛】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.11.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【答案】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE BC=6x,∴AD=CE BE=6x,AB=AE+BE=x+6x x+6,∴梯形ABCD面积S(CD+AB)•CE(x x+6)•(6x)x2+3x+18(x ﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点睛】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.12.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【答案】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC AC=2,OB=OD BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'10;故选:C.【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.13.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.【点睛】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.14.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【答案】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵,∴∠CAB∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.(2019•宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6πB.62πC.6πD.62π【答案】解:6个月牙形的面积之和=3π﹣(22π﹣62)=6π,故选:A.【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.16.(2019•苏州)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【答案】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC∠AOB=27°;故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.17.(2019•连云港)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM 折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC MP;④BP AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM AD x,∴CM x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP x,∴PN=CP﹣CN x,∴PM x,∴,∴PC MP,故③错误;∵PC x,∴PB=2x x x,∴,∴PB AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.【点睛】本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.18.(2019•无锡)如图,P A是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B 的度数为()A.20°B.25°C.40°D.50°【答案】解:连接OA,如图,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B∠AOP50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.19.(2019•常州)判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2 B.C.0 D.【答案】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.。
单元测试卷 ( 五)(测试范围:第五单元 (四边形 )题号一二三考试时间 :90 分钟总分总分人试卷满分核分人:100 分 )得分一、选择题 (本题共 12 小题 ,每小题 3 分 ,共 36 分 )1.将一个 n 边形变成 (n+ 1) 边形 ,内角和将()A.减少180 °B.增加 180 °C.增加90°D.增加360 °2.如图 D5- 1,在矩形 ABCD 中,对角线 AC,BD 相交于点O,∠ AOB= 60°,AC= 6 cm,则 AB 的长是()图D5-1A.3 cm C.10 cm B .6 cm D .12 cm3.如图D5- 2,在矩形ABCD中 ,AD= 3AB,点 G,H分别在AD ,BC上 ,连接BG,DH ,且BG∥ DH ,当=时 ,四边形 BHDG是菱形()图D5-2A. B. C. D.4.如图D5- 3,在平行四边形ABCD中 ,点E 在边DC上 ,DE ∶EC= 3∶1,连接AE交BD于点F,则△ DEF的面积与△ BAF 的面积之比为()图D5-3A.3∶4 B .9∶16C.9∶1 D .3∶15.如图 D5 -4,O 是矩形 ABCD 的对角线AC 的中点 ,M 是 AD 的中点 ,若 AB= 5,AD= 12,则四边形ABOM 的周长为()图D5-4A.17B.18C.19D.206.下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.如图 D5- 5,在 ?ABCD 中 ,连接 AC,∠ ABC= ∠ CAD= 45°,AB= 2,则 BC 的长是()图 D5-5A. B .2C.2 D.48.如图 D5-6,在矩形 ABCD 中 ,BC= 8,CD= 6,将△ ABE 沿 BE 折叠 ,使点 A 恰好落在对角线BD 上的点 F 处,则 DE 的长是()图D5-6A.3B.C.5D.9.如图 D5 -7,四边形 ABCD 是平行四边形 ,点 E 是边 CD 上的一点 ,且 BC=EC ,CF ⊥ BE 交 AB 于点 F,P 是 EB 延长线上一点 ,下列结论 :① BE 平分∠ CBF ;②CF 平分∠ DCB ;③BC=FB ;④PF=PC.其中正确的结论个数为()图D5-7A.1B.2C.3D.410.如图 D5-8,把矩形 ABCD 沿 EF 翻折 ,点 B 恰好落在 AD 边上的点 B'处 .若 AE= 2,DE= 6,∠EFB= 60°,则矩形 ABCD的面积是()图D5-8A.12 B .24 C.12 D.1611.如图D5 -9,矩形ABCD中,AB= 8,BC= 4.点 E 在AB 上 ,点F 在 CD上 ,点 G,H在对角线AC上 ,若四边形EGFH是菱形 ,则AE的长是()图 D5-9A.2 B .3 C.5 D.612.如图 D5 -10,在正方形 ABCD 中 ,△ BPC 是等边三角形 ,BP ,CP 的延长线分别交AD 于点 E,F,连接 BD ,DP ,BD 与CF 相交于点H ,给出下列结论2:① BE= 2AE;②△ DFP ∽△ BPH;③△ PFD ∽△ PDB ;④ DP =PH ·PC. 其中正确的是()图D5 -10A.①②③④C.①②④B.②③D.①③④二、填空题(本题共 4 小题 ,每小题 5 分 ,共20 分)13.如图D5-11,在?ABCD中 ,点E 在AB 上 ,点F 在CD上,则S△ABF S△CDE (填“>”“<”或“= ”).图D5 -1114.如图 D5-12,在菱形 ABCD 中 ,AB= 10,AC= 12,则它的面积是.图D5 -1215.如图 D5-13,E 为正方形ABCD 外一点 ,若△ ADE 为等边三角形 ,则∠ AEB=.图 D5 -1316.如图 D5 -14,已知四边形ABCD 是矩形 ,把矩形 ABCD 沿直线 AC 折叠 ,点 B 落在点 E 处 ,连接 DE. 若 DE ∶∶AC= 3 5,则的值为.图D5 -14三、解答题 (共 44 分 )17.(5 分 )如图 D5-15,在△ ABC 中,M 是 AC 边上的一点 ,连接 BM.将△ ABC 沿 AC 翻折 ,使点 B 落在点 D 处,当 DM ∥ AB 时 ,求证 :四边形 ABMD 是菱形 .图D5 -1518.(6 分 )如图 D5 -16,在 ?ABCD 中 ,∠ ABC= 60°.E,F 分别在 CD 和 BC 的延长线上 ,AE∥ BD,EF⊥ BC,EF=,求 AB 的长 .图D5 -1619.(6 分 )如图 D5 -17,在菱形 ABCD 中 ,∠A = 110 °,点 E 是菱形 ABCD 内一点 ,连接 CE,将线段 CE 绕点 C 顺时针旋转 110°,得到线段CF ,连接 BE,DF.若∠ E= 86°,求∠ F 的度数 .图D5 -1720.(7 分) 如图 D5 -18,四边形 ABCD 中 ,AC,BD 相交于点 O,O 是 AC 的中点 ,AD∥BC ,AC= 8,BD= 6.(1)求证 :四边形 ABCD 是平行四边形 ;(2)若 AC⊥ BD ,求平行四边形ABCD 的面积 .图D5 -1821.(10 分 )如图 D5 -19,在正方形ABCD 中 ,点 G 在对角线 BD 上 (不与点 B,D 重合 ),GE⊥ DC 于点 E,GF ⊥ BC 于点F,连接 AG.(1)写出线段AG,GE,GF 长度之间的数量关系,并说明理由 ;(2)若正方形ABCD 的边长为1,∠ AGF= 105 °,求线段 BG 的长 .图D5 -1922.(10 分 )已知正方形ABCD ,点 M 为边 AB 的中点 .(1)如图 D5-20① ,点 G 为线段 CM 上的一点 ,且∠ AGB= 90°,延长 AG,BG 分别与边 BC ,CD 交于 E,F. ①求证 :BE=CF ;②求证 :BE 2=BC ·CE.2(2)如图 D5 -20②,在边 BC 上取一点 E,满足 BE =BC ·CE,连接 AE 交 CM 于点 G,连接 BG 并延长交 CD 于点 F,求 tan∠CBF 的值 .