2011山东高考数学答案
- 格式:doc
- 大小:895.69 KB
- 文档页数:10
2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 (A )0 (B) 33(C) 1 (D) 3【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 3663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C. 7. 广告费用x (万元) 4 2 3 5 销售额y (万元) 49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得$9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -= 【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,所以222a b =+,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A. 9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v(λ∈R),1412A A A A μ=u u u u v u u u u v (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ=u u u u v u u u u v (λ∈R),1412A A A A μ=u u u u v u u u u v(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若62(x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为6162(r rr r T C x x-+=⋅⋅-,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+L L根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,1516x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在V ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cosC 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A BC C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c Ca A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯. 18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011年普通高等学校招生全国统一考试数学(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.设集合 {}|(3)(2)0M x x x =+-<,{}|13,N x x=剟 则MN = ( )A.[1,2)B.[1,2]C.( 2,3]D.[2,3] 【测量目标】集合间的交集运算. 【考查方式】集合的表达(描述法),化解,求集合的交集. 【参考答案】A【试题解析】因为{}{}|32,|12M x x M N x x =-<<∴=<…,故选A.2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数的四则运算及复平面.【考查方式】给出复数的除法形式,考查复数的代数四则运算与复数的几何意义. 【参考答案】D【试题解析】因为22i (2i)34i2i 55z ---===+,故复数z 对应点在第四象限,选D. 3.若点(a ,9)在函数3xy =的图象上,则πtan6a 的值为 ( ) A.0 B.33C. 1D. 3 【测量目标】特殊的三角函数值.【考查方式】给出点在函数图象上,求解未知数,通过代入三角函数求解. 【参考答案】D【试题解析】由题意知:93a=,解得a =2,所以π2πtantan 366a ==,故选D. 4.曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是 ( ) A.-9 B.-3 C.9 D.15【测量目标】导数的几何意义.【考查方式】给出函数式与其上一点,用求导的方式求该点的切线与y 轴的焦点纵坐标. 【参考答案】C【试题解析】因为23y x '=,切点为P (1,12),所以切线的斜率为3,故切线方程为390,x y -+=令0,9x y ==5.已知,,a b c ∈R ,命题“若3,a b c ++=则22233,a b c a b c ++++=…”的否命题是( ) A.若3,a b c ++≠则2223a b c ++< B.若3,a b c ++=则2223a b c ++< C.若3,a b c ++≠则2223a b c ++… D.若3,a b c ++…则3a b c ++< 【测量目标】命题的基本关系.【考查方式】考查命题的基本关系,主要考查否命题. 【参考答案】A【试题解析】命题“若p ,则q ”的否命题是“若,p ⌝则q ⌝”,故选A.6.若函数()sin (0)f x x ωω=>在区间π03⎡⎤⎢⎥⎣⎦,上单调递增,在区间ππ32⎡⎤⎢⎥⎣⎦,上单调递减,则ω= ( ) A.23 B.32C. 2D.3 【测量目标】三角函数,函数的单调性.【考查方式】给出函数在某段区间上的单调性,求未知数ω. 【参考答案】B【试题解析】由题意知,函数在π3x =处取得最大值1,所以π1sin 3ω=,故选B.7.设变量,x y 满足约束条件250200x y x y x +-⎧⎪--⎨⎪⎩………,则目标函数231z x y =++的最大值为 ( )A.11B.10C.9D.8.5【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性目标函数的最大值. 【参考答案】B【试题解析】画出平面区域表示的可行域如图所示,当直线231z x y =++平移至点(3,1)A 时, 目标函数231z x y =++取得最大值为10,故选B. 8.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 ( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元 【测量目标】回归方程,函数在生活的应用.【考查方式】给出方程的数据,及ˆb,求出回归方程,代入x 求解. 【参考答案】B【试题解析】由表可计算4235749263954,42424x y ++++++==== ,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得ˆ9.1a =,故回归方程为ˆ9.49.1yx =+, 令6x =,得ˆ65.5y =,选B. 9.设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 ( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【测量目标】抛物线的简单几何性质,圆锥曲线中的范围问题,两点之间的距离公式. 【考查方式】给出抛物线方程与椭圆的位置关系,求出圆方程,根据准线相交,限定0y 范围.【参考答案】C【试题解析】设圆的半径为r ,因为F (0,2)是圆心, 抛物线C 的准线方程为2y =-,由圆与准线相切知4r -,因为点00(,)M x y 为抛物线2:8C x y =上一点,所以有2008x y =,又点00(,)M x y 在圆222(2)x y r +-=,所以22200(2)16x y r +-=>,所以2008(2)16y y +->,即有2004120y y +->,解得02y >或06y <-, 又因为00y …, 所以02y >, 选C.10.函数2sin 2xy x =-的图象大致是 ( )【测量目标】函数图象的判断.【考查方式】给出函数式,给定四张图象,选出正确图象. 【参考答案】C【试题解析】因为12cos 2y x '=-,所以令12cos 02y x '=->,得1cos 4x <,此时原函数是增函数;令12cos 02y x '=-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是第11题图A.3B.2C.1D.0 【测量目标】三视图,命题的概念.