2019精选教育北师版八年级数学上册 第二章 实数 单元测试卷(一)(无答案).doc
- 格式:doc
- 大小:128.54 KB
- 文档页数:3
北师版数学八年级上册第2章实数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,错误的是( )A.2是2的平方根之一B.2是4的算术平方根C.3的平方根是3的算术平方根D.-2的平方是22. 估计19的值是( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( ) A.a+1 B.a2+1C.a2+1D.a+14.在数轴上标注了四段范围,如图,则表示8的点落在( )A.①B.②C.③D.④5.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是3和-1,则点C所对应的实数是( )A.1+ 3 B.2+ 3C.23-1 D.23+16. 使二次根式x-1有意义的x的取值范围是( )A.x≠1 B.x>1C.x≤1 D.x≥17.下列计算正确的是( )A.(-3)(-4)=-3×-4B.42-32=42-32C.62= 3D.62= 38.若x+y-1+(y+3)2=0,则x-y的值为()A.-1 B.1 C.-7 D.79.一个正数的两个平方根分别是2a-1与-a+2,则a的值为( ) A.1 B.-1 C.2 D.-210.若a=12-1,b=12+1,则ab(ab-ba)的值为( )A.2 B.-2 C. 2 D.2 2第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)312.在0,13,3.14,1π,0.7,-234.101 010…,0.202 002 000 2…中,有理数有__ __个,无理数有__ __个.13.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是__ __.14.2-3的相反数是__________,绝对值是___________.15.计算:48÷23-27×33+612+(5-1)0=__________. 16.比较大小:3-12________710.(填“>”或“<”) 17. 计算12-33=__________. 18.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +b a -b (a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=___________.三.解答题(共7小题,66分)19.(6分) 计算:(1)1212-(313+2);(2)(5-25)2;(3)23(375-12-27);(4)(3+2-1)(3-2+1).20.(6分) 求下列各式中x的值:(1)(x+2)2-36=0;(2)64(x+1)3=27.21.(6分) 已知2a-1的平方根是±3,4a+2b+1的算术平方根是5,求a-2b的平方根.22.(6分) 先化简,再求值.(6x yx+3y xy3)-(4yxy+36xy),其中x=2+1,y=2-1.23.(6分) 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c.(1)若a =12,b =5,求c 的值;(2)若a =23+1,b =23-1,求此三角形的斜边c 的长和面积.24.(8分) 如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;(2)计算|x -3|+6x +5.25.(8分) 先化简,再求值: (1)(a -3)(a +3)-a(a -6),其中a =3+12;(2)(a +b)2+(a -b)(2a +b)-3a 2,其中a =-2-3,b =3-2.26.(10分) 先观察下列等式,再回答问题: ①1+112+122=1+11-11+1=112; ②1+122+132=1+12-12+1=116; ③1+132+142=1+13-13+1=1112; …(1)请你根据上面三个等式提供的信息,猜想1+142+152的结果,并验证; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).27.(10分) 阅读下面的解答过程,然后作答:有这样一类题目:将a +2b 化简,若你能找到两个数 m 和n ,使m 2+n 2=a 且 mn =b ,则a +2b 可变为m 2+n 2+2mn ,即变成(m +n)2,从而使得a +2b 化简.例如:因为5+26=3+2+26=(3)2+(2)2+26=(3+2)2,所以5+26=(3+2)2=3+ 2.请你仿照上例解下面问题:(1)4+23;(2)7-210.参考答案:1-5CCBCD 6-10DDBDA 11. 22,212. 5,213. 7 14. 3-2,2- 3 15. 3 216. <17. 2- 318. 2319. 