图D5 -20参考答案1.B2.A [ 解析 ] 根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠ AOB= 60°,判断出△AOB 是等边三角形 ,根据等边三角形的性质求出AB 的长即可 .3.C4.B5.D6.C[ 解析 ]对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;一条对角线平分一组对角的平行四边形是菱形 ;对角线互相垂直的矩形是正方形,所以其中错误的为 C,故选 C.7.C[ 解析 ]∵ ? ABCD ,∴ AD ∥ BC ,∴∠ DAC= ∠ ACB= 45°= ∠ ABC, ∴∠ BAC= 90°,AB=AC= 2 , 由勾股定理得BC== = 2 ,选 C.8.C[ 解析 ]由 AB= 6,BC= 8,应用勾股定理 AB2 +AD 2=BD 2 ,得 :BD= 10,由折叠可知 BF=AB ,故 BF= 6,则 DF= 4.(法一 )∵∠ A= ∠ EFD ,∠ EDF= ∠ADB ,∴ △DEF ∽△ DBA ,∴ = ,即= ,∴DE= 5.(法二 )在 Rt△DEF 中 ,设 DE=x ,则 EF=AE= 8-x,应用勾股定理DE 2=EF 2 +DF 2,∴ x2= (8-x) 2+ 42 ,解得 x= 5.9.D [ 解析 ] ∵AB ∥CD,∴∠ ABE= ∠ BEC.∵ CE=CB ,∴∠ CBE= ∠ BEC.∴∠ CBE= ∠ ABE.即 BE 平分∠ ABC. 故①正确 ;∵ CE=CB ,CF ⊥ BE,∴ CF 平分∠ DCB. 故②正确 ;∵ AB∥ CD,∴∠ DCF= ∠ CFB. ∵∠ BCF= ∠ FCD ,∴∠ BCF=∠CFB,∴ BC=BF. 故③正确 ;∵ BF=CB ,CF ⊥ BE,∴ BE 垂直平分 CF ,∴ PF=PC. 故④正确 .10.D11.C12.C [解析 ] 在正方形 ABCD 中,∠ A= 90°;由△BPC 是等边三角形 ,可得∠ CBP= 60°,∴∠ ABP= 30°,∴ BE= 2AE,即①正确 ;由 BD 是正方形 ABCD 的对角线 ,可得△BCD 是等腰直角三角形 ,∴∠ CBD= ∠CDB= 45°,可得∠ PBD= 15°,∵ CD=CP=CB , ∠ PCD= 30°, 可得∠ CPD= ∠ CDP= 75°, ∴ ∠ BPD= 75°+60°= 135°, ∠ FDP= 90°-75°= 15°, ∠PFD= 90°-∠ PCD= 90°-30°= 60°,∠ FPD= 180 °-∠ CPD= 180 °-75°= 105 °,∴∠ PBD= ∠ PDF ,∠ BPH= ∠ DFP ,∴ △DFP ∽△ BPH ,即②正确 ;∵∠ BPD≠∠ DPF ,∴③ △PFD ∽△ PDB 错误 ;由∠ PDH= ∠PDC- ∠ CDB= 75°-45°= 30°= ∠PCD ,∠CPD= ∠DPH ,可得△PDC∽△ PHD ,∴ DP 2=PH ·PC,即④正确 . 13.= 14.96 15.15°16.[解析 ] 由折叠的性质可知∠ BAC= ∠ EAC.∵四边形 ABCD 是矩形 ,∴ AB∥ CD ,∴∠ DCA= ∠BAC,∴∠ EAC= ∠ DCA.设AE 与 CD 交于点 F,则 AF=CF ,∴ DF=EF ,又∠ DFE= ∠ AFC ,∴△ACF ∽△ EDF .∴= = ,设DF= 3x,则 CF= 5x,AB=DC= 8x.在 Rt△ADF 中 ,由勾股定理知 ,AD= 4x,∴= .17.证明 :如图 ,由折叠得 :AB=AD ,BM=DM ,∠ 1= ∠ 2,∵DM ∥ AB,∴∠ 1= ∠ 3,∴∠ 2= ∠ 3,∴ AD=DM ,∴AB=AD=BM=DM ,∴四边形 ABMD 是菱形 .18.解: ∵四边形 ABCD 是平行四边形 ,∴AB=DC , AB∥ EC.∵ AE∥BD ,∴四边形 ABDE 是平行四边形 .∴AB=DE=CD ,即 D 为 CE 中点 .∵EF⊥BC ,∴∠ EFC= 90°.∵AB∥CD ,∴∠ DCF= ∠ ABC= 60°.∵ EF=,∴ CE= 2.∴AB= 1.19.解: ∵四边形 ABCD 是菱形 ,∴∠ BCD= ∠A= 110°,BC=DC.由旋转可得 :∠ ECF= 110°,EC=FC ,∵∠ BCD= ∠BCE+ ∠ECD= 110°,∠ECF= ∠DCF+ ∠ECD= 110°,∴∠ BCE= ∠ DCF.又∵ BC=DC ,EC=FC ,∴△BCE≌ △ DCF ,∴∠ F= ∠E= 86°.20.解:(1) 证明 :∵ O 是 AC 的中点 ,∴ OA=OC ,∵AD∥BC,∴∠ ADO= ∠ CBO.在△AOD 和△COB 中 ,∵∴ △AOD≌△ COB(AAS), ∴ OD=OB ,∴四边形 ABCD 是平行四边形 .(2)∵四边形ABCD 是平行四边形,AC⊥ BD,∴四边形 ABCD 是菱形 ,∴S 菱形ABCD = AC ·BD= 24.21.解:(1) AG2=GE 2+GF 2.理由如下 :连接 GC,由正方形的性质知AD=CD ,∠ ADG= ∠CDG ,在△ADG 和△CDG 中,∴ △ADG≌△ CDG ,∴AG=CG ,由题意知∠ GEC= ∠GFC= ∠ DCB= 90°,∴四边形 GFCE 是矩形 ,∴GF=EC.222222在 Rt△GEC 中 ,根据勾股定理 ,得 GC=GE +EC ,∴ AG =GE +GF .(2)作 AH ⊥ BD 于点 H,由题意知∠ AGB= 60°,∠ ABG= 45°,∴ △ABH 为等腰直角三角形,△AGH 为含 30°角的直角三角形,∵AB= 1,∴ AH=BH= ,HG= ,∴ BG= + =.22.解:(1) ①证明 : 在△ABG 中 ,∵∠ AGB= 90°,∴∠ GAB+ ∠ABG= 90°,∵正方形 ABCD ,∴ AB=BC ,∠ ABC= ∠BCD= 90°,∴∠ ABC= ∠ABG+ ∠GBC= 90°,∴∠ GAB= ∠GBC,∴Rt△EAB≌Rt△FBC ,∴ BE=CF .②证明 :∵∠ AGB= 90°,点 M 是 AB 的中点 ,∴GM=AM=BM ,∴∠ GAB= ∠ AGM ,∵∠ AGM= ∠CGE ,由①得∠ GAB= ∠ CBG,∴∠ CGE= ∠CBG,又∵∠ GCB= ∠ BCG,∴ △GCE∽△ BCG,∴=,∴CG2=BC ·CE,∵∠ MBG= ∠ MGB= ∠CGF= ∠ CFG ,∴CG=CF ,由①得 BE=CF ,2∴ CG=CF=BE ,∴ BE =BC ·CE.(2)解法 1:如图① ,延长 AE,DC 交于点 K,∵DC∥AB,∴ △ABE∽△ KCE ,∴= ,∵BE 2=BC ·CE,∴= ,∴=,∵AB=BC ,∴CK=BE ,∵ AB∥DC ,∴= = =,∵AM=BM ,∴CF=CK=BE.∵ BE2=BC ·CE,∴ E 是 BC 上的黄金分割点,-∴=,-∴ tan∠CBF= = =.解法 2:如图② ,延长 CM ,BF 分别交直线AD 于点 S,K,易证 AS=BC=AB ,∵BE2=BC ·CE,∴点 E 是 BC 上的黄金分割点,-∴=,∵AD∥ BC,∴ tan∠CBF= tanK=-= = =.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
四边形的综合证明题:1.(2019年滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.2.(2020年滨州)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.3.(2021年滨州)如图,矩形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD.(1)求证:四边形AOBE是菱形;(2)若∠AOB=60°,AC=4,求菱形AOBE的面积.4.(2022年滨州)如图,菱形ABCD的边长为10,∠ABC=60°,对角线AC、BD相交于点O,点E在对角线BD上,连接AE,作∠AEF=120°且边EF与直线DC相交于点F.(1)求菱形ABCD的面积;(2)求证:AE=EF.5.(2017年滨州)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.6.(2017德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.7.(2018德州)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作(3)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.8.(2019德州)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.9.(2018年东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.10.(2019年东营)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.11.(2020年东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.12.(2022年东营)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是,位置关系是;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.13.(2021•菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且∠ADM=∠CDN,求证:BM=BN.14.(2019•菏泽)如图,四边形ABCD是矩形.(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC=4,∠BAC=30°,求BE的长.15.(2018•菏泽)如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.16.(2021•菏泽)在矩形ABCD中,BC=CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.17.(2018•菏泽)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD 方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.18.(2017•菏泽)正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长19.(2020•菏泽)如图1,四边形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD+CD.(1)过点A作AE∥DC交BD于点E,求证:AE=BE;(2)如图2,将△ABD沿AB翻折得到△ABD'.①求证:BD'∥CD;AD'∥BC,求证:CD2=2OD•②若BD.20.(2019•菏泽)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的延长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD21.