宝鸡市岐山县2019-2020学年九年级上期末数学试卷((有答案))
- 格式:doc
- 大小:419.50 KB
- 文档页数:22
陕西省宝鸡市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共11分)1. (2分)池塘里,一只青蛙刚从水里钻出来,同学们开始议论:①青蛙可能会再次钻入水底;②青蛙一定会爬上岸;③青蛙可能会飞上天;④青蛙不可能再次钻入水底。
这些说法中正确的有()A . 1个B . 2个C . 3个D . 4个2. (2分)若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A . m<-4B . m>-4C . m<4D . m>43. (2分)若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A . a≥2B . a≤2C . a<2D . a>24. (2分)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是()A .B .C .D .5. (2分) (2019九上·虹口期末) 如果抛物线开口向下,那么的取值范围为()A .B .C .D .6. (1分) (2019·银川模拟) 如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为________.二、填空题 (共9题;共9分)7. (1分)已知∠AOB=30°,C是射线OB上的一点,且OC=4,若以点C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是________.8. (1分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.9. (1分)(2017·普陀模拟) 已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于________厘米.10. (1分)如图,已知圆锥的底面直径为4,母线长为6,则它的全面积为________.11. (1分)如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为________12. (1分) (2015九上·宜春期末) 太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是________ cm.13. (1分) (2016九上·云梦期中) 如图是一座抛物形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降3m时,水面的宽为________ m.14. (1分)(2019·高新模拟) 在平面直角坐标系中,将二次函数y=﹣x2+x+6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,将这个新函数的图象记为G(如图所示).当直线y=m与图象G有4个交点时,则m的取值范围是________.15. (1分) (2017九上·东丽期末) 如图,在半径为的⊙ 中,弦,于点,则 ________三、解答题 (共11题;共117分)16. (10分) (2016九上·鼓楼期末) 计算题(1)解方程:2x2﹣4x﹣6=0.(2)①直接写出函数y=2x2﹣4x﹣6的图象与x轴交点坐标;②求函数y=2x2﹣4x﹣6的图象的顶点坐标.17. (12分) (2017九下·滨海开学考) 射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099①乙107101098②9.5(注:方差公式.)(1)完成表中填空①________;②________;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩的方差为,你认为推荐谁参加比赛更合适,请说明理由.18. (15分)(2017·新泰模拟) 如图,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△D EF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,射线EF 与线段AB相交于点G,与射线CA相交于点Q.(1)求证:△BPE∽△CEQ;(2)求证:DP平分∠BPQ;(3)当BP=a,CQ= a,求PQ长(用含a的代数式表示).19. (10分)(2017·广丰模拟) 在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其他都相同,(1)在其中一个口袋中一次性随机摸出两个球,请写出在这一过程中的一个必然事件;(2)若分别从两个袋中随机取出一个球,试求出两个小球颜色相同的概率.20. (5分) (2016九上·自贡期中) 某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?21. (15分)综合与探究如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=﹣x2+x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.(1)求A、B两点的坐标及直线l的函数表达式.(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.(3)如图2,连接AC,CB,将△ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).22. (5分)(2017·埇桥模拟) 如图,AB是半圆O的直径,点C在圆弧上,D是弧AC的中点,OD与AC相交于点E.求证:△ABC∽△COE.23. (10分) (2019九上·海珠期末) 如图,已知:AB为⊙O直径,PQ与⊙O交于点C,AD⊥PQ于点D,且AC为∠DAB的平分线,BE⊥PQ于点E.(1)求证:PQ与⊙O相切;(2)求证:点C是DE的中点.24. (10分)(2018·曲靖模拟) 如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.25. (10分) (2019九上·荆门期中) 有一块形状如图的五边形余料,,,,, .要在这块余料中截取一块矩形材料,其中一边在上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是或,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.26. (15分) (2018九上·宁波期中) 如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,连结AC,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连结FC.(1)求证:∠ACF=∠ADB;(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长(用含m、n的代数式表示);(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.参考答案一、单选题 (共6题;共11分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共9题;共9分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共11题;共117分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2018-2019学年九年级(上)期末数学试卷一.选择题(共10小题)1.如图,几何体的左视图是()A.B.C.D.2.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)3.已知三角形的两边长分别是3和4,第三边是方程x2﹣12x+35=0的一个根,则此三角形的周长是()A.12 B.14 C.15 D.12或144.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.85.如图,以正方形ABCD的一边CD为边,向形外作等边三角形CDE,连接AC、AE,则下列结论错误的是()A.∠ACE=105°B.∠ADE=150°C.∠DEA=15°D.△EFC的面积大于△ACF的面积6.下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形7.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.138.在平时的数学测验中,小刚、小文、凡凡、欢欢四人表现优秀,现决定从这四名同学中任选两名参加数学竞赛,则恰好选中小刚和凡凡两名同学的概率是()A.B.C.D.9.如图,点M是▱ABCD边CD上的一点,BM的延长线交AD大延长线于点N,则图中相似的三角形有()A.3对B.2对C.1对D.0对10.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A.B.C.D.二.填空题(共4小题)11.在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是.12.若反比例函数y=的图象在每一象限内,y值随x值的增大而减小,则k的值可以是(写出一个即可).13.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为.14.如图,在等边三角形ABC中,点D、E、F分别在边AB、BC、CA上,且∠ADF=∠BED=∠CFE=90°,则△DEF与△ABC的面积之比为.三.解答题(共9小题)15.如图,有一块三角形的铁皮求作:以∠C为一个内角的菱形CEFG,使顶点F在AB边上要求:尺规作图,不写作法,保留作图痕迹.16.已知,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(0,3)、B(3,4)、C(2,2).(1)以点B为位似中心,在网格区域内画出△A1BC1,使△A1BC1与△ABC位似,且位似比为2:1;(2)点A1的坐标是;(3)△A1BC1的面积=个平方单位.17.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.18.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.19.如图,有一块长和宽分别为70厘米和50厘米的长方形铁皮,要在它的四角截去四个全等的小正方形,做成一个无盖的长方体铁盒,且使盒子的底面积为1500平方厘米,那么做成盒子的高是多少厘米?20.环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度γ(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?21.如图,在Rt△ACB中,∠C=90°,AC=16cm,BC=8cm,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为4cm/s,Q点的运动速度为2cm/s,那么运动几秒时,△ABC和△PCQ相似?22.已知A(﹣4,m+10)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.23.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.参考答案与试题解析一.选择题(共10小题)1.如图,几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形,比较即可.【解答】解:如图,几何体的左视图是.故选:C.2.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)【分析】利用反比例函数图象上点的坐标特征进行判断.【解答】解:∵点(3,﹣4)在反比例函数y=的图象上,∴k=3×(﹣4)=﹣12,而3×4=﹣3×(﹣4)=2×6=12,﹣2×6=﹣12,∴点(﹣2,6)在该反比例函数图象上.故选:C.3.已知三角形的两边长分别是3和4,第三边是方程x2﹣12x+35=0的一个根,则此三角形的周长是()A.12 B.14 C.15 D.12或14【分析】利用因式分解方法求出方程的解得到x的值,确定出三角形第三边长,即可确定出周长.【解答】解:解方程x2﹣12x+35=0得x=5或x=7,当x=5时,三角形三边长为3、4、5,此时三角形的周长为3+4+5=12;当x=7时,三角形三边长为3、4、7,由于3+4=7,不能构成三角形,此情况舍去;故选:A.4.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.8【分析】由AD∥BE∥CF可得=,代入可求得EF.【解答】解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.5.如图,以正方形ABCD的一边CD为边,向形外作等边三角形CDE,连接AC、AE,则下列结论错误的是()A.∠ACE=105°B.∠ADE=150°C.∠DEA=15°D.△EFC的面积大于△ACF的面积【分析】根据四边形ABCD是正方形,三角形CDE为等边三角形,结合其性质对每个选项分析、解答即可得出结论;【解答】解:根据题意,四边形ABCD是正方形,三角形CDE为等边三角形,∴∠ACE=45°+60°=105°,∠ADE=90°+60°=150°,∠DEA==15°;所以,选项A、B、C正确;∵S△ACF=×CF×AD,S△EFC=×CF×AD;AD>AD;即△EFC的面积小于△ACF的面积;故选项D错误;故选:D.6.下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,不符合题意;B、对角线相等且平分的四边形是矩形,符合题意;C、对角线互相平分且垂直的四边形是菱形,不符合题意;D、有一组邻边相等的矩形是正方形,不符合题意,故选:B.7.