解:(1)原式= 12×23-(3×33+2)=3-3-2) =-2(2)原式=(5)2-2×5×25+(25)2 =5-4+45=95(3)原式=23(3×53-23-33) =23×103=60 (4)原式=[3+(2-1)] [3-(2-1)].=(3)2-(2-1)2=3-2+22-1=2220. 解:(1) (x +2)2=36x +2=±6解得x =4或x =-8(2)(x +1)3=2764 3解得x =-1421. 解:∵2a -1的平方根是±3,∴2a -1=(±3)2=9,∴a =5,∵4a +2b +1的算术平方根是5,∴4a +2b +1=25,∴b =2,当a =5,b =2时,a -2b =5-2×2=1, ∴±a -2b =±122. 解:原式=(6xy +3xy)-(4xy +6xy)=-xy.当x =2+1,y =2-1时, 原式=-xy =-(2+1)(2-1)=-1.23. 解:(1)根据勾股定理c=122+52= 169=13(2)∵a 2=(23+1)2=12+43+1=13+43, b 2=(23-1)2=12-43+1=13-4 3 ∴c 2=a 2+b 2==13+43+=13-43=26∴c =26, S △ABC =12(23+1)( 23-1)= 12(12-1)= 11224. 解:(1)因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC , 所以3-x =5-3, 解得x =23- 5.(2)原式=|23-5-3|+623-5+5=5-3+3= 5. 25. 解:(1)原式=a 2-3-a2+6a =6a -3.当a =5+12时, 原式=6a -3=65+3-3=6 5.(2)原式=a 2+2ab +b 2+2a 2+ab -2ab -b 2-3a 2=ab.当a =-2-3,b =3-2时,原式=ab =(-2)2-(3)2=4-3=1. 26. 解:(1)1+142+152=1+14-14+1=1120.验证如下:(2) 1+1n 2+1(n+1)2=1+1n -1n -1=1+1n(n+1)(n 为正整数). 27. 解(1):因为4+23=1+3+23=12+(3)2+23=(1+3)2, 所以4+23=(1+3)2=1+ 3.(2)7-210=(5)2+(2)2-2×5×2=(5-2)2=5- 2.。
八年级数学上册第二章实数单元测试卷(北师大版带答案)XX-2019学年数学北师大版八年级上册第二章《实数》单元测试卷一、选择题9的平方根是A.±3B.±c.3D.-3下列实数中是无理数的是A.B.c.πD.0下列说法错误的是A.5是25的算术平方根B.1是1的一个平方根c.2的平方根是-4D.0的平方根与算术平方根都是0下列各式中不是二次根式的是A.B.c.D.已知实数x,y满足,则x﹣y等于A.3B.﹣3c.1D.﹣1下列各式化简后,结果为无理数的是A.B.c.D.若一个有理数的平方根与立方根是相等的,则这个有理数一定是A.0B.1c.0或1D.0和±1若=-3,则的范围是A.1<<2B.2<<3c.3<<4D.4<<5实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简-|a+b|的结果为A.2a+bB.-2a+bc.bD.2a-b0.下列说法正确的个数有①2是8的立方根;②±4是64的立方根;③无限小数都是无理数;④带根号的数都是无理数.A.1个B.2个c.3个D.4个1.若6-的整数部分为x,小数部分为y,则y的值是A.5-3B.3c.3-5D.-3二、填空题16的平方根是________,算术平方根是________.3.下列各数:3,,,1.414,,3.12122,,3.161661666…中,无理数有________个,有理数有________个,负数有________个,整数有________个.已知x,y都是实数,且y=++4,则yx=________.如果一个正数的平方根是a+3和2a﹣15,则这个数为________.三、计算题计算:+求下列各式中x的值:+1=17;+27=0.一个数的算术平方根为2-6,平方根为±,求这个数.如图,四边形ABcD中,AB=AD,∠BAD=90°,若AB =2,cD=4,Bc=8,求四边形ABcD的面积.0.设,,,…,.若,求S.1.用48米长的篱笆在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?并说明理由.2.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=2.善于思考的小明进行了以下探索:设a+b=2,则有a+b=2+2n2+2n.∴a=2+2n2,b=2n.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a,b,,n均为正整数时,若a+b=2,用含,n的式子分别表示a、b,得a=________,b=________;利用所探索的结论,找一组正整数a,b,,n填空:________+________=2;若a+4=2,且a,,n均为正整数,求a的值.答案解析部分一、选择题【答案】A【考点】平方根【解析】【解答】解:9的平方根是:±=±3.故选:A.【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【答案】c【考点】无理数的认识【解析】【解答】解:因为无理数是无限不循环小数,故答案为:c.【分析】根据无理数的定义:无限不循环的小数是无理数,包括π以及开不尽方的数。
