2019_2020学年高中数学第2章平面向量2.1平面向量的实际背景及基本概念教案(含解析)新人教A版必修4
- 格式:doc
- 大小:476.50 KB
- 文档页数:8
姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
2019-2020年高中数学必修四 第二章 平面向量 《平面向量的实际背景及基本概念》学习过程学习过程知识点一:向量的概念 既有大小又有方向的量叫向量。
注意数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小.知识点二:向量的表示法 ①用有向线段表示;②用字母a、b (黑体,印刷用)等表示;①用有向线段表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||.知识点三:有向线段(1)有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.(2)向量与有向线段的区别:①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.知识点四:两个特殊的向量(1)零向量:长度为0的向量叫零向量,记作0r . 0r 的方向是任意的.注意0r 与0的含义与书写区别.(2)单位向量:长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小。
知识点五:平行向量、共线向量(1) 定义:方向相同或相反的非零向量叫平行向量。
(2) 规定:规定0r 与任一向量平行.(3)共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:①综合(1)、(2)才是平行向量的完整定义;②向量,,a b c r r r 平行,记作a r ∥ b r ∥c r③平行向量可以在同一直线上,要区别于两平行线的位置关系; ④共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.知识点六:相等向量(1) 定义长度相等且方向相同的向量叫相等向量.(2)向量a r 与b r 相等,记作a b =r r ;(3)零向量与零向量相等;(4)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.学习结论(1) 两个非零向量方向相同或相反,则它们共线,但要注意0r 与任一向量平行。
2.1 平面向量的实际背景及基本概念
1.向量与数量
(1)向量:既有大小,又有方向的量叫做向量.
(2)数量:只有大小,没有方向的量称为数量.
2.向量的几何表示
(1)带有方向的线段叫做有向线段.它包含三个要素:起点、方向、长度.
(2)向量可以用有向线段表示.向量AB →的大小,也就是向量 AB →的长度(或称模),记作|AB
→|.向量也可以用字母a ,b ,c ,…表示,或用表示向量的有向线段的起点和终点字母表示,
例如:AB →,CD →.
思考:(1)向量可以比较大小吗?
(2)有向线段就是向量吗?
[提示] (1)向量不能比较大小,但向量的模可以比较大小.
(2)有向线段只是表示向量的一个图形工具,它不是向量.
3.向量的有关概念
1.正n 边形有n 条边,它们对应的向量依次为a 1,a 2,a 3,…,a n ,则这n 个向量( )
A .都相等
B .都共线
C .都不共线
D .模都相等
D [因为多边形为正多边形,所以边长相等,所以各边对应向量的模都相等.]
2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.其中可以看成是向量的有( )
A .1个
B .2个
C .3个
D .4个
B [①②③不是向量,④⑤是向量.]
3.已知|AB →|=1,|AC →|=2,若∠ABC =90°,则|BC →|= .
3 [三角形ABC 是以B 为直角的直角三角形,所以|BC →|=22-12= 3.]
4.如图,四边形ABCD 是平行四边形,则图中相等的向量是 (填序号).
(1)AD →与BC →;(2)OB →与OD →;
(3)AC →与BD →;(4)AO →与OC →.
(1)(4) [由平行四边形的性质和相等向量的定义可知:
AD →=BC →,OB →≠OD →,
AC →≠BD →,AO →=OC →.]
【例1】 判断下列命题是否正确,请说明理由:
(1)若向量a 与b 同向,且|a |>|b |,则a >b ;
(2)若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;
(3)对于任意向量|a |=|b |,若a 与b 的方向相同,则a =b ;
(4)由于0方向不确定,故0不与任意向量平行;
(5)向量a 与向量b 平行,则向量a 与b 方向相同或相反.
思路点拨:解答本题应根据向量的有关概念,注意向量的大小、方向两个要素.
[解] (1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.
(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们的方向关系.
(3)正确.因为|a |=|b |,且a 与b 同向,由两向量相等的条件,可得a =b .
(4)不正确.依据规定:0与任意向量平行.
(5)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定.
1.理解零向量和单位向量应注意的问题
(1)零向量的方向是任意的,所有的零向量都相等.
(2)单位向量不一定相等,易忽略向量的方向.
2.共线向量与平行向量
(1)平行向量也称为共线向量,两个概念没有区别;
(2)共线向量所在直线可以平行,与平面几何中的共线不同;
(3)平行向量可以共线,与平面几何中的直线平行不同.
提醒:解决与向量概念有关题目的关键是突出向量的核心——方向和长度.
1.给出下列命题:
①若a ∥b ,b ∥c ,则a ∥c .
②若单位向量的起点相同,则终点相同.
③起点不同,但方向相同且模相等的几个向量是相等向量;
④向量AB →与CD →是共线向量,则A ,B ,C ,D 四点必在同一直线上.
其中正确命题的序号是 .
③ [①错误.若b =0,则①不成立;
②错误.起点相同的单位向量,终点未必相同;
③正确.对于一个向量只要不改变其大小和方向,是可以任意移动的.
④错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB →,CD →必
须在同一直线上.]
写出 个向量.。