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13【分析】根据反比例函数系数k的几何意义,可得第一象限的小正方形的面积,再乘以4即可求解.【解答】解:∵双曲线y=经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.故选:C.8.在平时的数学测验中,小刚、小文、凡凡、欢欢四人表现优秀,现决定从这四名同学中任选两名参加数学竞赛,则恰好选中小刚和凡凡两名同学的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出恰好选中小刚和凡凡两名同学的情况数,即可求出所求.【解答】解:列表如下(1表示小刚,2表示小文,3表示凡凡,4表示欢欢):所有等可能的情况有12种,其中恰好选中1,3的情况有2种,则P(恰好选中小刚和凡凡两名同学)==,故选:D.9.如图,点M是▱ABCD边CD上的一点,BM的延长线交AD大延长线于点N,则图中相似的三角形有()A.3对B.2对C.1对D.0对【分析】根据平行四边形的性质得出AB∥CD,AD∥BC,再根据相似三角形的判定定理推出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△DMN∽△CMB,△DMN∽△NBA,∴△CMB∽△NBA,即有3对相似三角形,故选:A.10.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A.B.C.D.【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【解答】解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选:B.二.填空题(共4小题)11.在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是 3 .【分析】根据概率公式列出关于n的分式方程,解方程即可得.【解答】解:因为摇匀后随机摸出一个恰好是黄球的概率为,所以=,解得:n=3,经检验n=3是分式方程的解,即黄球有3个,故答案为:3.12.若反比例函数y=的图象在每一象限内,y值随x值的增大而减小,则k的值可以是 2 (写出一个即可).【分析】根据“图象在其每个象限内,y的值随x值的增大而减小”得k+1>0,求解后再根据选项作出正确选择.【解答】解:根据题意,得k+1>0,解得k>﹣1,所以2符合.故答案为:2.13.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为10m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵=即=,∴楼高=10米.故答案为:10m.14.如图,在等边三角形ABC中,点D、E、F分别在边AB、BC、CA上,且∠ADF=∠BED=∠CFE=90°,则△DEF与△ABC的面积之比为.【分析】设BE=x,Rt△BDE中,求得BD=2BE=2x、DE==x,再证△DEF 是等边三角形,继而可得AD=x,得出AB的长后,利用相似三角形的性质可得答案.【解答】解:设BE=x,∵△ABC是等边三角形,且DE⊥BC,∴∠B=60°,∠BED=90°,∴∠BDE=30°,∴BD=2BE=2x,DE==x,∵DF⊥AB,∴∠ADF=90°,∴∠EDF=60°,同理知∠DEF=∠EFD=∠EDF=60°,∴△DEF也是等边三角形,且DE=EF=DF=x,在Rt△ADF中,AD===x,∴AB=BD+AD=3x,则=()2=()2=,故答案为:.三.解答题(共9小题)15.如图,有一块三角形的铁皮求作:以∠C为一个内角的菱形CEFG,使顶点F在AB边上要求:尺规作图,不写作法,保留作图痕迹.【分析】先作∠ACB的平分线,交AB于点D,再以点D为顶点作∠CDP=∠DCB、∠CDQ =∠DCA,分别交AC、BC于点E、F,据此即可得.【解答】解:如图所示,菱形CEFD即为所求.16.已知,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(0,3)、B(3,4)、C(2,2).(1)以点B为位似中心,在网格区域内画出△A1BC1,使△A1BC1与△ABC位似,且位似比为2:1;(2)点A1的坐标是(﹣3,2);(3)△A1BC1的面积=10 个平方单位.【分析】(1)延长BA到A1,使BA1=2BA,延长BC到C1,使BC1=2BC,再顺次连接即可得;(2)由所作图形可得坐标;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1BC1即为所求;(2)由图知,点A1的坐标是(﹣3,2),故答案为:(﹣3,2).(2)△A1BC1的面积=6×4﹣×4×2﹣×2×4﹣×6×2=10(个平方单位),故答案为:10.17.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.18.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.19.如图,有一块长和宽分别为70厘米和50厘米的长方形铁皮,要在它的四角截去四个全等的小正方形,做成一个无盖的长方体铁盒,且使盒子的底面积为1500平方厘米,那么做成盒子的高是多少厘米?【分析】设截去的小正方形的边长为xcm,则长方体盒子的底的长为(70﹣2x)cm,宽为(50﹣2x)cm.根据题意列出方程就可以求出其解.【解答】解:设做成盒子的高是x厘米,由题意得:(70﹣2x)(50﹣2x)=1500,整理得:x2﹣60x+500=0,x=10或50,显然x<50,故只取x=10,即做成盒子的高是10厘米.20.环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度γ(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12,3<12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得:,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12,3<12<15,故能在15天以内不超过最高允许的1.0mg/L.21.如图,在Rt△ACB中,∠C=90°,AC=16cm,BC=8cm,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为4cm/s,Q点的运动速度为2cm/s,那么运动几秒时,△ABC和△PCQ相似?【分析】设同时运动ts时两个三角形相似,再分△PCQ∽△BCA或△PCQ∽△ACB两种情况进行讨论即可.【解答】解:设同时运动ts时两个三角形相似,当△PCQ∽△BCA,则,t=0.8;当△PCQ∽△ACB,则,t=2.答:同时运动0.8s或者2s时两个三角形相似.22.已知A(﹣4,m+10)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.【分析】(1)先把点A的坐标代入反比例函数解析式,即可得到m的值,再把点B的坐标代入反比例函数解析式,即可求出n的值,然后利用待定系数法确定一次函数的解析式;(2)先求出直线与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【解答】解:(1)把A(﹣4,m+10)代入y=,得m=(m+10)×(﹣4),解得m=﹣8,∴A(﹣4,2),∴m=﹣4×2=﹣8,所以反比例函数解析式为y=﹣,把B(n,﹣4)代入y=﹣,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得,解得,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)由图可得,不等式kx+b﹣>0的解集为:x<﹣4或0<x<2.23.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.【分析】(1)根据矩形的性质先证明四边形AECF是平行四边形,然后证明∠EAC=∠ACE 得出AE=CE,从而可证得四边形AECF是菱形;(2)首先设BF=x,则FC=8﹣x,然后由勾股定理求得(8﹣x)2+42=x2,求出x的值,得出FC,再根据菱形面积计算方法即可求得答案.【解答】证明:(1)∵四边形ABCD是矩形∴AE∥CF∵AE=CF∴四边形AECF是平行四边形∵AC平分∠ECF∴∠ACF=∠ACE∵AE∥CF∴∠ACF=∠EAC∴∠EAC=∠ACE∴AE=CE∴四边形AECF是菱形(2)设BF=x,则FC=8﹣x∴AF=FC=8﹣x在Rt△ABF中AB2+BF2=AF2∴(8﹣x)2=x2+42解得:x=3∴FC=8﹣3=5∴S菱形AECF=FC•AB=5×4=20。
2025届陕西省岐山县数学九上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=()A.1:2 B.2:3 C.3:4 D.2:52.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 .你认为其中正确信息的个数有A.2个B.3个C.4个D.5个3.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.5.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.6.如图,AB是⊙O的直径,AC,BC分别与⊙O交于点D,E,则下列说法一定正确的是()A.连接BD,可知BD是△ABC的中线B.连接AE,可知AE是△ABC的高线C.连接DE,可知DE CEAB BCD.连接DE,可知S△CDE:S△ABC=DE:AB7.下图中几何体的左视图是()A.B.C.D.8.二次函数y=x2-2x+3的最小值是()A.-2B.2C.-1D.19.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c 的值为()A .9B .12C .-14D .1010.将6497.1亿用科学记数法表示为( ) A .6.4971×1012B .64.971×1010C .6.5×1011D .6.4971×101111.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有( ) A .3 个B .4 个C .5 个D .6 个12.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y= B .32=y xC .23x y = D .23=y x二、填空题(每题4分,共24分) 13.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为点D ,且满足BD :C D =2:1,则△ABC 面积的所有可能值为____________.14.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.15.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____. 16.半径为5的圆内接正六边形的边心距为__________.17.一男生推铅球,铅球行进高度y 与水平距离x 之间的关系是21251233y x x =-++,则铅球推出的距离是_____.此时铅球行进高度是_____.18.在一个不透明的袋子中有1个红球、2个绿球和3个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大. 三、解答题(共78分)19.(8分)已知关于x 的一元二次方程x 2-(2m +3)x +m 2+2=0。
陕西省宝鸡市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.若,则的值为()A.1B.C.D.2.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1 3.△ABC三边边长之比为3:5:7,与它相似的△DEF的最长边边长21cm,则△DEF的周长为()A.45cm B.32cm C.24cm D.18cm4.在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是()A.m>7B.m<7C.m=7D.m≠75.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42316.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值()A.1B.1或2C.2D.±17.在Rt△ABC中,∠C=90°,cos B=,则sin A的值为()A.B.C.D.8.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20B.30C.40D.509.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣110.如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4B.2C.6D.3二、填空题(本大题共5小题,每小题3分,共15分)11.一元二次方程x2﹣a=0的一个根是2,则a的值是.12.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:①=;②△AEF∽△ACD;③S△BCE=36;④S△ABE=12.其中一定正确的是(填序号)13.如图,点A为反比例函数y=的图象上一点,B点在x轴上且OA=BA,则△AOB的面积为.14.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为.15.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为.三、解答题(本大题共8小题,共55分)16.(1)计算:2cos30°﹣tan45°﹣.(2)在△ABC中,∠C=90°,sin A=,AB=15,求△ABC的周长和tan A的值.17.