新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (共10套 )(总分值:150 时间:120 )一、选择题 (每题4分 ,共60分 )1、如果一个数的平方根与它的立方根相同 ,那么这个数是 ( )A 、±1B 、0C 、1D 、0和1 2、在316x 、32-、5.0-、xa 、325中 ,最|简二次根式的个数是 ( ) A 、1 B 、2 C 、3 D 、43、以下说法正确的选项是 ( )A 、0没有平方根B 、-1的平方根是-1C 、4的平方根是-2D 、()23-的算术平方根是34、164+的算术平方根是 ( )A 、6B 、-6C 、6D 、6±5、对于任意实数a ,以下等式成立的是 ( ) A 、a a =2 B 、a a =2 C 、a a -=2 D 、24a a =6、设7的小数局部为b ,那么)4(+b b 的值是 ( )A 、1B 、是一个无理数C 、3D 、无法确定 7、假设121+=x ,那么122++x x 的值是 ( )A 、2B 、22+C 、2D 、12-8、如果1≤a ≤2 ,那么2122-++-a a a 的值是 ( ) A 、a +6 B 、a --6 C 、a - D 、1 9、二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最|简二次根式是 ( )A 、①②B 、③④⑤C 、②③D 、只有④ 10、式子1313--=--x xx x 成立的条件是 ( ) A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤311、以下等式不成立的是 ( )A 、()a a =2B 、a a =2C 、33a a -=-D 、a aa -=-112、假设x <2 ,化简()x x -+-322的正确结果是 ( )A 、-1B 、1C 、52-xD 、x 25- 13、式子3ax -- (a >0 )化简的结果是 ( )A 、ax x -B 、ax x --C 、ax xD 、ax x - 14、231+=a ,23-=b ,那么a 与b 的关系是 ( )A 、b a =B 、b a -=C 、ba 1= D 、1-=ab 15、以下运算正确的选项是 ( ) A 、()ππ-=-332B 、()12211-=--C 、()0230=- D 、()6208322352-=-1、()221-的平方根是 ;8149的算术平方根是 ;3216-的立方根是 ;2、当a 时 ,23-a 无意义;322xx +-有意义的条件是 .3、如果a 的平方根是±2 ,那么a = .4、最|简二次根式b a 34+与162++-b b a 是同类二次根式 ,那么a = ,b= .5、如果b a b b ab b a )(2322-=+- ,那么a 、b 应满足 .6、把根号外的因式移到根号内:a 3-= ;当b >0时 ,x xb = ;aa --11)1(= . 7、假设04.0-=m ,那么22m m -= . 8、假设m <0 ,化简:3322m m m m +++= .9、比拟大小:56;13-6- .10、请你观察思考以下计算过程: ∵121112= ∴11121= ∵123211112= ∴11112321=因此猜测:76543211234567898= . 11、xy =3 ,那么yxyx y x+的值_________. 12、3392-⋅+=-x x x 成立那么X 的范围为1、abb a ab b 3)23(235÷-⋅ 2、62332)(62332(+--+)3、化简:)0(96329222<---b xb a b x a a 4、673)32272(-⋅++5、23923922-++++xx xx (0<x<3)6、假设17的整数局部为x ,小数局部为y ,求y x 12+的值.7、,3232,3232+-=-+=y x 求值:22232y xy x +-9.如图 ,B 地在A 地的正东方向 ,两地相距282km ,A ,B 两地之间有一条东北走向的高速公路 ,A ,B 两地分别到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A 地的正南方向P 处.至|上午8:20 ,B 地发现该车在它的西北方向Q 处 ,该段高速公路限速为11Okm /h ,问该车有否超速行驶?