(2020济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(2019济南)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.23.(2018济南)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.24.(2020济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.25.(2019济南)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.26.(2018济南)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.27.(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.28.如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:∠AEH∠∠AGH;(2)当AB=12,BE=4时:∠求∠DGH周长的最小值;∠若点O是AC的中点,是否存在直线OH将∠ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出AHAF的值;若不存在,请说明理由.29.(2019年聊城)在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.30.(2020年聊城)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形..31. (2021年聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E 在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.32. (2022年聊城)如图,ABC 中,点D 是AB 上一点,点E 是AC 的中点,过点C 作CF AB ∥,交DE 的延长线于点F .(1)求证:AD CF =;(2)连接AF ,CD .如果点D 是AB 的中点,那么当AC 与BC 满足什么条件时,四边形ADCF 是菱形,证明你的结论.33.(2018•临沂)将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG .(1)如图,当点E 在BD 上时.求证:FD=CD ;(2)当α为何值时,GC=GB ?画出图形,并说明理由.34.(2020年临沂)如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .=;(1)求证:AF EF+的最小值;(2)求MN NG∠的大小是否变化?为什么?(3)当点E在AB上运动时,CEF35.(2022年临沂)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点P(端点除外),连接PD.将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点P在线段AC上的位置发生变化时,∠DPQ 的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.36.(2021年临沂)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE 折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.(1)求证:AG=GH;(2)若AB=3,BE=1,求点D到直线BH的距离;(3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?37..(临沂2019)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH ⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.38.(2022•青岛)如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF =FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知①(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)39.(2017年青岛市)(本小题满分8分)已知:如图,在菱形ABCD中,点E,O,F 分别是边AB,AC,AD的中点,连接CE、CF、OF.(1)求证:△ BCE≌△DCF;(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.40.(2019年青岛市)(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.41.(2021•青岛)如图,在▱ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.42.(2020•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD 和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.43.(2018年青岛市)(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.44.(2022•日照)如图1,△ABC是等腰直角三角形,AC=BC=4,∠C=90°,M,N分别是边AC,BC上的点,以CM,CN为邻边作矩形PMCN,交AB于E,F.设CM=a,CN=b,若ab=8.(1)判断由线段AE,EF,BF组成的三角形的形状,并说明理由;(2)①当a=b时,求∠ECF的度数;②当a≠b时,①中的结论是否成立?并说明理由.45.(2 021•日照)问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.46.(2019年日照)如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.47.(2017年日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.48.(2021•泰安)四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF 是等腰直角三角形.49.(2018年泰安)(11分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.50.(2017年泰安)(11分)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.51.(2017年泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.。
第18章平行四边形解答题—2019年中考真题汇编1.(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.2.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.3.如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.4.(2019•吉林)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.5.(2019•云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.6.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:7.(2019•湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.8.(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.9.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.10.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE =DF.11.(2019•荆门)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.12.(2019•黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG ⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.13.(2019•天门)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.14.(2019•新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.15.(2019•郴州)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.16.(2019•福建)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.17.(2019•鄂州)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O 的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.18.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.19.(2019•岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.20.(2019•怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.21.(2019•株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.22.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE =DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(2019•广安)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.25.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.26.(2019•聊城)在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.27.