解方程:①(x+1)(x﹣2)=4(公式法)②x2+2x﹣3=0(配方法)18.已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED 是菱形.19.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.20.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.21.如图,反比例函数的图象与一次函数y2=kx+b的图象交于A、B两点.已知A(2,n),B(﹣,﹣2).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)请结合图象直接写出当y1≥y2时自变量x的取值范围.22.宝鸡市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.小亮想知道石鼓阁的高是多少,他和同学小明对石鼓阁进行测量.测量方案如下:如图,小明在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小明看着镜面上的标记,他来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小明眼睛与地面的高度ED =1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.6米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.6米,影长FH=3.2米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式及顶点坐标.(2)设点P是该抛物线上的动点,当△ABP的面积等于△ABC面积的时,求出点P 的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.若,则的值为()A.1B.C.D.【解答】解:∵,∴设x=4k,y=3k,∴==,故选:C.2.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,∴,解得:k>且k≠1.故选:C.3.△ABC三边边长之比为3:5:7,与它相似的△DEF的最长边边长21cm,则△DEF的周长为()A.45cm B.32cm C.24cm D.18cm【解答】解:三角形三边之比等于与他相似的三角形的三边之比,即3:5:7,与它相似的三角形最长边为21cm,设这个三角形三边为3x,5x,7x,已知7x=21,则x=3,那么其他两边分别是9,15,那么与它相似的三角形周长为21+9+15=45.故选:A.4.在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是()A.m>7B.m<7C.m=7D.m≠7【解答】解:∵在反比例函数y=的图象的每一支位上,y随x的增大而减小,∴m﹣7>0,解得m>7.故选:A.5.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.4231【解答】解:时间由早到晚的顺序为4312.故选:B.6.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值()A.1B.1或2C.2D.±1【解答】解:由题意,得m2﹣3m+2=0且m﹣1≠0,解得m=2,故选:C.7.在Rt△ABC中,∠C=90°,cos B=,则sin A的值为()A.B.C.D.【解答】解:在Rt△ABC中,∠C=90°,cos B=,则sin A=cos B=,故选:A.8.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20B.30C.40D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.9.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣1【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.10.如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4B.2C.6D.3【解答】解:过P作PE∥BD交CD于E,连接AE交BD于N,过P作PM∥AE交BD 于M,此时,AN+PM的值最小,∵P是BC的中点,∴E为CD的中点,∴PE=BD,∵AB=BD,AB=MN,∴MN=BD,∴PE=MN,∴四边形PENM是平行四边形,∴EN=PM,∵AE==3,∵AB∥CD,∴△ABN∽△EDN,∴==2,∴AN=2,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.一元二次方程x2﹣a=0的一个根是2,则a的值是4.【解答】解:把x=2代入方程x2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:①=;②△AEF∽△ACD;③S△BCE=36;④S△ABE=12.其中一定正确的是①③④(填序号)【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,OA=OC,∵AE=EO,∴AE:EC=1:3,∵AF∥BC,∴===,=()2,∴AF:AD=1:3,∴AF:DF=1:2,故①正确,∵S△AEF=4,∴S△AEB=3×4=12,S△EBC=4×9=36,故③④正确,∵EF不平行CD,∴△AEF与△ACD不相似,故②错误,故答案为①③④.13.如图,点A为反比例函数y=的图象上一点,B点在x轴上且OA=BA,则△AOB的面积为1.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,所以过点A向x轴作垂线,垂足是C,则S△ABO=2S△AOC=2×|k|=|k|.所以△ABO的面积S=1.故答案为:1.14.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为20(1﹣20%)(1﹣x)2=11.56.【解答】解:设这辆车第二、三年的年折旧率为x,有题意,得20(1﹣20%)(1﹣x)2=11.56.故答案是:20(1﹣20%)(1﹣x)2=11.56.15.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为x<﹣1或x>5.【解答】解:抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(﹣1,0),所以不等式﹣x2+bx+c<0的解集为x<﹣1或x>5.故答案为x<﹣1或x>5.三、解答题(本大题共8小题,共55分)16.(1)计算:2cos30°﹣tan45°﹣.(2)在△ABC中,∠C=90°,sin A=,AB=15,求△ABC的周长和tan A的值.【解答】解:(1)原式=2×﹣1﹣|1﹣|=﹣1﹣+1=0;(2)如图所示:∵sin A==,AB=15,∴BC=AB=×15=12.∴AC===9,∴△ABC的周长为9+12+15=36.∴tan A===.17.解方程:①(x+1)(x﹣2)=4(公式法)②x2+2x﹣3=0(配方法)【解答】解:①方程整理得:x2﹣x﹣6=0,这里a=1,b=﹣1,c=﹣6,∵△=1+24=25,∴x=,解得:x1=3,x2=﹣2;②移项得:x2+2x=3,配方得:x2+2x+1=4,即(x+1)2=4,开方得:x+1=2或x+1=﹣2,解得:x1=1,x2=﹣3.18.已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED 是菱形.【解答】证明:∵DE∥AC,即DE∥OC,CE∥BD,即CE∥OD.∴四边形OCED是平行四边形.又∵四边形ABCD是矩形,∴OC=AC,OD=BD,且AC=BD,∴OC=OD.∴四边形OCED是菱形.19.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.【解答】解:(1)树状图如下:房间柜子结果(2)由(1)中的树状图可知:P(胜出)=20.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.【解答】解:作AE⊥CD于E,∵AB=15m,∴DE=AB=15m,∵∠DAE=45°,∴AE=DE=15m,在Rt△ACE中,tan∠CAE=,则CE=AE•tan37°=15×0.75≈11m,∴CD=CE+DE=11+15=26m.答:实验楼的垂直高度即CD长为26m.21.如图,反比例函数的图象与一次函数y2=kx+b的图象交于A、B两点.已知A(2,n),B(﹣,﹣2).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)请结合图象直接写出当y1≥y2时自变量x的取值范围.【解答】解:(1)把B(﹣,﹣2)代入得:﹣2=,解得m=1,故反比例函数的解析式为:y=,把A(2,n)代入y=得n=,则A(2,),把A(2,),B(﹣,﹣2)代入y2=kx+b得:,解得,故一次函数的解析式为y=x﹣;(2)△AOB的面积=×+2×=;(3)由图象知:当y1≥y2时,自变量x的取值范围为0<x≤2 或x≤﹣.22.宝鸡市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.小亮想知道石鼓阁的高是多少,他和同学小明对石鼓阁进行测量.测量方案如下:如图,小明在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小明看着镜面上的标记,他来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小明眼睛与地面的高度ED =1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.6米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.6米,影长FH=3.2米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.【解答】解:∵∠ABC=∠EDC∠ACB=∠ECD∴△EDC∽△ABC;∴,即:=,∵GF∥AB∴△GFH∽ABH∴=,即:=∴=∴BC=77米,∴AB=56米答:“石鼓阁”的高AB的长度是56米.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式及顶点坐标.(2)设点P是该抛物线上的动点,当△ABP的面积等于△ABC面积的时,求出点P 的坐标.【解答】解:(1)根据题意得:.解得:b=2,c=﹣3,∴二次函数的解析式为y=x2+2x﹣3,∵y=x2+2x﹣3=(x+1)2﹣4;∴顶点坐标(﹣1,﹣4);(2)当y=0时,x2+2x﹣3=0,解得x1=﹣3,x2=1,则B(﹣3,0),A(1,0),∴AB=4∵C(0,﹣3)∴△ABC的面积=×4×3=6,∵△ABP的面积等于△ABC面积的∴△ABP的面积=×6=10,∴×4×|y p|=10∴|y p|=5,∴y p=±5,当y p=5时解方程x2+2x﹣3=5得x1=﹣4,x2=2,此时P点坐标为(﹣4,5),(2,5);当y p=﹣5时,方程x2+2x﹣3=﹣5没有实数解,∴P点坐标为(﹣4,5),(2,5).。
2019-2020学年陕西省宝鸡市岐山县九年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13B.﹣4,19C.﹣4,13D.4,194.某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同B.可能有两人生日相同,且可能性较大C.不可能有两人生日相同D.可能有两人生日相同,但可能性较小5.如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:26.一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.99.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A.B.C.D.10.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m的取值范围是()A.m>B.m<C.m≤D.m≥二、填空题(本大题共4小题,每小题3分,共12分)11.若==≠0,则=.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为(2)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(请填写正确答案的序号).13.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE 的度数是度.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x >0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.三、解答题(本大题共9小题,共58分)15.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)16.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:点A(1,3),点B(4,2),点C(2,1).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似图形△A2B2C2,使,并写出点A2,B2,C2的坐标.17.(6分)在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米;小丽:测量甲树的影长为4米(如图1);小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为 1.2米,落在地面上的影长为 2.4米.(1)请直接写出甲树的高度为米;(2)求乙树的高度.18.