参考答案选择题二、填空题 1、±21 ,37,36-;2、32<a ,x ≤2且x ≠-8;3、16;4、1 ,1;5、a ≤b 且b ≥0;6、a 9- ,xb 2,a --1;7、0.12;8、m .9、< ,> 10、111111111 11、± 12、x ≥3 三、解答题1、 -a 2b2、12 -12 32(a b - 45 6、20 + 7、385 8 、不能 9、超速新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (7 )一、选择题 1、以下判断⑴12 3 和1348 不是同类二次根式;⑵145 和125 不是同类二次根式;⑶8x 与8x 不是同类二次根式 ,其中错误的个数是 ( )A 、3B 、2C 、1D 、02、如果a 是任意实数 ,以下各式中一定有意义的是 ( ) A 、 a B 、1a2 C 、3-a D 、-a 2 3、以下各组中的两个根式是同类二次根式的是 ( ) A 、52x 和3x B 、12ab 和13abC 、x 2y 和xy 2D 、 a 和1a 24、以下二次根式中 ,是最|简二次根式的是 ( ) A 、8x B 、x 2-3 C 、x -y x D 、3a 2b5、在27 、112 、112 中与3 是同类二次根式的个数是 ( )A 、0B 、1C 、2D 、36、假设a<0 ,那么|a 2 -a|的值是 ( ) A 、0 B 、2a C 、2a 或-2a D 、-2a7、把(a -1)11-a根号外的因式移入根号内 ,其结果是 ( ) A 、1-a B 、-1-a C 、a -1 D 、-a -18、假设a +b4b 与3a +b 是同类二次根式 ,那么a 、b 的值为 ( )A 、a =2、b =2B 、a =2、b =0C 、a =1、b =1D 、a =0、b =2 或a =1、b =1 9、以下说法错误的选项是 ( )A 、(-2)2的算术平方根是2B 、 3 - 2 的倒数是 3 + 2C 、当2<x<3时 ,x 2-4x +4 (x -3)2 = x -2x -3 D 、方程x +1 +2 =0无解10、假设 a + b 与 a - b 互为倒数 ,那么 ( )A 、a =b -1B 、a =b +1C 、a +b =1D 、a +b =-1 11、假设0<a<1 ,那么a 2 +1a 2 -2 ÷(1 +1a )×11 +a 可化简为 ( )A 、1-a 1 +aB 、a -11 +a C 、1-a2 D 、a 2-1 12、在化简x -yx +y时 ,甲、乙两位同学的解答如下: 甲:x -y x +y = (x -y)(x -y )(x +y )(x -y ) =(x -y)(x -y )(x )2-(y )2=x -y 乙:x -y x +y =(x )2-(y )2x +y = (x -y )(x +y )x +y =x -yA 、两人解法都对B 、甲错乙对C 、甲对乙错D 、两人都错 ( ) 二、填空题1、要使1-2xx +3 +(-x)0有意义 ,那么x 的取值范围是 . 2、假设a 2 =( a )2 ,那么a 的取值范围是 . 3、假设x 3 +3x 2 =-x x +3 ,那么x 的取值范围是 . 4、观察以下各式:1 +13 =213 ,2 +14 =314 ,3 +15 =415 ,……请你将猜测到的规律用含自然数n(n≥1)的代数式表示出来是 . 5、假设a>0 ,化简-4ab = . 6、假设o<x<1 ,化简(x -1x )2 +4 -(x +1x )2-4 = .7、化简:||-x 2 -1|-2| = .8、在实数范围内分解因式:x 4 +x 2-6 = .9、x>0 ,y>0且x -2xy -15y =0,那么2x +xy +3yx +xy -y= .10、假设5 +7 的小数局部是a ,5-7 的小数局部是b ,那么ab +5b = . 11、设 3 =a ,30 =b ,那么0.9 = . 12、a<0 ,化简4-(a +1a )2 -4 +(a -1a )2 = .1、13 (212 -75 ) 2、24 - 1.5 +223 -3 + 23 - 23、(-2 2 )2-( 2 +1)2 +( 2 -1)-1 4、7a 8a -2a 218a +7a 2a5、2nm n -3mnm 3n 3 +5mm 3n (m<0、n<0) 6、1a + b7、x 2-4x +4 +x 2-6x +9 (2≤x≤3) 8、x +xyxy +y +xy -y x -xy四、化简求值 1、x =2 +12 -1,y = 3 -13 +1,求x 2-y 2的值 . 2、x =2 + 3 ,y =2- 3 ,求x +yx -y-x -yx +y的值 .3、当a = 12 +3 时 ,求1-2a +a 2a -1 -a 2-2a +1a 2-a的值 .五、x +1x =4,求x -1x 的值 .