(2019•遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE 交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.28.(2019•凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.29.(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.30.(2019•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.31.(2019•重庆)在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.32.(2019•衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.第18章平行四边形解答题—2019年中考真题汇编参考答案与试题解析1.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴AC==5,∵E、F分别是AD、BC的中点,∴AE=BF,∴四边形ABFE是矩形,∴EF=AB=3,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练正确全等三角形的判定和性质是解题的关键.2.【分析】(1)由“AAS”可证△AEB≌△BFC,可得AE=BF;(2)由线段垂直平分线的性质可得BD=AB=2.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=2【点评】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.3.【分析】(1)根据正方形的性质得到AB=AD,∠ABC=∠ADC=∠ADF=90°,利用SAS 定理证明结论;(2)根据全等三角形的性质得到AE=AF,∠BAE=∠DAF,得到△AEF为等腰直角三角形,根据勾股定理计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:∵△ABE≌△ADF,∴AE=AF,∠BAE=∠DAF,∵∠BAE+∠EAD=90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF=AE=5.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、勾股定理,掌握全等三角形的判定定理和性质定理、正方形的性质整式解题的关键.4.【分析】直接利用已知作图方法结合全等三角形的判定方法分析得出答案.【解答】证明:由题意可得:AE=FC,在平行四边形ABCD中,AB=DC,∠A=∠C在△ABE和△CDF中,,所以,△ABE≌△CDF(SAS).【点评】此题主要考查了平行四边形的性质以及全等三角形的判定,正确掌握基本作图方法是解题关键.5.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.6.【分析】连接AC,由SSS证明△ABC≌△CDA得出∠BAC=∠DCA,∠ACB=∠CAD,证出AB∥CD,BC∥AD,即可得出结论.【解答】证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定定理,证明三角形全等是解题的关键.7.【分析】(1)利用SAS即可证明;(2)用正方形面积减去两个全等三角形的面积即可.【解答】解:(1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积=×4×1=2.所以四边形BEDF的面积为16﹣2×2=12.【点评】本题主要考查了全等三角形的判定和性质,难度较小,掌握全等三角形的判定方法是解题的关键.8.【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG =BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠CDF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的.理由如下:∵AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点评】本题考查了矩形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质,证明三角形全等是解题的关键.9.【分析】(1)由矩形的性质得出∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,由HL证明Rt△ABE≌Rt△CDF即可;(2)由全等三角形的性质得出BE=DF,得出CE=AF,由CE∥AF,证出四边形AECF是平行四边形,再由AC⊥EF,即可得出四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.10.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD 边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.【点评】此题考查了平行四边形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.11.【分析】(1)作CE⊥AB交AB的延长线于点E,设BE=x,由勾股定理列出关于x的方程,解方程求出平行四边形的高,进而即可求出其面积;(2)利用全等三角形的判定与性质得出AF=BE=,BF=5﹣=,DF=CE=,从而求出BD的长,在△BCD中利用勾股定理的逆定理即可证明两直线垂直.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DFA=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DFA=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.【点评】本题主要考查了平行四边形的性质、勾股定理及其逆定理以及全等三角形的判定与性质,综合性较强.12.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.13.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.14.【分析】(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据菱形的对角线互相垂直得出∠COD=90°,即可得出结论.【解答】证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCFD是矩形.【点评】本题考查了菱形的性质,全等三角形的判定与性质,矩形的判定,平行四边形的判定,熟练掌握菱形的性质,证明三角形全等是解题的关键.15.【分析】利用平行四边形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.16.【分析】由SAS证明△ADF≌△CBE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴AF=CE.【点评】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.17.【分析】(1)根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;(2)推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=,∴EF=2OE=.【点评】本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.18.【分析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.【点评】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.【点评】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.20.【分析】(1)由平行四边形的性质得出∠B=∠D,AB=CD,AD∥BC,由已知得出∠AEB =∠AEC=∠CFD=∠AFC=90°,由AAS证明△ABE≌△CDF即可;(2)证出∠EAF=∠AEC=∠AFC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.21.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC=90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.22.【分析】(1)根据矩形的性质得到CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,求得CF=AE=4﹣=,根据勾股定理得到AF=CE==,于是得到结论;(2)过F作FH⊥AB于H,得到四边形AHFD是矩形,根据矩形的性质得到AH=DF=,FH=AD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.【点评】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.23.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG =∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点评】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.24.【分析】先证明△ADE≌△FCE,得到AD=CF=3,DE=CE=2,从而可求平行四边形的周长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF.又ED=EC,∴△ADE≌△FCE(AAS).∴AD=CF=3,DE=CE=2.∴DC=4.∴平行四边形ABCD的周长为2(AD+DC)=14.【点评】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是借助全等转化线段.25.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.【点评】本题考查了平行四边形的性质和判定,菱形的判定和性质,直角三角形的斜边中线的性质,熟练掌握平行四边形的性质是解题的关键.26.