(7分)如图,已知菱形ABCD中,对角线ACBD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.19.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.20.(7分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?21.(7分)在矩形ABCD中,AB=10,BC=12,点E为DC的中点,连接BE,过点A作AF⊥BE,垂足为点F.(1)求证:△BEC∽△ABF;(2)求AF的长.22.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?23.(7分)如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数y=(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.2019-2020学年陕西省宝鸡市岐山县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选:B.【点评】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.【点评】理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13B.﹣4,19C.﹣4,13D.4,19【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣8x+3=0∴x2﹣8x=﹣3∴x2﹣8x+16=﹣3+16∴(x﹣4)2=13∴m=﹣4,n=13故选:C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同B.可能有两人生日相同,且可能性较大C.不可能有两人生日相同D.可能有两人生日相同,但可能性较小【分析】依据可能性的大小的概念对各选项进行逐一分析即可.【解答】解:A、因为每年有365天而某学校只有320人,所以至少有两名学生生日相同是随机事件.故本选项错误;B、因为=>50%,所以可能性较大.正确;C、两人生日相同是随机事件,故本选项错误;D、由B可知,可能性较大,故本选项错误.故选:B.【点评】本题主要考查可能性大小的比较,关键是确定所给事件的类型;随机事件是指在一定条件下,可能发生也可能不发生的事件;概率较小的事件发生的可能性较小.5.如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.6.一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式的值,然后根据判别式的意义确定方程根的情况.【解答】解:△=12﹣4×1=﹣3<0,所以方程无实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.8.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.9【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1?y1=x2?y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点∴x1?y1=x2?y2=3①,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2②,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故选:A.【点评】本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=﹣x2,y1=﹣y2是解答此题的关键.9.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所获奖品总价值不低于30元的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,所获奖品总价值不低于30元的有4种情况,∴所获奖品总价值不低于30元的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m的取值范围是()A.m>B.m<C.m≤D.m≥【分析】根据反比例函数的性质可得1﹣2m>0,再解不等式即可.【解答】解:∵反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,∴1﹣2m>0,解得:m<,故选:B.【点评】此题主要考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.二、填空题(本大题共4小题,每小题3分,共12分)11.若==≠0,则=.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k≠0,则a=2k,b=3k,c=4k,所以==.故答案是:.【点评】本题考查了比例的性质.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为15(2)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(请填写正确答案的序号)②.【分析】(1)求出方程的解,分为两种情况:①当等腰三角形的三边是3,3,6时,②当等腰三角形的三边是3,6,6时,看看是否符合三角形的三边关系定理,若符合求出即可.(2)根据相似多边形的定义逐一进行判断后即可确定正确的选项.【解答】解:(1)x2﹣9x+18=0,∴(x﹣3)(x﹣6)=0,∴x﹣3=0,x﹣6=0,∴x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形,当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15,故答案为:15.(2)由题意得,①中三角形对应角相等,对应边成比例,两三角形相似;③,④中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而②中矩形四个角相等,但对应边不一定成比例,所以②中矩形不是相似多边形,故答案为:②.【点评】本题考查了解一元二次方程和三角形的三边关系定理及相似图形,关键是确定三角形的三边的长度及相似图形的定义.13.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE 的度数是22.5度.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE 的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x >0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为7.【分析】根据反比例函数比例系数k的几何意义得到S△OQM=4,S△OPM=3,然后利用S△POQ=S△OQM+S△OPM进行计算.【解答】解:如图,∵直线l∥x轴,∴S△OQM=×|﹣8|=4,S△OPM=×|6|=3,∴S△POQ=S△OQM+S△OPM=7.故答案为7.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(本大题共9小题,共58分)15.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.16.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:点A(1,3),点B(4,2),点C(2,1).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似图形△A2B2C2,使,并写出点A2,B2,C2的坐标.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)根据位似图形的定义作出点A、B、C在原点的另一侧的对应点,再顺次连接即可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,点A2的坐标为(﹣2,﹣6),B2的坐标为(﹣8,﹣4),C2的坐标为(﹣4,﹣2).【点评】本题主要考查作图﹣轴对称变换、位似变换,解题的关键是根据轴对称变换和位似变换的定义作出变换后的对应点.17.(6分)在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米;小丽:测量甲树的影长为4米(如图1);小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为 1.2米,落在地面上的影长为 2.4米.(1)请直接写出甲树的高度为 5.1米;(2)求乙树的高度.【分析】(1)根据测得一根长为1米的竹竿的影长为0.8米,利用比例式直接得出树高;(2)根据辅助线作法得出假设没有墙时影子长度,即可求出答案.【解答】解:(1)根据题意得:=,解得:x=5.1(米),故答案为:5.1.(2)假设AB是乙树,∴BC=2.4m,CD=1.2m,∴=,∴=,∴CE=0.96(m),∴=,∴AB=4.2(m),答:乙树的高度为 4.2m.【点评】此题主要考查了相似三角形的应用,根据同一时刻影长与高成比例以及假设没有墙或台阶时求出影长是解决问题的关键.18.(7分)如图,已知菱形ABCD中,对角线ACBD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.【分析】(1)由条件可证得四边形CODE为平行四边形,再由菱形的性质可求得∠COD=90°,则可证得四边形CODE为矩形;(2)由菱形的性质可求得AO和OC,在Rt△AOB中可求得BO,则可求得OD的长,则可求得答案.【解答】(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形CODE是矩形;(2)解:∵四边形ABCD为菱形,∴AO=OC=AC=×6=3,OD=OB,∠AOB=90°,在Rt△AOB中,由勾股定理得BO2=AB2﹣AO2,∴BO==4,∴DO=BO=4,∴四边形CODE的周长=2×(3+4)=14.【点评】本题主要考查矩形、菱形的判定和性质,掌握矩形的判定方法及菱形的对角线互相垂直平分是解题的关键.19.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线y=上的情况数,再根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:(2)当x=﹣1时,y==﹣2;当x=1时,y==2;当x=2时,y==1.∴一共有9种等可能的情况,点(x,y)落在双曲线y=上有2种情况:(1,2),(2,1),∴点(x,y)落在双曲线y=上的概率为:.【点评】本题考查了列表法与树状图法以及反比例函数图象上点的坐标特征,根据抽卡的规律用树状图表示两次抽出卡片上的数字的所有结果是解题的关键.20.(7分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(7分)在矩形ABCD中,AB=10,BC=12,点E为DC的中点,连接BE,过点A作AF⊥BE,垂足为点F.(1)求证:△BEC∽△ABF;(2)求AF的长.【分析】(1)在矩形ABCD中,有∠C=∠ABC=∠ABF+∠EBC=90°,由于AF⊥BE,所以∠AFB=∠C=90°,∠BAF=∠EBC,从而得证;(2)在矩形ABCD中,AB=10,可知CD=AB=10,由于E为DC的中点,CE=5,由勾股定理可求得:BE=13,最后由△ABF∽△BEC得:,从而可求出答案.【解答】解:(1)在矩形ABCD中,有∠C=∠ABC=∠ABF+∠EBC=90°∵AF⊥BE,∴∠AFB=∠C=90°,∴∠BAF=∠EBC∴△BEC∽△ABF(2)在矩形ABCD中,AB=10,∴CD=AB=10,∵E为DC的中点,∴CE=5,又BC=12,在Rt△BEC中,由勾股定理得:BE=13,由△ABF∽△BEC得:即:=,∴解得:AF=【点评】本题考查相似三角形的性质与判定,解题的关键熟练运用相似三角形的判定方法以及矩形的性质,本题属于中等题型.22.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?【分析】(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.【点评】此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.23.(7分)如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数y=(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C (3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴Bc=3,∴C(3,﹣2),把C(3,﹣2)代入y=得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣,把C(3,﹣2),A(0,1)代入y=ax+b得,解得,∴一次函数解析式为y=﹣x+1;(2)设P(t,﹣),∵△OAP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).【点评】本题考查了反比例函数与一次函数的交点问题,正方形的性质等知识,解题的关键是熟练掌握基本知识,学会构建方程解决问题,属于中考常考题型.。
2019-2020年初三数学第一学期期末考试参考答案阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分 当x=﹣6时,3162x 2y -=-==;--------------------- 5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分B在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分 21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △P AD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