参考答案一、选择题 1、B 2、C 3、B 4、B 5、C 6、D 7、B 8、D 9、C 10、B 11、A 12、B1、x ≤≠-3 ,x ≠02、a ≥03、-3≤x ≤04、 (n +1) 1n +25、-2b -ab6、2x7、18、(x + 3 )(x + 2 )(x - 2 ) 9、2927 10、2 11、3a b 12、-4三、计算与化简 1、 -1 2、 66 -5 3、6- 2 4、412 a 2a 5、-10mn6、 (1)当a ≠ b 时 ,原式 =12a 或 b2b (2)当a = b 时 ,原式 =a - b a 2-b7、18、(x +y)xy xy 四、化简求值1、-11 +12 2 +16 62、2 3 33、3 五、±2 3新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (8 )(时间:45分钟 分数:100分 )一、选择题 (每题2分 ,共20分 )1.以下式子一定是二次根式的是 ( )A .2--xB .xC .22+xD .22-x2.假设b b -=-3)3(2,那么 ( )A .b>3B .b<3C .b ≥3D .b ≤3 3.假设13-m 有意义 ,那么m 能取的最|小整数值是 ( )A .m =0B .m =1C .m =2D .m =34.假设x<0 ,那么xx x 2-的结果是 ( )A .0B . -2C .0或 -2D .2 5.以下二次根式中属于最|简二次根式的是 ( ) A .14 B .48 C .baD .44+a 6.如果)6(6-=-•x x x x ,那么 ( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题: ①24416a a =; ②a a a 25105=⨯; ③a aa a a=•=112;④a a a =-23 .做错的题是 ( )A .①B .②C .③D .④ 8.化简6151+的结果为 ( ) A .3011B .33030C .30330D .11309.假设最|简二次根式a a 241-+与的被开方数相同 ,那么a 的值为 ( ) A .43-=a B .34=a C .a =1 D .a = -1 10.化简)22(28+-得 ( )A . -2B .22-C .2D . 224- 二、填空题 (每题2分 ,共20分 )11.①=-2)3.0( ;②=-2)52( .12.二次根式31-x 有意义的条件是 .13.假设m<0 ,那么332||m m m ++ = .14.1112-=-•+x x x 成立的条件是 .16.=•y xy 82 ,=•2712 . 17.计算3393aa a a-+ = . 18.23231+-与的关系是 .19.假设35-=x ,那么562++x x 的值为 .20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 . 三、解答题 (第21~22小题各12分 ,第23小题24分 ,共48分 )21.求使以下各式有意义的字母的取值范围: (1 )43-x (2 )a 831- (3 )42+m (4 )x1-22.化简:(1 ))169()144(-⨯- (2 )22531- (3 )5102421⨯-(4 )n m 21823.计算: (1 )21437⎪⎪⎭⎫ ⎝⎛- (2 )225241⎪⎪⎭⎫⎝⎛--(3 ))459(43332-⨯ (4 )⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5 )2484554+-+ (6 )2332326--24.假设代数式||112x x -+有意义 ,那么x 的取值范围是什么 ?25.假设x ,y 是实数 ,且2111+-+-<x x y ,求1|1|--y y 的值 .参考答案一、选择题1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A 二、填空题11.①0.3 ②25- 12.x ≥0且x ≠9 13. -m 14.x ≥1 15.< 16.x y 4 18 17.a 3 18.相等 19.1 20.33165315++ 三、解答题 21. (1 )34≥x (2 )241<a (3 )全体实数 (4 )0<x22.解: (1 )原式 =1561312169144169144=⨯=⨯=⨯;(2 )原式 =51531-=⨯-; (3 )原式 =51653221532212-=⨯-=⨯-; (4 )原式 =n m n m 232322=⨯⨯ . 23.解: (1 )原式 =49×21143=; (2 )原式 =25125241=-; (3 )原式 =345527315)527(41532-=⨯-=-⨯; (4 )原式 =2274271447912628492=⨯=⨯=⨯;(5 )原式 =225824225354+=+-+;(6 )原式 =265626366-=-- . 24.解:由题意可知: 解得 ,121≠-≥x x 且 .25.解:∵x -1≥0, 1 -x ≥0,∴x =1 ,∴y<21.∴1|1|--y y =111-=--y y.新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (9 )(时间:45分钟 分数:100分 )一、选择题 (每题2分 ,共20分 )1.