【考查方式】给出主视图俯视图,给出三个命题,判断真假. 【参考答案】A【试题解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R ,141211(),2,A A A A μμλμ=∈+=R 则称34,A A 调和分割12,A A ,已知点(,0),C c(,0)D d (,)c d ∈R 调和分割点(0,0),(1,0)A B ,则下面说法正确的是 ( )A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.,C D 可能同时在线段AB 上D.,C D 不可能同时在线段AB 的延长线上 【测量目标】平面向量的线性运算及向量的坐标运算.【考查方式】给出向量满足的数量关系,求向量的位置关系. 【参考答案】D【试题解析】由13121412(),()A A A A A A A A λλμμ=∈=∈R R 知:四点1234,,,A A A A 在同一条直线上(步骤1)因为,C D 调和分割点,A B ,所以,,,A B C D 四点在同一直线上,且112c d+=, 故选D.(步骤2)第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题按比例求解. 【参考答案】16【试题解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为8401620⨯=. 14.执行右图所示的程序框图,输入12,=3,5m n ==,则输出的y 的值是 .【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环y 的值. 【参考答案】68【试题解析】由输入12,3,5m n ===,计算得出278y =,第一次得新的173y =;第二次得新的68105y =<,输出y .15.已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .【测量目标】双曲线的简单几何性质、椭圆的简单几何性质. 【考查方式】给出椭圆方程,及双曲线的离心率与椭圆的离心率的数量关系,求双曲线方程.【参考答案】22143x y -= 【试题解析】由题意知双曲线的焦点为(7,0),(7,0),-即7c =,(步骤1)又因为双曲线的离心率为27,4c a =所以2,a =故23b =,(步骤2) 双曲线的方程为22143x y -=(步骤3) 16.已知函数()log (0,1)a f x x x b a a =+->≠且当234a b <<<<时,函数()f x 的零点*0(,1),,x n n n ∈+∈N 则n = .【测量目标】函数的零点,对数函数的图象与性质.【考查方式】给出函数式,限定函数式里的未知数,求零点位于的区间. 【参考答案】5【试题解析】方程log (0,1)=0a x x b a a +->≠且的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n ∈+∈N (步骤1) 结合图象,因为当(24)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;(步骤2) 当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,(步骤3)故所求的5n =.(步骤4)三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=.(I)求sin sin CA的值;(II)若1cos ,4B ABC =△的周长为5,求b 的长. 【测量目标】余弦定理正弦定理,利用正余弦定理解决有关长度问题.【考查方式】给出三角形三边与三角满足的关系式,求解两角正弦值的比值;给出三角形的周长,求边长.【试题解析】(1)由正弦定理得2sin ,2sin ,2sin ,a R A b R B c R C ===所以cos 2cos 22sin sin ,cos sin A C c a C AB b B---==(步骤1)即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-, 即有sin()2sin()A B B C +=+,即sin sin 2sin ,2sin CC A A==所以.(步骤2) (2)由(1)知sin 2sin C A =,所以有2ca=,即2c a =,(步骤3) 又因为ABC △的周长为5,所以53,b a =-(步骤4) 由余弦定理得:222222212cos ,(53)(2)44b c a ac B a a a a =+--=+-⨯,解得1a =,所以2b =.(步骤5) 18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【测量目标】随机事件与概率,古典概型.【考查方式】给出每个学校的人员具体情况,求从中选出一定人员的概率.【试题解析】(1) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;(步骤1)选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女1, 乙女1)、(甲女1, 乙女2),共4种,所以选出的2名教师性别相同的概率为49.(步骤2) (2)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共15种;(步骤3)选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种,所以选出的2名教师来自同一学校的概率为62155=.(步骤4) 19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11,60AD A B BAD =∠=.(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:1CC 平面1A BD .【测量目标】线面平行的判断,平行与垂直关系的综合问题.【考查方式】利用余弦定理求直线数量关系,线面垂直推出线线垂直;线线平行推出线面平行 【试题解析】(Ⅰ)证明:因为2AB AD =,所以设AD a =,则2AB a =(步骤1) 又因为60BAD ∠=,所以在ABD △中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=,所以3BD a =(步骤2)所以222AD BD AB +=,故BD AD ⊥,(步骤3) 又因为1D D ⊥平面ABCD ,所以1D D BD ⊥,(步骤4) 又因为1ADD D D =, 所以11BD ADD A ⊥平面,故1AA BD ⊥.(步骤5)(2)连结,AC 设AC BD O =, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点(步骤6)由四棱台1111ABCD A B C D -知:平面ABCD 平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为11,AC A C ,故11ACA C (步骤7)又因为2,AB a BC a ==, 120ABC ∠=,所以可由余弦定理计算得7AC a =(步骤8)又因为11113,2A B a B C a ==, 111120A B C ∠=,所以可由余弦定理计算得1172A C a =(步骤9)所以11A C OC 且11A C OC =,故四边形11OCC A 是平行四边形,所以11CC A O (步骤10)又1CC Ü平面11,A BD AO ⊂平面1A BD . 1CC ∴平面1A BD (步骤11)20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【测量目标】等比数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【考查方式】将数值放在图象中,求解通项公式;给出n n b a 与的关系,求和. 【试题解析】(Ⅰ)由题意知1232,6,18a a a ===,(步骤1)因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=.