陕西省宝鸡市岐山县2019-2020学年九年级上学期期末数学试题一、选择题1.下列方程中,关于x 的一元二次方程是( )A. 3(x +1)2=2(x +1)B. 21x +1x -2=0C. ax 2+bx +c =0D. x 2+2x =x 2-1 【答案】A【解析】【分析】依据一元二次方程的定义判断即可.【详解】A. 3(x+1)2=2(x−1)是一元二次方程,故A 正确; B. 21x +1x-2=0是分式方程,故B 错误; C. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故C 错误;D. x 2+2x=x 2-1,整理得2x=-1是一元一次方程,故D 错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.2.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形( )A. 一定不相似B. 不一定相似C. 一定相似D. 不能确定【答案】C【解析】试题解析:∵一个三角形的两个内角分别是40,60o o , ∴第三个内角为80o ,又∵另一个三角形的两个内角分别是40,80o o ,∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.3.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A. 12B.C.D. 【答案】B【解析】作AD ⊥BC 的延长线于点D,如图所示:在Rt △ADC 中,BD=AD ,则BD .cos ∠ACB=2AD AB ==, 故选B .4.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A. 开口向下,顶点坐标(53),B. 开口向上,顶点坐标(53),C. 开口向下,顶点坐标(53)-,D. 开口向上,顶点坐标(53)-, 【答案】A【解析】【详解】∵抛物线21y (5)33x =--+∴a <0,∴开口向下,∴顶点坐标(5,3).故选A .5.在同一时刻,身高1.6m 的小强在阳光下的影长为0.8m ,一棵大树的影长为4.8m ,则树的高度为( )A. 4.8mB. 6.4mC. 9.6mD. 10m【答案】C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】设树高为x 米, 所以1.60.8 4.8x ,= 24.8x = x =4.8×2=9.6.这棵树的高度为9.6米故选C.【点睛】考查相似三角形的应用,掌握同一时刻物高和影长成正比是解题的关键.6.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( ). A 2:1 B. 4:1C.D. 1:【答案】C【解析】【分析】根据相似图形对应边成比例列出关系式即可求解.【详解】如图,矩形ABCD 对折后所得矩形与原矩形相似,则矩形ABCD ∽矩形BFEA ,设矩形的长边长是a ,短边长是b ,则AB=CD=EF=b ,AD=BC=a ,BF=AE=2a , .根据相似多边形对应边成比例得:BF EF =AB BC ,即b 2=b a a∴222=b 1a∴:a故选C.【点睛】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.7.如图,在△ABC 中,点D 在BC 上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A. 四边形AEDF 是平行四边形B. 若∠BAC=90°,则四边形AEDF 是矩形C. 若AD 平分∠BAC,则四边形AEDF 是矩形D. 若AD⊥BC 且AB =AC ,则四边形AEDF 是菱形【答案】C【解析】A 选项,∵在△ABC 中,点D 在BC 上,DE,AC ,DF,AB ,,DE,AF,DF,AE,,四边形AEDF 是平行四边形;即A 正确;B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,∴四边形AEDF 是矩形;即B 正确;C 选项,因为添加条件“AD 平分∠BAC ”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;D 选项,因为由添加的条件“AB=AC,AD,BC ”可证明AD 平分∠BAC ,从而可通过证∠EAD=,CAD=,EDA 证得AE=DE ,结合四边形AEDF 是平行四边形即可得到四边形AEDF 是菱形,所以D 正确.故选C.8.已知关于x 的函数y =k (x+1)和y =﹣xk (k ≠0)它们在同一坐标系中的大致图象是( ) A. B.C. D.【答案】A【解析】【分析】先根据k 的正负性判断出反比例函数的图象所在象限,再根据k 的正负性判断出一次函数的图象所在的象限,二者一致的即为正确答案.【详解】∵直线y =k (x+1)必经过点(-1,0),∴当k >0时,反比例函数的系数﹣k <0,反比例函数图象过二、四象限,一次函数图象过一、二、三象限,原题没有满足的图象;当k <0时,反比例函数的系数﹣k >0,所以反比例函数过一、三象限,一次函数过二、三、四象限. 故选:A .【点睛】本题主要考查反比例函数与一次函数的比例系数k 的几何意义,掌握它们的比例系数的几何意义,是解题的关键.9.如图,在ABCD Y 中,点,E F 分别在边AD BC 、上,且//, EF CD G 为边AD 延长线上一点,连接BG ,则图中与ABG 相似的三角形有( )个A. 1B. 2C. 3D. 4【答案】D【解析】【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案. 【详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.10.已知二次函数2() 0y ax bx c a =++≠图象如图所示,有下列结论:①0a b c -+>;②0abc >; ③420a b c -+>;④0.a c ->⑤3+a c 0>;其中正确结论的个数是( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】 利用特殊值法求①和③,根据图像判断出a 、b 和c 的值判断②和④,再根据对称轴求出a 和b 的关系,再用特殊值法判断⑤,即可得出答案. 【详解】令x=-1,则y=a-b+c ,根据图像可得,当x=-1时,y <0,所以a-b+c <0,故①错误; 由图可得,a >0,b <0,c <0,所以abc >0,a-c >0,故②④正确;令x=-2,则y=4a-2b+c ,根据图像可得,当x=-2时,y >0,所以4a-2b+c >0,故③正确; 12b x a=-=,所以-b=2a ,∴a-b+c=a+2a+c=3a+c <0,故⑤错误; 故答案选择B.【点睛】本题考查的是二次函数,难度偏高,需要熟练掌握二次函数的图像与性质.二、填空题:(每题3分,共15分)11.将方程22(32)10x x x --++=化成一般形式是______________,【答案】2550x x -+= 的【解析】【分析】先将括号乘开,再进行合并即可得出答案.【详解】x 2-6x+4+x+1=0,2550x x -+=.故答案为:2550x x -+=.【点睛】本题考查了一次二次方程的化简,注意变号是解决本题的关键.12.在ABC ∆中,若21 02sinA tanB -+-⎛ ⎝⎭= ,则ABC ∆是_____三角形. 【答案】等腰【解析】【分析】根据绝对值和平方的非负性求出sinA 和tanB 的值,再根据锐角三角函数的特殊值求出∠A 和∠B 的角度,即可得出答案.【详解】∵21 02sinA tanB -+⎛ ⎝⎭=∴12sinA =,tanB = ∴∠A=30°,∠B=30°∴△ABC等腰三角形 故答案等腰.【点睛】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值.13.如图,在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若ADE ∆与ABC ∆的周长之比为2:3,4=AD ,则DB =_____.【答案】2.【解析】试题分析:因为DE∥BC ,所以△ADE∽△ABC ,因为相似三角形的周长之比等于相似比,所以AD:AB=2:3,因为AD=4,所以AB=6,所以DB=AB-AD=6-4=2.故答案为2.考点:相似三角形的判定与性质.14.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴, 90,ABC =o∠CA x ⊥轴, 点C 在函数()0k y x x=>的图象上.若2,AB =则k 的值为_____.【答案】4【解析】【分析】根据等腰三角形的性质和勾股定理求出AC 的值,根据等面积法求出OA 的值,OA 和AC 分别是点C 的横纵坐标,又点C 在反比例函数图像上,即可得出答案.【详解】∵△ABC 为等腰直角三角形,AB=2∴BC=2,AC ==1122BC AB OA AC ⨯⨯=⨯⨯ 112222OA ⨯⨯=⨯⨯解得:∴点C 的坐标为 又点C 在反比例函数图像上∴4k ==故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C 的横坐标.15.如图,正方形ABCD 的边长为4,E 为BC 上的一点,1, BE F =为AB 的中点,P 为AC 上一个动点,则 PF PE +的最小值是____.【解析】【分析】作点F 关于直线AC 的对称点交AD 边于'F ,连接'F E ,并作'F H ⊥BC 边于点H ,根据题意求出EH 和F H '的长度,即可得出答案.【详解】作点F 关于直线AC 的对称点交AD 边于'F ,连接'F E ,并作'F H ⊥BC 边于点H ,则'F E 即为 PF PE +的最小值∵ABCD 是正方形,F 是AB 边的中点∴'F 是AD 边的中点,H 为BC 边的中点又正方形的边长为4,BE=1∴BH=2,4F H '=,EH=BH-BE=1∴F E ='【点睛】本题考查的是正方形综合,难度偏高,解题关键是作点F 的对称点找出'F E 是 PF PE +的最小值.三、解答题: (本题共有8小题,计55分)16.计算:(1)()020142sin 452π-++o ;(2)tan302tan 45cos304cos60-+o o o o g .【答案】(1)1;(2)23-+. 【解析】【分析】(1)先求0次幂、sin45°、绝对值以及根号,再根据实数的运算法则计算即可得出答案;(2)先代入特殊函数的数值,再根据实数的运算法则计算即可得出答案.【详解】解:(1)原式(1222=+⨯+=12+1=(2)原式1214322=-⨯⨯+⨯2= 【点睛】本题考查的是实数的运算和特殊三角函数值,中考必考题型,需要熟练掌握相关基础知识. 17.如图,在路灯下,小明的身高如图中线段AB 所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【答案】(1)画图见解析;(2)DE=4.【解析】【分析】(1)连接CB延长CB交DE于O,点O即为所求.连接OG,延长OG交DF于H.线段FH即为所求.(2)根据AB CAOD CD=,可得1.6 1.41.42.1DO=+,即可推出DO=4m.【详解】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.18.如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF AE=,连接BE CF、求证: BE CF=.【答案】见解析.【解析】【分析】根据菱形的性质得出∠A=∠CBF ,进而判断出△ABE ≌△BCF ,即可得出答案.【详解】证明:∵四边形ABCD 是菱形∴,//AB BC AD BC =∴A CBF ∠=∠在ABE ∆和BCF ∆中AE BF A CBF AB BC =⎧⎪∠=∠⎨⎪=⎩∴()ABE BCF SAS ∆≅∆∴BE=CF【点睛】本题考查的是菱形和全等三角形,比较简单,需要熟练掌握相关基础知识.19.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A 、B 、C 、D 中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A 通道通过的概率是 .(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.【答案】(1)14;(2) 34. 【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解答:(1)一辆车经过收费站时,选择A通道通过的概率是14,故答案为14.(2)列表如下:由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为1216=34.【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.20.我国于2019年6月5日首次完成运载火箭海.上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边处的雷达站测得点N 到点A的距离为8千米,仰角为30.火箭继续直线上升到达点B处,此时海岸边处的雷达测得点N的仰角增加15,求此时火箭所在点B处与A处的距离.(保留根号)【答案】火箭所在点B处与A处距离()4km.【解析】【分析】在RT △AMN 中根据30°角的余弦值求出AM 和MN 的长度,再在RT △BMN 中根据45°角的求出BM 的长度,即可得出答案.【详解】解:在Rt AMN ∆中,8,30AN km ANM =∠=ocos30AM AN∴=o4,cos30AM km MN AN ∴===o在Rt BMN ∆中,301545MNB ∠=+=o o oBM MN ∴==,()4AB km ∴=答:火箭所在点B 处与A 处的距离()4km .