【分析】(1)根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BOA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.【点评】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.27.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.28.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.29.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.30.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,证出EG=CF,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.31.【分析】(1)作BO⊥AD于O,由平行四边形的性质得出∠BAO=∠D=30°,由直角三角形的性质得出BO=AB=,证出∠ABE=∠AEB,得出AE=AB=,由三角形面积公式即可得出结果;(2)作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,证明△ABG≌△AFP得出AG=FP,再证明△BPC≌△PED得出PC=ED,即可得出结论.【解答】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BO=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=AE,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,∴PB=PE,∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥CD,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠FAP,在△ABG和△FAP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥CD,AD∥BC,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED﹣AG=PC﹣AG=PC﹣FP=FC.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.32.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.。
全国中考数学真题四边形分类汇编1.如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.2.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.3.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.4.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3,连接AE,DF⊥AE交于点F.(1)求证:△ABE≌△DF A;(2)连接CF,求sin∠DCF的值;(3)连接AC交DF于点G,求的值.5.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.6.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.7.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.9.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.10.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.11.如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.12.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.13.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.14.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.16.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.17.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.18.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.19.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.20.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.21.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.22.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.23.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.24.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.26.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.27.如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.28.如图,将矩形ABCD沿AF折叠,使点D落在BC边上的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.29.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.30.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.31.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.32.如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.33.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.34.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.35.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.36.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.37.如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.38.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.39.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.40.如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=时,求⊙O的半径.41.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.42.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO 并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.43.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC 于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.44.如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.45.如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.46.如图,点D是等边三角形ABC外接圆的上一点(与点B,C不重合),BE∥DC交AD于点E.(1)求证:△BDE是等边三角形;(2)求证:△ABE≌△CBD;(3)如果BD=2,CD=1,求△ABC的边长.47.如图所示,AB是⊙O的直径,P为AB延长线上的一点,PC切⊙O于点C,AD⊥PC,垂足为D,弦CE平分∠ACB,交AB于点F,连接AE.(1)求证:∠CAB=∠CAD;(2)求证:PC=PF;(3)若tan∠ABC=,AE=5,求线段PC的长.48.如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E在BC边上,且满足EB =ED.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,AB=10,求sin∠CAE的值.49.如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB 延长线于点E,垂足为点F.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径R=5,tan C=,求EF的长.50.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.全国中考数学真题四边形分类汇编参考答案与试题解析一.解答题(共50小题)1.如图,在平行四边形ABCD中,E,F分别是AB,BC边上的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G;(1)求证:△CFG≌△AEG;(2)若AB=6,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判定定理得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,AD=CD,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=6,∴DG==4.【点评】本题考查了平行四边形的性质,菱形的判断和性质,全等三角形的判定和性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.2.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.3.