(步骤2) (Ⅱ)因为11(1)ln 23(1)ln 23,n n n n n b a a --=+-=+-所以21n n S b b b =+++=1212122(13)()(ln ln ln )ln()13n n n n a a a a a a a a a -+++-+++=--=-(1)121231ln(21333)31ln(23)n n nnn nn--=--⨯⨯⨯⨯=--(步骤3)2(21)2222231ln(23)912ln 2(2)ln 3.n n nnn n S n n n -∴=--=----(步骤4)21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .【测量目标】球的表面积公式,圆柱的体积公式,导数在实际问题中的应用【考查方式】给出图象,将所给关系表达为函数表达式,根据函数式,求出最小值【试题解析】(Ⅰ)因为容器的体积为80π3立方米,所以324π80ππ33r r l +=,解得280433rl r =-,所以圆柱的侧面积为22804160π8π2π2π()3333r r rl r r r =-=-,两端两个半球的表面积之和为24πr ,所以22160π8π4πy r cr r =-+,定义域为(0,)2l. (Ⅱ)因为3228(2)20160π16π8πc r y r cr r r π⎡⎤--⎣⎦'=-+=,所以令0y '>得:3202r c >-; 令3320200,0,22y r r c c '<<<∴=--米时, 该容器的建造费用最小. 22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于,A B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD OE =,(i )求证:直线l 过定点; (ii )试问点,B G 能否关于x 轴对称?若能,求出此时ABG △的外接圆方程;若不能,请说明理由.【测量目标】直线与椭圆的位置关系,韦达定理,圆的简单几何性质, 【考查方式】给出椭圆方程及图象,求俩数据和的最小值;给出向量的数量关系,求直线过定点和外接圆问题.【试题解析】(Ⅰ)由题意:设直线:(0)l y kx n n =+≠, 由2213y kx n x y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330,k x knx n +++-=(步骤1) 1122(,),(,)A x y B x y AB 设,的中点00(,)E x y ,则由韦达定理得: 122613kn x x k -+=+, 即00022233,131313kn kn n x y kx n k n k k k--==+=⨯+=+++ , 所以中点E 的坐标为223(,)1313kn n E k k-++(步骤2) 因为,,O E D 三点在同一直线上,所以,OE OD k k =即1,33m k -=- 解得222211,2m m k k k k =∴+=+…(步骤3) 当且仅当1k =时取等号,即22m k +的最小值为2.(步骤4)(Ⅱ)(i )证明:由题意知:0n >,因为直线OD 的方程为,3m y x =- 所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+(步骤5) 又因为2,13E D n y y m k==+ ,且2OG OD OE =,所以222313m n m m k =++(步骤6) 又由(Ⅰ)知: 1m k=,所以解得k n =, 所以直线l 的方程为:,l y kx k =+即有:(1)l y k x =+,(步骤7)令1,x =-得0y =与实数k 无关,所以直线l 过定点(-1,0).(步骤8)(ii )假设点,B G 关于x 轴对称,则有ABG △的外接圆的圆心在x 轴上,又在线段AB 的中垂线上,(步骤9)由(i )知点223(,),33m G m m -++所以点223(,)33m B m m --++,(步骤10)又因为直线l 过定点(-1,0),所以直线l 的斜率为223,313mm k m -+=-++,(步骤11) 又因为1m k=所以解得21m =或6(步骤12) 又因为230,m ->所以26m =舍去,21m =(步骤13)此时311,1,(,)44k m E ==-,AB 的中垂线为2210x y ++=,圆心坐标为131(,0),(,)222G --,圆半径为52,圆的方程为2215().24x y -+=(步骤14) 综上所述, 点,B G 关于x 轴对称,此时ABG △的外接圆的方程为2215().24x y -+=(步骤15)。
绝密★启用前2010年普通高等学校招生全国统一考试(山东卷)文科数学(全解析)注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知全集U R =,集合{}240M x x =-≤,则U C M = A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或 【答案】C【解析】因为{}240M x x =-≤{}22x x =-≤≤,全集U R =, 所以U C M ={}22x x x <->或,故选C 。
【命题意图】本题考查集合的补集运算、二次不等式的解法等基础知识,属基础题。
(2)已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b += A. 1- B. 1 C. 2 D. 3 【答案】B 【解析】由a+2i=b+i i得a+2i=bi-1,所以由复数相等的意义知:a=-1,b=2,所以a+b=1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。
(3)函数()()2log 31xf x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
2011年高考数学(山东卷)文科真题及答案参考答案一、选择题112 ADDCABBBCCAD二、填空题13.16 14.68 15.16.2三、解答题17.解:由正弦定理,设则所以即,化简可得又,所以因此由得由余弦定得及得所以又从而因此b=2。
18.解:甲校两男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,两女教师分别用E、F表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:,,,,,,,共9种。
从中选出两名教师性别相同的结果有:,,,共4种,选出的两名教师性别相同的概率为从甲校和乙校报名的教师中任选2名的所有可能的结果为:,,,,,,,,,,,,,,共15种,从中选出两名教师来自同一学校的结果有:,,,,,共6种,选出的两名教师来自同一学校的概率为19.证法一:因为平面ABCD,且平面ABCD,所以,又因为AB=2AD,,在中,由余弦定理得,所以,因此,又又平面ADD1A1,故证法二:因为平面ABCD,且平面ABCD,所以取AB的中点G,连接DG,在中,由AB=2AD得AG=AD,又,所以为等边三角形。
因此GD=GB,故,所以平面ADD1A1,又平面ADD1A1,故连接AC,A1C1,设,连接EA1因为四边形ABCD为平行四边形,所以由棱台定义及AB=2AD=2A1B1知A1C1//EC且A1C1=EC,所以边四形A1ECC1为平行四边形,因此CC1//EA1,又因为EA 平面A1BD,平面A1BD,所以CC1//平面A1BD。
20.解:当时,不合题意;当时,当且仅当时,符合题意;当时,不合题意。
因此所以公式q=3,故因为所以21.解:设容器的容积为V,由题意知故由于因此所以建造费用因此由得由于当令所以当时,所以是函数y的极小值点,也是最小值点。
当即时,当函数单调递减,所以r=2是函数y的最小值点,综上所述,当时,建造费用最小时当时,建造费用最小时22.解:设直线,由题意,由方程组得,由题意,所以设,由韦达定理得所以由于E为线段AB的中点,因此此时所以OE所在直线方程为又由题设知D,令x=-3,得,即mk=1,所以当且仅当m=k=1时上式等号成立,此时由得因此当时,取最小值2。