【点睛】本题考查解直角三角形,难度适中,解题关键是根据题目意思构造出直角三角形,再利用锐角三角函数进行求解.21.如图,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与反比例函数12y x =-的图象交于A 、B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB 的面积;(3)写出不等式kx +b >﹣12x的解集.【答案】(1) y =﹣x ﹣1;(2),AOB 的面积为72;(3) x <﹣4或0<x <3. 【解析】【分析】 (1)先根据A 点的横坐标与B 点的纵坐标都是3,求出A,B ,再把A,B 的值代入解析式即可解答 (2)先求出C 的坐标,利用三角形的面积公式即可解答(3)一次函数大于反比例函数即一次函数的图象在反比例函数的图象的上边时,对应的x 的取值范围;【详解】(1)∵一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与反比例函数12y x =-的图象交于A 、B 两点, 且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3, ∴123x=-, 解得:x =﹣4,y =﹣123=﹣4, 故B (﹣4,3),A (3,﹣4),把A ,B 点代入y =kx +b 得:43{34k b k b -+=+=-, 解得:11k b =-⎧⎨=-⎩, 故直线解析式为:y =﹣x ﹣1;(2)y =﹣x ﹣1,当y =0时,x =﹣1,故C 点坐标为:(﹣1,0),则△AOB 的面积为:12×1×3+12×1×4=72; (3)不等式kx +b >﹣12x 的解集为:x <﹣4或0<x <3.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于把已知点代入解析式22.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF AM ⊥,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:ABM EFA ∆∆∽;(2)若12AB =,5BM =,求DE 的长.【答案】(1)见解析;(2) 4.9DE =.【解析】【分析】(1)由正方形的性质得出AB=AD ,∠B=90°,AD ∥BC ,得出∠AMB=∠EAF ,再由∠B=∠AFE ,即可得出结论;(2)由勾股定理求出AM ,得出AF ,由△ABM ∽△EFA 得出比例式,求出AE ,即可得出DE 的长.【详解】(1)证明:∵四边形ABCD 是正方形,∴AB AD =,90B ∠=︒,AD BC ∥,∴AMB EAF ∠=∠,又∵EF AM ⊥,∴90AFE ∠=︒,∴B AFE ∠=∠,∴~ABM EFA ∆∆;(2)解:∵90B ∠=︒,12AB =,5BM =,∴13AM ==,12AD =,∵F 是AM 的中点,∴1 6.52AF AM ==, ∵~ABM EFA ∆∆, ∴BM AM AF AE =, 即5136.5AE =, ∴16.9AE =,∴ 4.9DE AE AD =-=.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.23.己知抛物线20y ax bx c =++=与x 轴交于()() 1,0, 3, 0A B -两点,与y 轴交于点()0,3C -,顶点为D .(1)求抛物线的表达式及点D 的坐标;(2)判断BCD ∆的形状.【答案】(1)顶点()1,4D -;(2)BCD ∆是直角三角形.【解析】【分析】(1)根据点A 和点B 的坐标设函数解析式为两点式,再将点C 的坐标代入求出a 的值,最后再将两点式化为一般式即可得出答案;(2)根据BCD 三点的坐标分别求出BC 、CD 和BD 边的长度即可得出答案.【详解】解:(1)设()()13y a x x =+-,将()0,3C -代入解析式得:33,1a a -=-∴=()()21323y x x x x ∴=+-=--()222314y x x x =--=--Q∴顶点()1,4D - (2)()3,?0B Q ()0,3C - ()1,4D -222 3318BC ∴=+= 222112CD =+= 222 2420BD =+=222BC CD BD ∴+=BCD ∴∆是直角三角形.【点睛】本题考查的是二次函数,难度适中,解题关键是根据题目意思灵活设出二次函数的解析式.。
2019-2020学年陕西省宝鸡市岐山县九年级上期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.2.(3分)已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0B.m>0C.m D.m3.(3分)已知三角形的每条边都是方程x2﹣6x+8=0的根,则该三角形的周长不可能是为()A.6B.10C.8D.124.(3分)如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()A.6B.7C.8D.95.(3分)如图,在边长为a的正方形ABCD中,点M是正方形ABCD内一点,连接AM 并延长交CD于N,连接MC,△BCM是等边三角形,则△MNC的面积为()A.B.C.D.6.(3分)下列说法中,正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组邻边相等的矩形是正方形C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形7.(3分)如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A.1B.2C.4D.不能确定8.(3分)用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为()A.B.C.D.9.(3分)如图,平行四边形ABCD中,E是BC延长线上一点,连结AE交CD于F,则图中相似的三角形共有()A.1对B.2对C.3对D.4对10.(3分)函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出。
九年级第一学期期末模拟测试卷一、选择题(每小题3分,共30分)1.已知=,那么的值为()A.B.C.D.2.下列立体图形中,俯视图是正方形的是()A.B.C.D.3.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直4.用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( )A .1)22=+x ( B .19)22=+x ( C .13)22=+x ( D .7)22=+x ( 5.若双曲线x y 2=过两点(﹣1,1y ),(﹣3,2y ),则1y 与2y 的大小关系为( )A .1y >2yB .1y <2yC .1y =2yD .y 1与y 2大小无法确定6.函数1322)(+--=m mx m m y 是反比例函数,则( ) A .m ≠0B .m ≠0且m ≠1C .m=2D .m=1或27.如图,矩形ABCD 的对角线交于点O ,若∠ACB=30°,AB=2,则OC 的长为( )A .2B .3C .2D .48.如图所示,在一块长为22m,宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),若剩余部分种上草坪,使草坪的面积为300m2,则所修道路的宽度为( )m。
A.4 B.3 C.2 D.1 9.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.10.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)二、填空题(每小题3分,共18分)11.已知关于x 的方程x 2﹣3x+m=0的一个根是1,则m= . 12.在菱形ABCD 中,对角线AC=6,BD=10,则菱形ABCD 的面积为 .13.如图,在△ABC 中,点D,E,F 分别在AB,AC ,BC 上, DE//BC, EF//AB,若 AB=8, BD=3,BF=4,则FC 的长为 .14.一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm ,则它的最大边长为 cm .15.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是 .16.如图,直线y=﹣x+b 与双曲线y=﹣(x <0)交于点A , 与x 轴交于点B ,则OA 2﹣OB 2= .三、解答题(共52分)17.(4分)解下列方程: 0)3(2)3(2=-+-x x x18.(6分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?19.(6分) 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.20.(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.21.(8分)如图,花丛中有一路灯杆AB,在灯光下,大华在D 点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.22.(8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?23.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1使得BB1∥AC.动点D从点A出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D 运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.九年级数学试卷答案一.选择题 BBCDB CACCA 二.填空题 11. 2 12.30 13. 2.4 14. 20 15.16.2三.解答题 17. 解: 0)23)(3(=+--x x x 0)33)(3(=--x x 03=-x 或033=-x 即31=x 或12=x ……………4分18.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.……………3分(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100﹣m )件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.6分19.解:(1)树状图如下:………3分(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,即P(两个数字之和能被3整除)=.……………6分20.解:(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.………3分(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.8分21.解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,……………3分∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,……………6分由①②得=,解得BD=7.5,∴=,解得:AB=7.答:路灯杆AB的高度为7m.……………8分22.解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,……………2分当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).……………5分(2)当y=2,则2=2x,解得:x=1,当y=2,则2=,解得:x=16,∵16﹣1=15(小时),∴血液中药物浓度不低于2微克/毫升的持续时间15小时.……………8分23.解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.……………4分(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.……………12分。