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.【分析】(1)只要证明AD=BC,∠ADP=∠BCQ,DP=CQ即可解决问题;(2)首先证明四边形ABQP是平行四边形,再证明AB=AP即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.【点评】本题考查菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3,连接AE,DF⊥AE交于点F.(1)求证:△ABE≌△DF A;(2)连接CF,求sin∠DCF的值;(3)连接AC交DF于点G,求的值.【分析】(1)根据勾股定理求出AE,矩形的性质、全等三角形的判定定理证明;(2)连接DE交CF于点H,根据全等三角形的性质得到DF=AB=CD=4,AF=BE=3,证明∠DCH =∠DEC,求出sin∠DEC,得到答案;(3)过点C作CK⊥AE交AE的延长线于点K,根据平行线分线段成比例定理得到=,根据余弦的概念求出EK,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴=5,∠AEB=∠DAF,在△ABE和△AFD中,,∴△ABE≌△AFD;(2)连接DE交CF于点H.∵△ABE≌△DF A,∴DF=AB=CD=4,AF=BE=3,∴EF=CE=2.∴DE⊥CF.∴∠DCH+∠HDC=∠DEC+∠HDC=90°.∴∠DCH=∠DEC.在Rt△DCE中,CD=4,CE=2,∴DE=2,∴sin∠DCF=sin∠DEC==.(3)过点C作CK⊥AE交AE的延长线于点K.∴=.在Rt△CEK中,EK=CE•cos∠CEK=CE•cos∠AEB=2×=.∴FK=FE+EK=.∴==.【点评】本题考查的是矩形的性质、全等三角形的判定和性质以及三角形中位线定理的应用,掌握矩形的性质定理、全等三角形的判定定理和性质定理是解题的关键.5.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.6.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.【点评】此题考查菱形的判定和性质,关键是根据平行四边形和菱形的判定和性质解答.7.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.【分析】(1)根据SAS即可证明.(2)解直角三角形求出DF、OE、OF即可解决问题;【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.【点评】本题考查全等三角形的判定和性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.9.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.10.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE =CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG =90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.11.如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG.(2)若AB=4,求四边形AGCD的对角线GD的长.【分析】(1)根据线段垂直平分线的性质得到AB=AC,AC=BC,得到AB=AC=BC,求得∠B=60°,于是得到∠BAF=∠BCE=30°,根据全等三角形的判定定理即可得到结论;(2)根据菱形的判断对了得到▱ABCD是菱形,求得∠ADC=∠B=60°,AD=CD,求得∠ADG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵E、F分别是AB、BC的中点,CE⊥AB,AF⊥BC,∴AB=AC,AC=BC,∴AB=AC=BC,∴∠B=60°,∴∠BAF=∠BCE=30°,∵E、F分别是AB、BC的中点,∴AE=CF,在△CFG和△AEG中,,∴△CFG≌△AEG;(2)解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,∴∠ADC=∠B=60°,∵AD∥BC,CD∥AB,∴AF⊥AD,CE⊥CD,∵△CFG≌△AEG,∴AG=CG,∵GA⊥AD,GC⊥CD,GA=GC,∴GD平分∠ADC,∴∠ADG=30°,∵AD=AB=4,∴DG==.【点评】本题考查了平行四边形的性质,菱形的判断和性质,全等三角形的判定和性质,平行线的性质,熟练掌握平行四边形的性质是解题的关键.12.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.【点评】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.13.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠F AG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.【分析】(1)由等腰三角形的性质得出∠ABC=∠C,证出∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,得出∠DEG=∠C,证出∠F=∠DEG,得出BF∥DE,即可得出结论;(2)证出△BDE、△BEF是等腰直角三角形,由勾股定理得出BF=BE=BD=,作FM⊥BD 于M,连接DF,则△BFM是等腰直角三角形,由勾股定理得出FM=BM=BF=1,得出DM=3,在Rt△DFM中,由勾股定理求出DF即可.【解答】(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;(2)解:∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°,∴△BDE、△BEF是等腰直角三角形,∴BF=BE=BD=,作FM⊥BD于M,连接DF,如图所示:则△BFM是等腰直角三角形,∴FM=BM=BF=1,∴DM=3,在Rt△DFM中,由勾股定理得:DF==,即D,F两点间的距离为.【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质和勾股定理是解决问题的关键.16.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.【分析】(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.【解答】(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.【点评】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.17.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2××(x+1)×1+×x×(x+1)=6,整理得:x2+3x﹣10=0,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.18.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.求证:∠ABF=∠CBE.【分析】根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得结论.【解答】证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE.【点评】此题主要考查了菱形的性质以及全等三角形的判定与性质,熟练掌握菱形的性质,证明三角形全等是解决问题的关键.19.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=AE=2,∠BAF=2∠BAE,AE ⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,解直角三角形,属于中考常考题型.20.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO 即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,。
阶段检测6 四边形一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的( )A .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE第1题图 第2题图 第4题图 第8题图2.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°3.关于▱ABCD 的叙述,正确的是( )A .若AB⊥BC ,则▱ABCD 是菱形B .若AC⊥BD ,则▱ABCD 是正方形C .若AC =BD ,则▱ABCD 是矩形 D .若AB =AD ,则▱ABCD 是正方形4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形OCED 的周长为( )A .4B .8C .10D .125.在平行四边形ABCD 中,AB =3,BC =4,当平行四边形ABCD 的面积最大时,下列结论正确的有( )①AC =5;②∠A +∠C =180°;③AC⊥BD ;④AC =BD.A .①②③B .①②④C .②③④D .①③④6.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A .360°B .540°C .720°D .900°7.在平行四边形ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为( )A .3B .5C .2或3D .3或58.如图,有一平行四边形ABCD 与一正方形CEFG ,其中E 点在AD 上.若∠ECD =35°,∠AEF =15°,则∠B 的度数为何?( )A .50°B .55°C .70°D .75°9.如图,在正方形ABCD 中,△ABE 和△CDF 为直角三角形,∠AEB =∠CFD =90°,AE =CF =5,BE =DF =12,则EF 的长是( )第9题图 第10题图 A .7 B .8 C .7 2 D .7310.已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB =45,点P 是对角线OB 上的一个动点,D (0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫65,35 D.⎝ ⎛⎭⎪⎫107,57 二、填空题(本大题有6小题,每小题5分,共30分)11.