2011年普通高等学校夏季招生全国统一考试数学(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试用时120分钟. 参考公式:柱体的体积公式:V =Sh ,其中S 是柱体的底面积,h 是柱体的高.圆柱的侧面积公式:S =cl ,其中c 是圆柱的底面周长,l 是圆柱的母线长. 球的体积公式:343V R π=,其中R 是球的半径. 球的表面积公式:S =4πR 2,其中R 是球的半径.用最小二乘法求线性回归方程系数公式:1221ni ii nii x y nx ybxnx ---=-∑∑ , ay bx =- . 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B );如果事件A 、B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(理)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A .[1, 2) B .[1,2] C .(2,3] D .[2,3]2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若点(a ,9)在函数y =3x 的图象上,则tan 6a π的值为 …( ) A .0B .33C .1D .34.不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7] B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)5.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.若函数f (x )=sin ωx (ω>0)在区间[0,3π]上单调递增,在区间[3π,2π]上单调递减,则ω=( )A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元)4 2 35 销售额y (万元) 49 26 39 54 根据上表可得回归方程 y bx a =+ 中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221x y a b-=(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .2222154x y -=B .2222145x y -=C .2222136x y -=D .2222163x y -=9.函数2sin 2xy x =-的图象大致是( )10.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .911.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( )A .3B .2C .1D .012.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R ),1412A A A A μ= (μ∈R ),且112λμ+=,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.执行下图所示的程序框图,输入l =2,m =3,n =5,则输出的y 的值是__________.14.若62()a x x -展开式的常数项为60,则常数a 的值为__________.15.设函数()2xf x x =+ (x >0),观察: 1()()2xf x f x x ==+, 21()(())34xf x f f x x ==+, 32()(())78xf x f f x x ==+, 43()(())1516xf x f f x x ==+, ……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=__________.16.已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =__________.三、解答题:本大题共6小题,共74分.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,C .已知cos 2cos 2cos A C c aB b--=. (1)求sin sin CA的值; (2)若cos B =14,b =2,求△ABC 的面积S .18.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EA ⊥平面ABCD ,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF .(1)若M 是线段AD 的中点,求证:GM ∥平面ABFE ;。
2011年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的的四个选项中,只有一个项是符合题目要求的.1.设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N = ( )A.[1,2)B. [1,2]C. (2,3]D. [2,3] 【测量目标】集合的基本运算.【考查方式】给出两集合(描述法),求解两集合的交集. 【难易程度】容易 【参考答案】A【试题解析】{32}M x x =-<<,[1,2)M N = ,答案应选A. 2.复数2i(i 2iz -=+为虚数单位)在复平面内对应的点所在的象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复平面.【考查方式】给出复数的分数形式,通过化简判断复数对应的点在第几象限. 【难易程度】容易 【参考答案】D【试题解析】22i (2i)34i2i 55z ---===+对应的点为34(,)55-在第四象限,答案应选D.3.若点(,9)a 在函数3xy =的图象上,则πtan6a 的值为 ( )A.0B.3C. 1D. 【测量目标】任意角的三角函数值.【考查方式】给出函数图象上的点,判断出a 的值,求π3的正切值. 【难易程度】容易 【参考答案】D【试题解析】2393a ==,2a =,ππtantan 63a == D. 4.不等式5310x x -++≥的解集是 ( ) A.[5,7]- B. [4,6] C. (,5][7,)-∞-+∞ D. (,4][6,)-∞-+∞ 【测量目标】绝对值不等式.【考查方式】直接求解绝对值不等式. 【难易程度】中等【参考答案】D【试题解析】当5x >时,原不等式可化为2210x -≥,解得6x ≥;(步骤1) 当35x -≤≤时,原不等式可化为810≥,不成立;(步骤2)当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D.(步骤3)另解1:可以作出函数53y x x =-++的图象,(步骤1) 令5310x x -++=可得4x -=或6x =,(步骤2)观察图象可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D.(步骤3)另解2:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D.5.对于函数()y f x =,x ∈R ,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ( ) A 充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】判断已知两个命题的关系. 【难易程度】容易 【参考答案】B【试题解析】若()y f x =是奇函数,则()y f x =的图象关于y 轴对称;反之不成立,比如偶函数()y f x =,满足()y f x =的图象关于y 轴对称,但不一定是奇函数,答案应选B.6.若函数()sin (0)f x x ωω=>在区间π[0,]3上单调递增,在区间ππ[,]32上单调递减,则ω= ( ) A.3 B. 2 C.32 D. 23【测量目标】三角函数的单调性.【考查方式】给出含参量的三角函数的单调区间,求解未知参量. 【难易程度】容易 【参考答案】C【试题解析】函数()sin (0)f x x ωω=>在区间π[0,]2ω上单调递增,在区间π3π[,]22ωω上单调递减, 则ππ23ω=,即32ω=,答案应选C. 另解1:令ππ[2π,2π]()22x k k k ω∈-+∈Z 得函数()f x 在2ππ2ππ[,]22k k x ωωωω∈-+为增函数,同理可得函数()f x 在2ππ2π3π[,]22k k x ωωωω∈++为减函数,则当ππ0,23k ω==时符合题意,即32ω=,答案应选C.另解2:由题意可知当π3x =时,函数()sin (0)f x x ωω=>取得极大值,则π()03f '=,即πco s 03ωω=,即πππ()32k k ω=+∈Z ,结合选择项即可得答案应选C. 另解3:由题意可知当π3x =时,函数()sin (0)f x x ωω=>取得最大值,则ππ2π()32k k ω=+∈Z ,36()2k k ω=+∈Z ,结合选择项即可得答案应选C.7.某产品的广告费用与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元是销售额为( ) A.63.6万元 B. 65.5万元 C. 67.7万元 D. 72.0万元【测量目标】线性回归方程.