以下说法正确的选项是 ( )A .假设a a -=2 ,那么a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是5 2.二次根式13)3(2++m m 的值是 ( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是 ( )2x +1≥0 ,1 -|x|≠A .x y 2-B .yC .y x -2D .y -4.假设ba是二次根式 ,那么a ,b 应满足的条件是 ( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0 ,b>0 D .0≥ba 5.a<b ,化简二次根式b a 3-的正确结果是 ( )A .ab a --B .ab a -C .ab aD .ab a - 6.把mm 1-根号外的因式移到根号内 ,得 ( ) A .m B .m - C .m -- D .m - 7.以下各式中 ,一定能成立的是 ( ) .A .22)5.2()5.2(=- B .22)(a a =C .122+-x x =x -1D .3392+⋅-=-x x x8.假设x +y =0 ,那么以下各式不成立的是 ( )A .022=-y xB .033=+y xC .022=-y x D .0=+y x9.当3-=x 时 ,二次根7522++x x m 式的值为5 ,那么m 等于 ( ) A .2 B .22C .55D .510.1018222=++x xx x,那么x 等于 ( ) A .4 B .±2 C .2 D .±4二、填空题 (每题2分 ,共20分 )11.假设5-x 不是二次根式 ,那么x 的取值范围是 .12. (2005·江西 )a<2 ,=-2)2(a .13.当x = 时 ,二次根式1+x 取最|小值 ,其最|小值为 . 14.计算:=⨯÷182712 ;=÷-)32274483( . 15.假设一个正方体的长为cm 62 ,宽为cm 3 ,高为cm 2 ,那么它的体积为3cm .16.假设433+-+-=x x y ,那么=+y x .17.假设3的整数局部是a ,小数局部是b ,那么=-b a 3 . 18.假设3)3(-•=-m m m m ,那么m 的取值范围是 .19.假设=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,132.三、解答题 (21~25每题4分 ,第26小题6分 ,第27小题8分 ,共44分 ) 21.21418122-+- 22.3)154276485(÷+-23.x xx x 3)1246(÷- 24.21)2()12(18---+++ 25.0)13(27132--+- 26.:132-=x ,求12+-x x 的值 .27.:的值。
检测内容:第二章 实数得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.在实数:3-27,3.141 592 6,0.1·2·3·,π2,34,103,25,22,0.101 001 000 1…(相邻两个1之间0的个数逐次加1)中,无理数有( )A .2个B .3个C .4个D .5个2.下列说法正确的是( )A .1的平方根是1B .-25的平方根是±5C .16的算术平方根是4D .3是(-3)2的算术平方根 3.求0.052 9的正确按键顺序为( ) A .0·0529 B .0·0529 C .0·0529=D .0·0529=4.已知二次根式23-a 与8化成最简二次根式后被开方数相同,则正整数a 的最小值为( )A .23B .21C .15D .55.(北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .|a|>4B .c -b >0C .ac >0D .a +c >0 6.下列计算错误的是( ) A .43÷121=27B .(8+3)×3=26+3 C .(42-36)÷22=2-323D .(5+7)(5-7)=-27.现规定一种运算:a ※b =ab +a -b ,其中a ,b 为实数,则16※3-8等于( ) A .-6 B .-2 C .2 D .68.在化简m -nm +n 时,甲、乙两位同学的解答如下,那么两人的解法( )甲:m -n m +n =(m -n )(m -n )(m +n )(m -n )=(m -n )(m -n )(m )2-(n )2=m -n ; 乙:m -nm +n =(m )2-(n )2m +n =(m +n )(m -n )m +n=m -n.A.都对B.甲错乙对C.甲对乙错D.都错9.如图,在长方形ABCD中无重叠放入面积分别为8 cm2和12 cm2的两张正方形纸片,则图中空白部分的面积为()A.43cm2B.(83-12)cm2C.(46-8)cm2D.(46+12)cm210.已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是()A.0 B.3C.2+3D.2- 3二、填空题(每小题3分,共24分)11.