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若OE =3,则菱形ABCD 的周长为 .第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE = 度.13.如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F.若∠B =52°,∠DAE =20°,则∠FED′的大小为 .14.如图,正方形ABCO 的顶点C 、A 分别在x 轴、y 轴上,BC 是菱形BDCE 的对角线,若∠D =60°,BC =2,则点D 的坐标是 .15.如图,矩形ABCD 中,AB =8,BC =4,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是 .第14题图 第15题图 第16题图16.如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O.有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连结EF 交OB 于点G ,则下列结论中正确的是 .(1)EF =2OE ;(2)S 四边形OEBF ∶S 正方形ABCD =1∶4;(3)BE +BF =2OA ;(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =34;(5)OG·BD =AE 2+CF 2. 三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(2017·安顺)如图,DB ∥AC ,且DB =12AC ,E 是AC 的中点, (1)求证:BC =DE ;(2)连结AD 、BE ,若要使四边形DBEA 是矩形,则给△ABC 添加什么条件,为什么?第17题图18.如图,在菱形ABCD 中,AB =2,∠ABC =60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角α(0°<α<90°)后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F.第18题图(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.19.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连结MD,AN.第19题图(1)求证:四边形AMDN是平行四边形;(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.20.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图1中,画出一个平行四边形,使其面积为6;(2)在图2中,画出一个菱形,使其面积为4;(3)在图3中,画出一个矩形,使其邻边不等,且都是无理数.第20题图21.如图3是利用四边形的不稳定性制造的一个移动升降装修平台,其基本图形是菱形,主体部分相当于由6个菱形相互连接而成,通过改变菱形的角度,从而可改变装修平台高度.(1)如图1是一个基本图形,已知AB=1米,当∠ABC为30°时,求AC的长及此时整个装修平台的高度(装修平台的基脚高度忽略不计);(2)当∠ABC从30°变为90°(如图2是一个基本图形变化后的图形)时,求整个装修平台升高了多少米.(结果精确到0.1米,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,2≈1.41)第21题图22.探究:如图1,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN=°.应用:将图1的△ABC分别改为正方形ABCD和正五边形ABCDE,如图2、3,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图2中∠CPN =°;图3中∠CPN=°.拓展:若将图1的△ABC改为正n边形,其他条件不变,则∠CPN=°(用含n的代数式表示).第22题图23.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连结起来得到的四边形EFGH是平行四边形吗?小敏在思考问题时,有如下思路:连结AC.第23题图结合小敏的思路作答.(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题的方法解决以下问题:(2)如图2,在(1)的条件下,若连结AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.24.如图,BD 是正方形ABCD 的对角线,BC =2,边BC 在其所在的直线上平移,将通过平移得到的线段记为PQ ,连结PA 、QD ,并过点Q 作QO⊥BD ,垂足为O ,连结OA 、OP.(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形?(2)请判断OA 、OP 之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y =S △OPB ,BP =x (0≤x≤2),求y 与x 之间的函数关系式,并求出y 的最大值.第24题图参考答案阶段检测6 四边形一、1—5.DCCBB 6—10.DDCCD二、11.24 12.22.5 13.36° 14.(2+3,1) 15.5 16.(1),(2),(3),(5)三、17.(1)∵E 是AC 中点,∴EC =12AC.∵DB =12AC ,∴DB =EC. 又∵DB∥EC,∴四边形DBCE 是平行四边形.∴BC=DE. (2)添加AB =BC.理由:∵DB 綊AE ,∴四边形DBEA 是平行四边形.∵BC=DE ,AB =BC ,∴AB =DE.∴▱ADBE 是矩形.第17题图18.(1) ∵四边形ABCD 是菱形,∴AD ∥BC ,AO =OC ,∴AE CF =OE OF =AO OC=1,∴AE =CF ,OE =OF ,在△AOE 和△COF 中,⎩⎪⎨⎪⎧AO =CO ,OE =OF AE =CF ,∴△AOE ≌△COF. (2)当α=30°时,即∠AOE=30°,∵四边形ABCD 是菱形,∠ABC =60°,∴∠OAD =60°,∴∠AEO =90°,在Rt △AOB 中,sin∠ABO =AO AB =AO 2=12,∴AO =1,在Rt △AEO 中,cos ∠AOE =cos 30°=OE AO =32,∴OE =32,∴EF =2OE = 3.第18题图19.(1)∵四边形ABCD 是菱形,∴ND ∥AM ,∴∠NDE =∠M AE ,∠DNE =∠AME,∵点E是AD 中点,∴DE =AE ,在△NDE 和△MAE 中,⎩⎪⎨⎪⎧∠NDE =∠MAE,∠DNE =∠AME DE =AE ,,∴△NDE ≌△MAE(AAS),∴ND =MA ,∴四边形AMDN 是平行四边形; (2)AM =1.理由如下:∵四边形ABCD 是菱形,∴AD =AB =2,∵平行四边形AMDN 是矩形,∴DM ⊥AB ,即∠DMA=90°,∵∠DAB =60°,∴∠ADM =30°,∴AM =12AD =1. 20.(1)如图1, (2)如图2, (3)如图3.第20题图 21.(1)连结图1中菱形ABCD 的对角线AC 、BD ,交于点O ,在Rt △ABO 中,∠AOB =90°,∠ABO =12∠ABC =15°,∴OA =AB ·sin ∠ABO =1×sin 15°≈0.26米,此时AC =2AO =2×0.26=0.52≈0.5米,故可得整个装修平台的高度=0.52×6=3.12≈3.1米; (2)当∠ABC 从30°变为90°时,AC =2≈1.41米,此时的整个装修平台的高度=1.41×6=8.46米,整个装修平台升高了8.46-3.12≈5.3米.第21题图22.探究:(1)∵△ABC 是等边三角形,∴BC =AC ,∠ACB =∠ABC=60°.∴∠ACN =∠CBM=120°.在△ACN 和△CBM 中,⎩⎪⎨⎪⎧AC =BC ,∠ACN =∠CBM CN =BM ,,∴△ACN ≌△CBM. (2)∵△ACN≌△CBM,∴∠CAN =∠BCM,∵∠ABC =∠BMC+∠BCM,∠BAN =∠BAC+∠CAN,∴∠CPN =∠BMC+∠BAN =∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60°+60°=120°.应用:将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC =DC ,∠ABC =∠BCD=90°.∴∠MBC =∠DCN=90°.在△DCN 和△CBM 中,⎩⎪⎨⎪⎧DC =BC ,∠DCN =∠MBC,CN =BM ,∴△DCN ≌△CBM.∴∠CDN =∠BCM,∵∠BCM =∠PCN,∴∠CDN =∠PCN,在Rt △DCN 中,∠CDN +∠CND=90°,∴∠PCN +∠CND=90°,∴∠CPN =90°.将等边三角形换成正五边形,∵五边形ABCDE 是正五边形,∴∠ABC =∠BCD=108°.∴∠MBC =∠DCN=72°.在△DCN 和△CBM 中,⎩⎪⎨⎪⎧DC =BC ,∠DCN =∠MBC CN =BM ,,∴△DCN ≌△CBM.∴∠BMC =∠CND,∠BCM =∠CDN,∵∠ABC =∠BMC+∠BCM=108°,∴∠CPN =180°-(∠CND+∠PCN)=180°-(∠CND+∠BCM)=180°-(∠BCM+∠BMC)=180°-108°=72°. 拓展:方法和上面正五边形的方法一样,得到∠CPN=180°-(∠CND+∠PCN)=180°-(∠CND+∠BCM)=180°-(∠BCM+∠BMC)=180°-180°(n -2)n =360°n,故答案为360n. 23.(1)是平行四边形,证明:如图2,连结AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF∥AC ,EF =12AC ,同理HG∥AC,HG =12AC ,综上可得:EF∥HG,EF =HG ,故四边形EFGH 是平行四边形; (2)①AC=BD.理由如下:由(1)知,四边形EFGH 是平行四边形,且FG =12BD ,HG =12AC ,∴当AC =BD 时,FG =HG ,∴平行四边形EFGH 是菱形; ②当AC⊥BD 时,四边形EFGH 为矩形;理由如下:同①得:四边形EFGH 是平行四边形,∵AC ⊥BD ,GH ∥AC ,∴GH ⊥BD ,∵GF ∥BD ,∴GH ⊥GF ,∴∠HGF =90°,∴四边形EFGH 为矩形.第23题图24.(1)四边形APQD 为平行四边形; (2)OA =OP ,OA ⊥OP ,理由如下:∵四边形ABCD是正方形,∴AB =BC =PQ ,∠ABO =∠OBQ=45°,∵OQ⊥BD,∴∠PQO =45°,∴∠ABO =∠OBQ=∠PQO=45°,∴OB =OQ ,在△AOB 和△OPQ 中,⎩⎪⎨⎪⎧AB =PQ ,∠ABO =∠PQO BO =QO ,,∴△AOB ≌△POQ(SAS),∴OA =OP ,∠AOB =∠POQ,∴∠AOP =∠BOQ=90°,∴OA ⊥OP ; (3)如图,过O 作OE⊥BC 于E.①如图1,当P 点在B 点右侧时,则BQ =x +2,OE =x +22,∴y =12×x +22·x ,即y =14(x +1)2-14,又∵0≤x≤2,∴当x =2时,y 有最大值为2;②如图2,当P 点在B 点左侧时,则BQ =2-x ,OE =2-x 2,∴y =12×2-x 2·x ,即y =-14(x -1)2+14,又∵0≤x≤2,∴当x =1时,y 有最大值为14;综上所述,当x =2时,y 有最大值为2.第24题图。