【考查方式】给出实际应用中的数学模型数据,建立线性回归方程,求对应的函数值. 【难易程度】容易 【参考答案】B【试题解析】由题意可知 3.5,42x y ==,则 429.4 3.5,9.1,a a =⨯+= 9.469.165.5y =⨯+=,答案应选B.8.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A.22154x y -= B. 22145x y -= C. 22136x y -= D. 22163x y -= 【测量目标】双曲线的标准方程.【考查方式】给出双曲线的两条渐近线与圆的位置关系,判断双曲线的标准方程. 【难易程度】容易 【参考答案】A【试题解析】圆22:(3)4C x y -+=,3,c =而32bc=,则22,5b a ==,答案应选A. 9.函数2sin 2xy x =-的图象大致是 ( )A B C D 【测量目标】三角函数的图象.【考查方式】给出三角函数解析式判断其图象.【难易程度】中等 【参考答案】C【试题解析】函数2sin 2x y x =-为奇函数,且12cos 2y x '=-,令0y '=得1cos 4x =,(步骤1) 由于函数cos y x =为周期函数,而当2πx >时,2sin 02x y x =->,当2πx <-时,2sin 02xy x =-<,则答案应选C.(步骤2)10.已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()f x 的图象在区间[0,6]上与x 轴的交点的个数为 ( ) A.6 B.7 C.8 D.9【测量目标】函数的零点.【考查方式】给出函数一个区间内的函数解析式及函数周期,判断函数在某个区间段内函数图象与x 轴的交点.【难易程度】中等 【参考答案】B【试题解析】当02x <≤时32()(1)f x x x x x =-=-,则(0)(1)0f f ==,(步骤1)而()f x 是R 上最小正周期为2的周期函数,则(2)(4)(6)(0)0f f f f ====,(3)(5)(1)0f f f ===,答案应选B.(步骤2)11.如图是长和宽分别相等的两个矩形.给定三个命题: ①存在三棱柱,其正(主)视图、俯视图如图; ②存在四棱柱,其正(主)视图、俯视图如图; ③存在圆柱,其正(主)视图、俯视图如图.其中真,命题的个数是 ( )第11题图A.3B.2C.1D.0 【测量目标】平面图形的直观图与三视图.【考查方式】给出正(主)视图、俯视图,判断可能的几何体图形. 【难易程度】容易 【参考答案】A【试题解析】①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱, 让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面 是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真, 答案选A.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R,1412()A A A A μμ=∈R ,且112λμ+=,则称34,A A 调和分割12,A A ,已知平面上的点(,0),(,0),(,C c D d c d ∈R 调和分割点(0,0),A B ,则下面说法正确的是( )A. C 可能是线段AB 的中点B. D 可能是线段AB 的中点C. C 、D 可能同时在线段AB 上D. C 、D 不可能同时在线段AB 的延长线上 【测量目标】向量的线性运算.【考查方式】给出平面向量的数量关系,判断平面中线段的数量关系. 【难易程度】中等 【参考答案】D【试题解析】根据题意可知112c d +=,若C 或D 是线段AB 的中点,则12c =,或12d =,矛盾;(步骤1)若C,D 可能同时在线段AB 上,则01,01,c d <<<<则112c d +>矛盾,(步骤2) 若C,D 同时在线段AB 的延长线上,则1,1c d >>,1102c d<+<,故C,D 不可能同时在线段AB 的延长线上,答案选D.(步骤3) 二、填空题:本大题共4小题·,每小题4分,共16分. 13.执行如图所示的程序框图,输入2,3,5l m n ===, 则输出的y 的值是 .第13题图【测量目标】循环结构程序框图.【考查方式】给出程序框图输入值,判断输出值. 【难易程度】容易 【参考答案】68【试题解析】1406375278,y =++=(步骤1)278105173,17310568y y =-==-=.(步骤2)答案应填:68.14.若6(x 展开式的常数项为60,则常数a 的值为 .【测量目标】二项式定理【考查方式】给出二项式常数项的值,判断二项式中未知参量的值. 【难易程度】中等 【参考答案】4【试题解析】6(x 的展开式616C (k kk k T x -+=636C (kk k x -=,(步骤1)令630,2,k k -==226C (1560,4a a ===,答案应填:4.(步骤2)15.设函数()(0)2xf x x x =>+,观察: 1()()2x f x f x x ==+,21()(())34x f x f f x x ==+,32()(())78x f x f f x x ==+, 43()(())1516xf x f f x x ==+,……根据上述事实,由归纳推理可得:当*n ∈N ,且2n ≥时,1()(())n n f x f f x -== . 【测量目标】已知递推关系求通项.【考查方式】给出()f x 函数解析式,利用递推关系判断()n f x 的函数关系式. 【难易程度】较难 【参考答案】(21)2n nxx -+【试题解析】2122()(())(21)2x f x f f x x ==-+,3233()(())(21)2xf x f f x x ==-+, 4344()(())(21)2x f x f f x x ==-+,以此类推可得1()(())(21)2n n n nxf x f f x x -==-+. 答案应填:(21)2n nxx -+. 16.已知函数()log (0,a f x x x b a =+->且1)a ≠.当234a b <<<<时函数()f x 的零点为*0(,1)()x n n n ∈+∈N ,则n = .【测量目标】对数函数的图象与性质.【考查方式】给出含参量的对数函数关系式,通过对参量的范围讨论,判断函数零点的取值范围. 【难易程度】较难 【参考答案】2【试题解析】根据(2)log 22log 230a a f b a =+-<+-=,(3)log 32log 340a a f b a =+->+-=,(步骤1)而函数()f x 在(0,)+∞上连续,单调递增,故函数()f x 的零点在区间(2,3)内,故2n =.答案应填:2.(步骤2)三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c ,已知cos 2cos 2cos A C c aB b--=,(Ⅰ)求sin sin C A 的值;(Ⅱ)若1cos ,24B b ==,求ABC △的面积S . 【测量目标】正弦定理,两角和的正弦,余弦定理.【考查方式】给出一个三角形内角边的三角函数关系式,通过三角函数变换,求解两个角的正弦比值及三角形面积.【难易程度】中等【试题解析】(Ⅰ)在ABC △中,由cos 2cos 2cos A C c aB b--=及正弦定理可得cos 2cos 2sin sin cos sin A C C AB B--=,(步骤1)即cos sin 2cos sin 2sin cos sin cos A B C B C B A B -=-则cos sin sin cos 2sin cos 2cos sin A B A B C B C B +=+(步骤2)sin()2sin()A B C B +=+,而πA B C ++=,则sin 2sin C A =,即sin 2sin CA=.(步骤3) 另解1:在ABC △中,由cos 2cos 2cos A C c aB b--=可得cos 2cos 2cos cos b A b C c B a B -=-(步骤1)由余弦定理可得22222222222222b c a a b c a c b a c b c a a c +-+-+-+--=-,整理可得2c a =,由正弦定理可得sin 2sin C cA a==.(步骤2) 另解2:利用教材习题结论解题,在ABC △中有结论cos cos ,cos cos ,cos cos a b C c B b c A a C c a B b A =+=+=+.