(-9)2的平方根是__________,若a的平方根等于±4,则a的值是__________.12.若a,b都是实数,且b=1-2a+2a-1-2,则a b的值为.13.若x<6-1<y,且x,y是两个连续的整数,则x+y的值是.14.(广州)如图,数轴上点A表示的数为a,化简:a+a2-4a+4=.,第14题图),第15题图),第17题图)15.如图所示,已知四边形ABCD是边长为2的正方形,AP=AC,则数轴上点P所表示的数是.16.将式子-(m-n)-1m-n化为最简二次根式为.17.如图,等边三角形和长方形具有一条公共边,长方形内有一个正方形,其四个顶点都在长方形的边上,等边三角形的周长和正方形的面积分别是62和2,则图中阴影部分的面积是.18.观察下列二次根式的化简:S1=1+112+122=1+11-12;S2=1+112+122+1+122+132=(1+11-12)+(1+12-13);S3=1+112+122+1+122+132+1+132+142=(1+11-12)+(1+12-13)+(1+13-14);则S2 0192 019=__________.三、解答题(共66分)19.(8分)计算:(1)(12+20)+(3-5); (2)(62-24)÷8;(3)(5+3)2-(5+3)(5-3); (4)(523-54)÷3+12× 6.20.(6分)已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b的算术平方根.21.(9分)如图,用两个边长为152cm的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长、宽之比为4∶3且面积为720 cm2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.22.(9分)如图,在等腰梯形ABCD中,上底AD=32cm,下底BC=318cm,高AE =32cm.(1)求梯形ABCD的周长l;(2)求梯形ABCD的面积S.23.(10分)解答下列各题:(1)已知x=3+1,y=3-1,求式子x2+y2-xy的值;(2)a,b分别是4-5的整数部分和小数部分,求式子3b+5ab的值.24.(11分)阅读材料:在二次根式中有一种相辅相成的“对子”,如:(2+3)(2-3)=1,(5+2)(5-2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4-7的有理化因式可以是 ,323分母有理化得 ;(2)①已知x =3+13-1,y =3-13+1,求x 2+y 2的值; ②计算:11+2+12+3+13+4+…+11 999+2 000.25.(13分)小明在解方程24-x -8-x =2时采用了下面的方法: 解:由(24-x -8-x)(24-x +8-x)=(24-x)2-(8-x)2=(24-x)-(8-x)=16,又有24-x -8-x =2,可得24-x +8-x =8,将这两式相加可得⎩⎪⎨⎪⎧24-x =5,8-x =3,将24-x =5两边平方可解得x =-1,经检验x =-1是原方程的解. 请你学习小明的方法后完成下列各题:(1)方程x 2+42+x 2+10=16的解是__________;(2)解方程:4x 2+6x -5+4x 2-2x -5=4x.1.C 2.D 3.D 4.D 5.B 6.D 7.B 8.B 9.C 10.C 11.±3 256 12.4 13.3 14.2 15.-2216.n -m 17.2 18.2 0212 02019.解:(1)原式=33+5 (2)原式=3- 3(3)原式=6+215 (4)原式=143220.解:因为5a +2的立方根是3,4a +2b +1的平方根是±5,所以5a +2=27,4a +2b +1=25,解得a =5,b =2,所以a -2b =5-4=1,所以a -2b 的算术平方根为121.解:(1)大正方形的边长为(152)2×2=30(cm )(2)不能,理由如下:设长方形纸片的长为4x cm ,宽为3x cm ,则4x·3x =720,解得x =215,所以4x =815>30,所以沿此大正方形边的方向不能剪出一张长、宽之比为4∶3且面积为720 cm 2的长方形纸片22.解:(1)过点D 作DH ⊥BC ,垂足为H ,则BE =CH =12(BC -AD)=12×(318-32)=32(cm ),所以CD =AB =BE 2+AE 2=(32)2+(32)2=52(cm ),所以l =2×52+32+318=222(cm )(2)S =12×(32+318)×32=48(cm 2)23.解:(1)x 2+y 2-xy =(x +y)2-3xy=(3+1+3-1)2-3×(3+1)×(3-1) =(23)2-3×(3-1)=6(2)因为4<5<9,所以2<5<3,所以-3<-5<-2,所以1<4-5<2,所以a =1,b =4-5-1=3-5,所以3b +5ab =3×(3-5)-5×1×(3-5)=14-6 524.