2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——四边形一.选择题1.(2020•东莞市一模)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.(2020•东莞市二模)从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9 3.(2020•东莞市一模)一个多边形每个外角都等于30°,这个多边形是()A.六边形B.正八边形C.正十边形D.正十二边形4.(2020•东莞市一模)若一个多边形的每个外角都等于45°,则它的边数是()A.11 B.10 C.9 D.8 5.(2019•东莞市模拟)正方形面积为36,则对角线的长为()A.6 B.C.9 D.6.(2020•东莞市一模)在四边形ABCD中,AC与BD相交于点O,且AD∥BC,给出下列条件:①AB∥CD;②AB=CD;③∠DAB=∠DCB;④AD=BC;⑤∠OAD=∠ODA.从中选1个作为条件,能使四边形ABCD为平行四边形的选法有()A.2种B.3种C.4种D.5种7.(2020•东莞市校级二模)如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的是()A .①③B .①②③④C .①②③D .①③④二.填空题 8.(2020•东莞市校级模拟)若正多边形的一个内角的度数等于它外角度数的5倍,则这个正多边形的边数为 .9.(2020•东莞市校级模拟)一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是 .10.(2020•东莞市一模)已知正多边形的一个外角为40°,则这个正多边形的内角和为 .11.(2020•东莞市校级二模)若一个正n 边形的一个外角为36°,则n 等于 .12.(2020•东莞市一模)如图,在菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD延长线上的一点,且CD =DE ,连接BE 分别交AC 、AD 于点F 、G ,连接OG ,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)①OG =AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.三.解答题13.(2020•东莞市校级模拟)如图,动点E 从矩形ABCD 的点B 沿线段BC 向点C 运动,连接AE ,DE ,以AE 为边作矩形AEFG ,使FG 过点D .(1)求证:矩形ABCD 与矩形AEFG 的面积相等;(2)若AB =2,BC =6,直接写出BE 为何值时,△AED 为等腰三角形.14.(2020•东莞市一模)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.15.(2019•东莞市模拟)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).参考答案一.选择题1.解:如图所示,根据平行四边形的判定定理知,只有C符合条件.故选:C.2.解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选:C.3.解:∵多边形的外角和为360°,360°÷30°=12,∴这个多边形是正十二边形,故选:D.4.解:∵多边形的外角和是360°,每个外角都等于45°,∴360÷45=8,∴正多边形的边数为8.故选:D.5.解:设对角线长是x.则有x2=36,解得:x=6.故选:B.6.解:已知AD∥BC,加上①AB∥CD可根据两组对边分别平行的四边形是平行四边形进行判定;加上②AB=CD不能判定是平行四边形;加上③∠DAB=∠DCB可证明AB∥CD,可根据两组对边平行的四边形是平行四边形进行判定;加上④AD=BC可根据一组对边平行且相等的四边形是平行四边形进行判定;加上⑤∠OAD =∠ODA 不能判定是平行四边形;故选:B .7.解:∵四边形ABCD 是正方形,E 是AD 边上的中点,∴AE =DE ,AB =CD ,∠BAD =∠CDA =90°,∴△BAE ≌△CDE (SAS ),∴∠ABE =∠DCE ,故①正确;∵四边形ABCD 是正方形,∴AD =DC ,∠ADB =∠CDB =45°,DH =DH ,∴△ADH ≌△CDH (SAS ),∴∠HAD =∠HCD ,∵∠ABE =∠DCE∴∠ABE =∠HAD ,∵∠BAD =∠BAH +∠DAH =90°,∴∠ABE +∠BAH =90°,∴∠AGB =180°﹣90°=90°,∴AG ⊥BE ,故②正确;∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;∵△ADH ≌△CDH ,∴∠AHD =∠CHD ,∴∠AHB =∠CHB ,∵∠BHC =∠DHE ,∴∠AHB=∠EHD,故④正确;故选:B.二.填空题(共5小题)8.解:设这个正多边的外角为x°,由题意得:x+5x=180,解得:x=30,360°÷30°=12.故答案为:十二.9.解:∵菱形的两条对角线的长分别为5和8,∴这个菱形的面积是×5×8=20;故答案为:20.10.解:正多边形的每个外角相等,且其和为360°,据此可得,解得n=9.(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.11.解:n=360°÷36°=10.故答案为10.12.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG 和△DEG 中,,∴△ABG ≌△DEG (AAS ),∴AG =DG ,∴OG 是△ACD 的中位线,∴OG =CD =AB ,①正确;∵AB ∥CE ,AB =DE ,∴四边形ABDE 是平行四边形,∵∠BCD =∠BAD =60°,∴△ABD 、△BCD 是等边三角形,∴AB =BD =AD ,∠ODC =60°, ∴OD =AG ,四边形ABDE 是菱形,④正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,,∴△ABG ≌△DCO (SAS ),∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,②不正确;∵OB =OD ,AG =DG ,∴OG 是△ABD 的中位线, ∴OG ∥AB ,OG =AB ,∴△GOD ∽△ABD ,△ABF ∽△OGF ,∴△GOD 的面积=△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF :OF =2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;不正确;正确的是①④.故答案为:①④.三.解答题(共3小题)13.(1)法一:证明:∵四边形ABCD 和四边形AEFG 是矩形,∴∠B =∠G =∠BAD =∠EAG =90°,又∵∠BAE +∠EAD =∠EAD +∠DAG =90°,∴∠BAE =∠DAG ,∴△ABE ∽△AGD ,∴,∴AB •AD =AG •AE ,∴矩形AEFG 与矩形ABCD 的面积相等. 法二:连接ED ,∵S 矩形AEFG =2S △ADE ,S 矩形ABCD =2S △ADE ,∴S 矩形AEFG =S 矩形ABCD .(2)当AE =AD 时,如图2,BE ==;当DE =AD 时,如图3,CE=,∴BE=BC﹣CE=6﹣2;当AE=DE时,如图4,过E作EM⊥AD于点M,则BE=AM,∵AE=DE,∴AM==3,∴BE=3.综上,当BE为2或3或3﹣2时,△AED为等腰三角形.14.解:(1)过点A作AD⊥OC于D,∵四边形OABC为菱形,点C的坐标为(8,0),∴OA=AB=BC=CO=8.∵∠AOC=60°,∴OD=4,AD=4.∴A(4,4),B(12,4);(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:①0≤t≤4时,直线l与OA、OC两边相交,(如图①).∵MN⊥OC,∴ON=t.∴MN=ON tan60°=t.∴S=ON•MN=t2;②当4<t≤8时,直线l与AB、OC两边相交,(如图②).S=ON•MN=×t×4=2t;③当8<t≤12时,直线l与AB、BC两边相交,(如图③).设直线l与x轴交于点H.∵MN=4﹣(t﹣8)=12﹣t,∴S=OH•MN=×t×(12﹣t)=﹣t2+6t;=×42=8,(3)由(2)知,当0≤t≤4时,S最大=16,当4<t≤8时,S最大当8<t≤12时,S=﹣t2+6t=﹣(t﹣6)2+18∴当8<t≤12时,S<16=16.综上所述,当t=8时,S最大15.解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DG所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线CE上,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,。
正方形
1、(2018•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论有()
∴PE=EM=PM
NP
又∵PE=EM=PM FP=FN=NP OA=AC
(B ) (C ) (D )
2、(2018年临沂)如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D
时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),
则s(2cm )与t(s)的函数关系可用图像表示为
答案:B 解析:经过t 秒后,BE =CF =t ,CE =DF =8-t ,1422
BEC S t t ∆=⨯⨯=, 211(8)422ECF S t t t t ∆=⨯-⨯=-,1(8)4162
2ODF S t t ∆=⨯-⨯=-, 所以,2211322(4)(162)41622
OEF S t t t t t t ∆=-----=-+,是以(4,8)为顶点,开口向上的抛物线,故选B 。