(步骤1) 由cos 2cos 2cos A C c aB b--=可得cos 2cos 2cos cos b A b C c B a B -=-(步骤2)即cos cos 2cos 2cos b A a B c B b C +=+,则2c a =,由正弦定理可得sin 2sin C cA a==.(步骤3) (Ⅱ)由2c a =及1cos ,24B b ==可得22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,(步骤4)S 11sin 1222ac B ==⨯⨯=,即S =(步骤5)18.(本题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. 【测量目标】离散型随机变量的分布列,期望和方差.【考查方式】给出数学模型,列出随机变量的分布列并求数学期望. 【难易程度】中等【试题解析】(Ⅰ)记甲对A 、乙对B 、丙对C 各一盘中甲胜A 、乙胜B 、丙胜C 分别为事件,,D E F ,则甲不胜A 、乙不胜B 、丙不胜C 分别为事件,,D E F ,(步骤1) 根据各盘比赛结果相互独立可得故红队至少两名队员获胜的概率为()()()()P P DEF P DEF P DEF P DEF =+++()()()()()()()()()()()()P D P E P F P D P E P F P D P E P F P D P E P F =+++0.60.5(10.5)0.6(10.5)0.5(10.6)0.50.50.60.50.5=⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯0.55=.(步骤2)(Ⅱ)依题意可知0,1,2,3ξ=,(0)()()()()(10.6)(10.5)(10.5)0.1P P DEF P D P E P F ξ====-⨯-⨯-=; (1)()()()P P DEF P DEF P DEF ξ==++0.6(10.5)(10.5)(10.6)0.5(10.5)(10.6)(10.5)0.50.35=⨯-⨯-+-⨯⨯-+-⨯-⨯=;(2)()()()P P DEF P DEF P DEF ξ==++0.60.5(10.5)(10.6)0.50.50.6(10.5)0.50.4=⨯⨯-+-⨯⨯+⨯-⨯=; (3)()0.60.50.50.15P P DEF ξ===⨯⨯=.故ξ的分布列为(步骤3)故00.110.3520.430.15 1.6E ξ=⨯+⨯+⨯+⨯=.(步骤4) 19. (本小题满分12分)在如图所示的几何体中,四边形ABCD 为平行四边形,90ACB ∠= ,EA ⊥平面ABCD ,//EF AB , //FG BC ,//EG AC ,2AB EF =.(I )若M 是线段AD 的中点,求证://GM 平面ABFE ; (II )若2AC BC AE ==,求二面角A BF C --的大小第19题图【测量目标】空间立体几何线面平行,二面角.【考查方式】给出空间几何体线面垂直,线线平行及线段之间的长度关系,判断线面平行及二面角大小. 【难易程度】中等【试题解析】几何法:证明:(Ⅰ)//EF AB ,2AB EF =可知延长BF 交AE 于点P ,而//FG BC ,//EG AC ,则P BF ∈⊂平面,BFGC P AE ∈⊂平面AEGC ,即P ∈平面BFGC 平面AEGC GC =,(步骤1) 于是,,BF CG AE 三线共点,1//2FG BC ,若M 是线段AD 的中点,而//AD BC , 则//FG AM ,(步骤2)四边形AMGF 为平行四边形,则//GM AF ,又GM ⊄平面ABFE ,所以//GM 平面ABFE ;(步骤3)(Ⅱ)由EA ⊥平面ABCD ,作C H A B ⊥,则CH ⊥平面ABFE ,作H T B F ⊥,连接CT ,则CT B F ⊥,于是CTH ∠为二面角A BF C --的平面角.(步骤4)若2AC BC AE ==,设1AE =,则2A C B C==,AB CH ==,H 为AB 的中点,2t a n2AE AE FBA AB EF AB ∠====-,sin FBA ∠=(步骤5)sin HT BH ABF =∠==Rt CHT △中tan CH CTH HT ∠==则60CTH ∠=,即二面角A BF C --的大小为60.(步骤6)坐标法:(Ⅰ)证明:由四边形ABCD 为平行四边形, 090ACB ∠=,EA ⊥平面ABCD ,可得以点A 为坐标原点,,,AC AD AE 所在直线分别为,,x y z 建立直角坐标系,(步骤1)设=,,AC a AD b AE c ==,则(0,0,0)A ,1(,0,0),(0,,0),(0,,0),(,,0)2C aD b M b B a b -.(步骤2)由//EG AC 可得()EG AC λλ=∈R ,1(,,)2GM GE EA AM a b c λ=++=-- (步骤3)由//FG BC 可得()FG BC AD μμμ==∈R,1122GM GF FA AM AD BA EA AD μ=++=-+++1(,(1),)2a b c μ=---,则12λμ==,12GM BA EA =+,而GM ⊄平面ABFE ,所以//GM 平面ABFE ;(步骤4)(Ⅱ)若2AC BC AE ==,设1AE =,则2AC BC ==,(2,0,0),(0,0,1),(2,2,0),(1,1,1)C E B F --,则(0,2,0)BC AD == ,(1,1,1)BF =-,(步骤5) (2,2,0)AB =-,设11112222(,,),(,,)x y z x y z =n =n 分别为平面ABF 与平面CBF 的法向量.则11111220x y x y z -=⎧⎨-++=⎩,令11x =,则111,0y z ==,1(1,1,0)n =;2222200y x y z =⎧⎨-++=⎩,令21x =,则220,1y z ==,2(1,0,1)=n .(步骤6) 于是1212121cos 2<>== n n n ,n n n ,则1260<>= n ,n ,即二面角A BF C --的大小为60.(步骤7)20. (本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:()1ln nn n n b a a =+-,求数列{}n b 的前n 项和n S . 【测量目标】数列的通项及前n 项和.【考查方式】给出等比数列前三项求数列的通项,并求组合数列{}n b 的前n 项和. 【难易程度】较难【试题解析】(Ⅰ)由题意可知1232,6,18a a a ===,公比32123a a q a a ===, 通项公式为123n n a -= ;(步骤1) (Ⅱ)()1111ln 23(1)ln 2323(1)[ln 2(1)ln 3]nn n n n n n n n b a a n ---=+-=+-=+-+-当*2()n k k =∈N 时,122n k S b b b =+++212(133)[1(23)((22)(21))]ln3k k k -=+++++-+++--+- 2132ln 331ln 3132k n nk -=+=-+-(步骤2)当*21()n k k =-∈N 时1221n k S b b b -=+++222(133)[(12)((23)(22))]ln3ln 2k k k -=++++-++----21132(1)ln 3ln 213k k --=----(1)31ln 3ln 22n n -=---(步骤3) 故31ln 3,2(1)31ln 3ln 22nn n n n S n n ⎧-+⎪⎪=⎨-⎪---⎪⎩为偶数;,为奇数.(步骤4)另解:令11(1)ln 23nnn n T -=-⋅∑,即11(1)ln 2(1)(1)ln 3nnnn n T n =-+--∑∑(步骤1)223[1(1)(1)]ln 2[(1)1(1)2(1)(1)]ln3n n n T n =-+-++-+-+-++-- 231341[(1)(1)(1)]ln 2[(1)1(1)2(1)(1)]ln3n n n T n ++-=-+-++-+-+-++--则12312[1(1)]ln 2[(1)(1)(1)(1)(1)]ln3n n n n T n ++=---+-+-++----211111(1)(1)[1(1)]ln 2[(1)(1)]ln 3222n n n n T n +++---=---+---12111[1(1)]ln 2[(1)(1)(21)]ln 324n n n T n ++=---+----(步骤2)故1122(133)n n n n S b b b T -=+++=++++1211131[1(1)]ln 2[(1)(1)(21)]ln 324n n n n ++=-+---+----.