【数学】九年级上册宝鸡数学全册期末复习试卷测试卷 (word 版,含解析)一、选择题1.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°2.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 3.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--4.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 5.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .6.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .897.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变8.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-39.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D 210.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2311.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)12.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( )A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根13.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2) 14.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.20.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.21.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;22.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .23.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.24.抛物线21(5)33y x =--+的顶点坐标是_______. 25.方程22x x =的根是________.26.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.27.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 28.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.29.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)30.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.三、解答题31.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.32.已知关于x 的方程x 2-(m+3)x+m+1=0.(1)求证:不论m 为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.33.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 34.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 . 35.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.四、压轴题36.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.37.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求ab的值. 38.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.2.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).4.C解析:C 【解析】 【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可. 【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误; B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误; C 、AD DEAB BC=不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AEAC AB =,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C . 【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.5.C解析:C 【解析】 【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误; 由A 、C 选项可知,抛物线开口方向向上, 所以,a >0,所以,一次函数y=ax+b 经过第一三象限, 所以,A 选项错误,C 选项正确. 故选C .6.C解析:C 【解析】 【分析】利用加权平均数按照比例进一步计算出个人总分即可. 【详解】 根据题意得:92580390288532⨯+⨯+⨯=++(分),∴小莹的个人总分为88分; 故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.7.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.8.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.9.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.10.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,11.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.12.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.13.B解析:B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.14.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20x a+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.17.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π; ∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】 本题利用了圆的周长公式和扇形面积公式求解.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 20.(2,﹣3)【解析】【分析】根据:对于抛物线y=a (x ﹣h )2+k 的顶点坐标是(h,k).【详解】抛物线y=(x ﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a (x ﹣h )2+k 的顶点坐标是(h,k).【详解】抛物线y=(x ﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.21.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.22.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,R90=25180∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.23.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB的长,延长BE交A C于H点,作HM⊥AB于M,根据圆的性质可知BH平分∠ABC,故CH=HM,设CH=x= HM,根解析:24【解析】【分析】内所能到达的区域为△EFG,先求出AB的长,延长BE交根据题意做图,圆心P在ABCAC于H点,作HM⊥AB于M,根据圆的性质可知BH平分∠ABC,故CH=HM,设CH=x=HM,根据Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴AB=2212915+=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.24.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 25.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x -2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.26.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.27.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.28.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.30.10【解析】【分析】当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.三、解答题31.(1)(3,0)m ,2(,4)m m ;(2)①21y x =-+,②295y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =,∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:3m =(3m =-舍去), ∴二次函数的关系式为:22313y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:15m =(15m =-舍去), ∴二次函数的关系式为:2215955y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.32.(1)见解析;(2)263【解析】【分析】(1)根据判别式即可求出答案.(2)将x =4代入原方程可求出m 的值,求出m 的值后代入原方程即可求出x 的值.【详解】解:(1)由题意可知:△=(m+3)2﹣4(m+1)=m 2+2m+5=m 2+2m+1+4=(m+1)2+4,∵(m+1)2+4>0,∴△>0,∴不论m 为何值,方程都有两个不相等的实数根.(2)当x =4代入x 2﹣(m+3)x+m+1=0得164(3)10m m -+++=解得m =53, 将m =53代入x 2﹣(m+3)x+m+1=0得2148033x x -+= ∴原方程化为:3x 2﹣14x+8=0,解得x =4或x =23 腰长为23时,2244333+=<,构不成三角形; 腰长为4时, 该等腰三角形的周长为4+4+23=263 所以此三角形的周长为263. 【点睛】 本题考查了一元二次方程,熟练的掌握一元二次方程的解法是解题的关键.33.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.34.(1)见解析;(2)4.【解析】【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB ,∴224ADGBEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.35.(1)见解析;(2)1207AC =【解析】【分析】(1)如图连结OC ,先证得4390∠+∠=︒,即可得到OC AC ∴⊥,即可得到AC 是O 的切线;(2)由(1)知:过O 作OE BC ⊥于E ,先证明OBE DBA ∆∆∽得到34AB BE AD OE ==,设3,4AB x AD x AC ===,在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+解出方程即可求得答案.【详解】证明:(1)如图,连结OC ,则OB OC =,∴23∠∠=,∵12∠=∠,∴13∠=∠,∵AC AD =,∴4D ∠=∠,而OA l ⊥,∴190D ∠+∠=︒,即有4390∠+∠=︒,∴OC AC ⊥,故AC 是O 的切线;(2)由(1)知:过O 作OE BC ⊥于E ,∵OB OC =, ∴23∠∠=,13,2BE BC ==而5OB =,由勾股定理,得:4OE =, 在OBE △和DBA 中,∵12∠=∠,90OEB DAB ∠=∠=︒,∴OBE DBA ∆∆∽,∴34AB BE AD OE ==, 设3,4AB x AD x AC ===, 在Rt OAC ∆中,222OC AC OA +=,即:2225(4)(53)x x +=+ 解得:30,07x x ==(舍去), ∴1207AC =. 【点睛】 本题考查的是相似三角形的应用和切线的性质定理,勾股定理应用,是综合性题目. 四、压轴题36.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论;。