(步骤3)21. (本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (3c >)千元.设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .第21题图【测量目标】函数单调性的综合应用.【考查方式】给出实际问题,建立函数模型运用导数解决实际问题. 【难易程度】较难【试题解析】(Ⅰ)由题意可知2324π80ππ()33r l r l r +=…,即2804233l r r r =-≥,则02r <≤.(步骤1)容器的建造费用为2228042π34π6π()4π33y rl r c r r r c r =⨯+⨯=-+, 即22160π8π4πy r r c r=-+,定义域为{02}r r <≤.(步骤2)(Ⅱ)2160π16π8πy r rc r '=--+,令0y '=,得r =令2,r ==即 4.5c =,(步骤3)(1)当34.5c <≤2,当02r <≤,0y '<,函数y 为减函数,当2r =时y 有最小值;(步骤4)(2)当 4.5c >2,<当0r <<0y '<;当r >0y '>,此时当r =y 有最小值.(步骤5) 22. (本小题满分12分)已知动直线l 与椭圆C :22132x y +=交于()()1122,,,P x y Q x y 两不同点,且OPQ △的面积2OPQ S =△O 为坐标原点.(Ⅰ)证明:2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求OM PQ 的最大值;(Ⅲ)椭圆C 上是否存在三点,,D E G ,使得ODE ODG OEG S S S ===△△△?若存在,判断DEG △的形状;若不存在,请说明理由.【测量目标】椭圆的简单几何性质.【考查方式】给出直线与椭圆的位置关系,根据椭圆的几何性质,讨论坐标的定值及线段积的最值等综合问题.【难易程度】较难【试题解析】(Ⅰ)当直线l 的斜率不存在时,,P Q 两点关于x 轴对称,则1212,x x y y ==-,(步骤1)由()11,P x y 在椭圆上,则2211132x y +=,而11OPQ S x y ==△,则111x y == 于是22123x x +=,22122y y +=.(步骤2)当直线l 的斜率存在,设直线l 为y kx m =+,代入22132x y +=可得(步骤3) 2223()6x kx m ++=,即222(23)6360k x km m +++-=,0>△,即2232k m +>2121222636,2323km m x x x x k k -+=-=++(步骤4)12PQ x =-==d =1122POQS d PQ === △(步骤5) 则22322k m +=,满足0>△222221212122263(2)()2()232323km m x x x x x x k k -+=+-=--⨯=++,222222*********(3)(3)4()2333y y x x x x +=-+-=-+=, 综上可知22123x x +=,22122y y +=.(步骤6)(Ⅱ))当直线l的斜率不存在时,由(Ⅰ)知12OM x PQ === (步骤7)当直线l 的斜率存在时,由(Ⅰ)知12322x x km+=-, 2121231()222y y x x k k m m m m ++=+=-+=,(步骤8) 222212122229111()()(3)2242x x y y k OM m m m++=+=+=- 22222222224(32)2(21)1(1)2(2)(23)k m m PQ k k m m +-+=+==++(步骤9)22221125(3)(2)4OMPQ m m =-+≤,当且仅当221132m m -=+,即m =时等号成立,综上可知OM PQ 的最大值为52.(步骤10)(Ⅲ)假设椭圆上存在三点,,D E G ,使得2ODE ODG OEG S S S ===△△△, 由(Ⅰ)知2222223,3,3D E E G G D x x x x x x +=+=+=,2222222,2,2D E E G G D y y y y y y +=+=+=.解得22232D E G x x x ===,2221D E G y y y ===,(步骤11)因此,,D E G x x x 只能从,,D E G y y y 只能从1±中选取,因此,,D E G 只能从(,1)±中选取三个不同点,而这三点的两两连线必有一个过原点,这与2O D E O D G O E GS S S ===△△△相矛盾,故椭圆上不存在三点,,D E G ,使得2ODE ODG OEG S S S ===△△△.(步骤12)。
2011年普通高等学校招生全国统一考试(山东卷)文 科 数 学参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。
圆柱的侧面积公式:S cl =,其中c 是圆柱的地面周长,l 是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:=1221ˆˆ,.ni ii nii X Y nx yay bx Xnx ==-=--∑∑ 如果事件A 、B 互斥,那么()()+()P A B P A P B +=.一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{}{}2|60,|13,M x x x N x x =+-<=≤≤则M N =(A) [1,2) (B) [1,2] (C) (2,3] (D) [2,3] 2、复数2()2iz i i-=+为虚数单位在复平面内对应的点所在象限为 (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3、若点a (,9)在函数3xy =的图象上,则tan6a π的值为 (A) 0(B)(C) 1(D) 4、曲线311y x =+在点(1,12)P 处的切线与y 轴交点的纵坐标是(A) -9 (B) -3 (C) 9 (D) 155、已知,,a b c R ∈,命题“2223,3a b c a b c ++=++≥若则”的否命题是(A) 2223,3a b c a b c ++≠++<若则 (B) 2223,3a b c a b c ++=++<若则 (C) 2223,3a b c a b c ++≠++≥若则 (D) 2223,3a b c a b c ++≥++=若则 6、若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A) 3 (B) 2 (C)32 (D) 237、设变量,x y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数231z x y =++的最大值为(A) 11 (B) 10 (C) 9 (D) 8.58、某产品的广告费用与销售额y 的统计数据如下表:根据上表可得回归方程y bxa =+ 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 (A) 63.6万元 (B) 65.5万元 (C) 67.7万元 (D) 72.0万元9、设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是(A) ()0,2 (B) []0,2(C) ()2,+∞ (D) [)2,+∞ 10、函数2sin 2xy x =-的图象大致是(A) (B)(C) (D)11、右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图。
2011年普通高等学校招生全国统一考试(山东卷)理 科 数 学参考公式:柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高. 圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长. 球的体积公式V=343V R π=, 其中R 是球的半径. 球的表面积公式:24S R π=,其中R 是球的半径.用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni ii nii x y nx ybay bx xnx==-⋅==--∑∑ . 如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共60分)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}{}260,13M x x x N x x =+-<=≤≤,则M N =(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3] (2)复数22iz i-=+(i 为虚数单位)在复平面内对应的点所在象限为 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)若点(),9a 在函数3xy =的图象上,则tan6a π的值为 (A )0 (B )3(C )1 (D(4)不等式5310x x -++≥的解集是(A )[-5,7] (B)[-4,6] (C)(-∞,-5]∪[7,+∞) (D )(-∞,-4]∪[6,+∞) (5)对于函数(),y f x x R =∈,“()y f x =的图像关于y 轴对称”是“()y f x =是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)若函数()sin f x x ω= (0ω>)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23正(主)视图俯视图(7)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元(8)已知双曲线22221x y a b-=(0,0a b >>)的两条渐近线均和圆C :22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A )22154x y -= (B )22145x y -=(C )22136x y -= (D )22163x y -=(9)函数2sin 2xy x =-的图象大致是(A )(B )(C )(D )(10)已知()f x 是最小正周期为2的周期函数,且当02x ≤<时,()3f x x x =-,则函数()y f x =的图像在区间[0,6]上与x 轴的交点个数为(A )6(B )7(C )8(D )9(11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱, 其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如下图; ③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是(A )3 (B )2 (C )1 (D )0(12)设1,A 2,A 3,A 4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(R λ∈),1412A A A A μ= (R μ∈),且112λμ+=,则称3,A 4A 调和分割1,A 2A ,已知点()(),0,,0C c D d(,c d R ∈)调和分割点()()0,0,1,0A B ,则下面说法正确的是 (A)C 可能是线段AB 的中点 (B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上 (D) C ,D 不可能同时在线段AB 的延长线上第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,输入2,l =3,5m n ==,则输出的y 的值是 .(14)若6x ⎛- ⎝⎭展开式的常数项为60,则常数a 的值为 .(15)设函数()2xf x x =+(x >0),观察:()()12xf x f x x ==+ ()()()2134xf x f f x x ==+ ()()()32f x f f x ==78xx +()()()43f x f f x ==1516xx +……根据以上事实,由归纳推理可得:当*n N ∈且2n ≥时,()()()1n n f x ff x -== .(16)已知函数()log (01)a fx x x b a a =+-≠>,且当,234a b <<<<时,函数()f x 的零点*0(,1),,=x n n n N n ∈+∈则 .三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cosC 2c-a=cos B b. (Ⅰ)求sin sin CA的值; (Ⅱ)若1cos 4B =2b =,求ABC ∆的面积S .(18)(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. (19)(本小题满分12分)在如图所 示的几何体中,四边形ABCD 为平行四边形,90ACB ∠=︒,EA⊥平面ABCD ,EF ∥AB , FG ∥BC ,EG ∥AC ,2AB EF =.ABDEFGM(Ⅰ)若M 是线段AD 的中点,求证:GM ∥平面ABFE ; (Ⅱ)若2AC BC AE ==,求二面角A BF C --的大小. (20)(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln nn n n b a a =+-,求数列{}n b 的前n 项和n S .(21)(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r . (22)(本小题满分14分)已知直线l 与椭圆C : 22132x y +=交于()11,P x y ,()22Q x y ⋅两不同点,且OPQ ∆的面积其中O 为坐标原点。
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh=,其中S是柱体的底面积,h是柱体的高。
圆柱的侧面积公式:S cl=,其中c是圆柱的地面周长,l是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:=1221ˆˆ,.ni ii n ii X Y nx yay bx Xnx ==-=--∑∑ 如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B =。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{}{}2|60,|13,M x xx N x x =+-<=≤≤则MN =(A)[1,2)(B) [1,2] (C) (2,3] (D) [2,3]2、复数2()2iz i i-=+为虚数单位在复平面内对应的点所在象限为 (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3、若点a (,9)在函数3xy =的图象上,则tan 6a π的值为(A) 0(B)(C) 1(D) 4、不等式5310x x -++≥的解集是(A) []5,7- (B) []4,6- (C) (][),57,-∞-+∞ (D) (][),46,-∞-+∞ 5、对于函数(),y f x x R =∈,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6、若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A) 3 (B) 2 (C) 32(D) 237、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y bx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额为(A) 63.6万元(B) 65.5万元 (C) 67.7万元 (D) 72.0万元8、已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22650x y x +--=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 (A)22154x y -= (B)22145x y -= (C)22136x y -= (D)22163x y -= 9、函数2sin 2xy x =-的图象大致是(A) (B)(C) (D)10、已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x xx =-,则函数()y f x = 的图象在区间[的交点的个数为(A) 6 (B) 7 (C) 8 (D) 911 ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图; ③存在圆柱,其正(主)视图、俯视图如右图。