2017-2020学年陕西省宝鸡市岐山县九年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13B.﹣4,19C.﹣4,13D.4,194.某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同B.可能有两人生日相同,且可能性较大C.不可能有两人生日相同D.可能有两人生日相同,但可能性较小5.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:26.一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.99.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A.B.C.D.10.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m 的取值范围是()A.m>B.m<C.m≤D.m≥二、填空题(本大题共4小题,每小题3分,共12分)11.若==≠0,则=.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为(2)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(请填写正确答案的序号).13.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是度.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.三、解答题(本大题共9小题,共58分)15.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)16.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:点A(1,3),点B(4,2),点C(2,1).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似图形△A2B2C2,使,并写出点A2,B2,C2的坐标.17.(6分)在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米;小丽:测量甲树的影长为4米(如图1);小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.(1)请直接写出甲树的高度为米;(2)求乙树的高度.18.(7分)如图,已知菱形ABCD中,对角线ACBD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.19.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.20.(7分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?21.(7分)在矩形ABCD中,AB=10,BC=12,点E为DC的中点,连接BE,过点A作AF⊥BE,垂足为点F.(1)求证:△BEC∽△ABF;(2)求AF的长.22.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?23.(7分)如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数y=(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD 的面积,求P点的坐标.2017-2020学年陕西省宝鸡市岐山县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选:B.【点评】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.【点评】理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13B.﹣4,19C.﹣4,13D.4,19【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣8x+3=0∴x2﹣8x=﹣3∴x2﹣8x+16=﹣3+16∴(x﹣4)2=13∴m=﹣4,n=13故选:C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同B.可能有两人生日相同,且可能性较大C.不可能有两人生日相同D.可能有两人生日相同,但可能性较小【分析】依据可能性的大小的概念对各选项进行逐一分析即可.【解答】解:A、因为每年有365天而某学校只有320人,所以至少有两名学生生日相同是随机事件.故本选项错误;B、因为=>50%,所以可能性较大.正确;C、两人生日相同是随机事件,故本选项错误;D、由B可知,可能性较大,故本选项错误.故选:B.【点评】本题主要考查可能性大小的比较,关键是确定所给事件的类型;随机事件是指在一定条件下,可能发生也可能不发生的事件;概率较小的事件发生的可能性较小.5.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD △ABF即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.6.一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式的值,然后根据判别式的意义确定方程根的情况.【解答】解:△=12﹣4×1=﹣3<0,所以方程无实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.8.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.9【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x,y1=﹣y2,再把此关系代入所求代数式进行计算即可.2【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点∴x1•y1=x2•y2=3①,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2②,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故选:A.【点评】本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=﹣x,y1=﹣y2是解答此题的关键.29.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所获奖品总价值不低于30元的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,所获奖品总价值不低于30元的有4种情况,∴所获奖品总价值不低于30元的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m 的取值范围是()A.m>B.m<C.m≤D.m≥【分析】根据反比例函数的性质可得1﹣2m>0,再解不等式即可.【解答】解:∵反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,∴1﹣2m>0,解得:m<,故选:B.【点评】此题主要考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.二、填空题(本大题共4小题,每小题3分,共12分)11.若==≠0,则=.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k≠0,则a=2k,b=3k,c=4k,所以==.故答案是:.【点评】本题考查了比例的性质.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为15 (2)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(请填写正确答案的序号)②.【分析】(1)求出方程的解,分为两种情况:①当等腰三角形的三边是3,3,6时,②当等腰三角形的三边是3,6,6时,看看是否符合三角形的三边关系定理,若符合求出即可.(2)根据相似多边形的定义逐一进行判断后即可确定正确的选项.【解答】解:(1)x2﹣9x+18=0,∴(x﹣3)(x﹣6)=0,∴x﹣3=0,x﹣6=0,∴x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形,当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15,故答案为:15.(2)由题意得,①中三角形对应角相等,对应边成比例,两三角形相似;③,④中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而②中矩形四个角相等,但对应边不一定成比例,所以②中矩形不是相似多边形,故答案为:②.【点评】本题考查了解一元二次方程和三角形的三边关系定理及相似图形,关键是确定三角形的三边的长度及相似图形的定义.13.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是22.5 度.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为7 .【分析】根据反比例函数比例系数k的几何意义得到S△OQM=4,S△OPM=3,然后利用S△POQ=S△OQM+S 进行计算.△OPM【解答】解:如图,∵直线l∥x轴,∴S△OQM=×|﹣8|=4,S△OPM=×|6|=3,∴S△POQ=S△OQM+S△OPM=7.故答案为7.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(本大题共9小题,共58分)15.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.16.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:点A(1,3),点B(4,2),点C(2,1).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似图形△A2B2C2,使,并写出点A2,B2,C2的坐标.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)根据位似图形的定义作出点A、B、C在原点的另一侧的对应点,再顺次连接即可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,点A2的坐标为(﹣2,﹣6),B2的坐标为(﹣8,﹣4),C2的坐标为(﹣4,﹣2).【点评】本题主要考查作图﹣轴对称变换、位似变换,解题的关键是根据轴对称变换和位似变换的定义作出变换后的对应点.17.(6分)在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米;小丽:测量甲树的影长为4米(如图1);小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.(1)请直接写出甲树的高度为 5.1 米;(2)求乙树的高度.【分析】(1)根据测得一根长为1米的竹竿的影长为0.8米,利用比例式直接得出树高;(2)根据辅助线作法得出假设没有墙时影子长度,即可求出答案.【解答】解:(1)根据题意得:=,解得:x=5.1(米),故答案为:5.1.(2)假设AB是乙树,∴BC=2.4m,CD=1.2m,∴=,∴=,∴CE=0.96(m),∴=,∴AB=4.2(m),答:乙树的高度为4.2m.【点评】此题主要考查了相似三角形的应用,根据同一时刻影长与高成比例以及假设没有墙或台阶时求出影长是解决问题的关键.18.(7分)如图,已知菱形ABCD中,对角线ACBD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.【分析】(1)由条件可证得四边形CODE为平行四边形,再由菱形的性质可求得∠COD=90°,则可证得四边形CODE为矩形;(2)由菱形的性质可求得AO和OC,在Rt△AOB中可求得BO,则可求得OD的长,则可求得答案.【解答】(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形CODE是矩形;(2)解:∵四边形ABCD为菱形,∴AO=OC=AC=×6=3,OD=OB,∠AOB=90°,在Rt△AOB中,由勾股定理得BO2=AB2﹣AO2,∴BO==4,∴DO=BO=4,∴四边形CODE的周长=2×(3+4)=14.【点评】本题主要考查矩形、菱形的判定和性质,掌握矩形的判定方法及菱形的对角线互相垂直平分是解题的关键.19.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线y=上的情况数,再根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:(2)当x=﹣1时,y==﹣2;当x=1时,y==2;当x=2时,y==1.∴一共有9种等可能的情况,点(x,y)落在双曲线y=上有2种情况:(1,2),(2,1),∴点(x,y)落在双曲线y=上的概率为:.【点评】本题考查了列表法与树状图法以及反比例函数图象上点的坐标特征,根据抽卡的规律用树状图表示两次抽出卡片上的数字的所有结果是解题的关键.20.(7分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(7分)在矩形ABCD中,AB=10,BC=12,点E为DC的中点,连接BE,过点A作AF⊥BE,垂足为点F.(1)求证:△BEC∽△ABF;(2)求AF的长.【分析】(1)在矩形ABCD中,有∠C=∠ABC=∠ABF+∠EBC=90°,由于AF⊥BE,所以∠AFB =∠C=90°,∠BAF=∠EBC,从而得证;(2)在矩形ABCD中,AB=10,可知CD=AB=10,由于E为DC的中点,CE=5,由勾股定理可求得:BE=13,最后由△ABF∽△BEC得:,从而可求出答案.【解答】解:(1)在矩形ABCD中,有∠C=∠ABC=∠ABF+∠EBC=90°∵AF⊥BE,∴∠AFB=∠C=90°,∴∠BAF=∠EBC∴△BEC∽△ABF(2)在矩形ABCD中,AB=10,∴CD=AB=10,∵E为DC的中点,∴CE=5,又BC=12,在Rt△BEC中,由勾股定理得:BE=13,由△ABF∽△BEC得:即:=,∴解得:AF=【点评】本题考查相似三角形的性质与判定,解题的关键熟练运用相似三角形的判定方法以及矩形的性质,本题属于中等题型.22.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?【分析】(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.【点评】此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.23.(7分)如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数y=(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD 的面积,求P点的坐标.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴Bc=3,∴C(3,﹣2),把C(3,﹣2)代入y=得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣,把C(3,﹣2),A(0,1)代入y=ax+b得,解得,∴一次函数解析式为y=﹣x+1;(2)设P(t,﹣),∵△OAP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).【点评】本题考查了反比例函数与一次函数的交点问题,正方形的性质等知识,解题的关键是熟练掌握基本知识,学会构建方程解决问题,属于中考常考题型.。