解:(1)4+732(2)①当x =3+13-1=(3+1)(3+1)(3-1)(3+1)=4+232=2+3,y =3-13+1=(3-1)(3-1)(3+1)(3-1)=4-232=2-3时,x 2+y 2=(x +y)2-2xy =(2+3+2-3)2-2×(2+3)×(2-3)=16-2×1=14②原式=2-1+3-2+4-3+…+ 2 000- 1 999= 2 000-1=2505-1 25.解:(1)x =±39(2)因为(4x 2+6x -5+4x 2-2x -5)(4x 2+6x -5-4x 2-2x -5)=(4x 2+6x -5)2-(4x 2-2x -5)2=(4x 2+6x -5)-(4x 2-2x -5)=8x ,所以4x 2+6x -5-4x 2-2x -5=2,所以⎩⎨⎧4x 2+6x -5=2x +1,4x 2-2x -5=2x -1,所以(4x 2+6x -5)2=(2x +1)2,所以4x 2+6x -5=4x 2+4x +1,所以2x =6,解得x =3,经检验x =3是原方程的解,所以方程4x 2+6x -5+4x 2-2x -5=4x 的解是x =3。
第二章 实数综合测评(本试卷满分100分) 一、选择题(每小题3分,共30分) 1.在-2,2-,0,1这四个数中,最小的数是( ) A. -2 B. 2-C. 0D. 12. 下列说法中不正确的是( )A.251 的平方根是 51± B. -9是81的算术平方根 C. (-0.1)2的平方根是±0.1 D.0的算术平方根是03. 下列无理数中,与4最接近的是( )A.11B.13C.17D.194. 化简下列二次根式,能与2合并的是( )A. 4B. 8C. 12D. 275. 下列等式成立的是( )A. 45×25=85B. 53×42=205C. 43×32=75D. 53×42=206 6. 计算3227-的结果是( ) A. -23 B. 3- C.6- D.2-7. 下列各组数中,互为相反数的一组是( )A. -2 与2)2(-B. -2 与38-C. -2 与21- D. 2与|-2| 8. 已知(x+y-2)2+1-y =0,则xy 等于( )A. -2B. -1C. 1D. 29. 如图1,数轴上点A ,B 对应的数分别为1,2,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则化简22-2x x -+的结果是( ) A. 2-2 B. 22C. 32D. 2图110. 对于正实数,定义运算“⊕”为:a⊕b=c,其中c为超过ab的最小整数;定义运算“*”为:a*b=d,其中d为不超过ab的最大整数.则(3⊕2)*3的值为(2≈1.414,3≈1.732)()A.26B.9 C.8 D.6二、填空题(每小题3分,共18分)11. 在实数51,|-3|,10,0.808 008 000 8…(每两个8之间0的个数逐次加1),2,4.352中,无理数有个.12. 一个正数的平方根分别是x+1和x-5,则x= .13. 计算:(3+1)(3-3)= .14. 把43化成最简二次根式的结果是.15. 如图2,长方形内两相邻正方形的面积分别是2和6,则图内阴影部分的面积是.图216. 用教材中的计算器进行计算,开机后依次按下.把显示结果输入图3所示的程序中,输出的结果是____________.三、解答题(共52分)17.(每小题3分,共6分)计算:(1)+()2﹣;(2)|π﹣3|+()2+(﹣1)0+12019.18. (每小题3分,共6分)求下列x的值:(1)(x-1)2=4;(2)(x-2)3-1=-28.19.(每小题4分,共8分)计算:(1)615×312;(2)(3)2+3)3).20.(10分)如图4,已知等腰三角形ABC,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,E,F分别为垂足.若2,△ABC的面积为26,求AB的长.3 x2=21.(10分)如图5所示,老师在讲实数时,以数轴的单位长度为边长作一个正方形,然后以原点为圆心,正方形对角线的长为半径画弧,交数轴于点A ,作这样的图是用来说明 .(1)点A 表示的数x 为 ,计算x 2﹣4= ;(2)试比较x 与1.4的大小;(3)请用类似的方法在数轴上分别作出表示,-的点B 和点C .22. (122211112++=1+112⨯=1+1-122211123++123⨯=1+12-13,2211134++134⨯=1+13-14,… 2211112++2211123++2211134++22111910++附加题(20分,不计入总分)23.阅读材料:小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如322+2(12)+,善于思考的小明进行了以下探索:设2a +2(2)m +(其中a ,b ,m ,n 均为正整数),则有2a +2+2n 22所以a= m 2+2n 2,b=2mn.这样小明就找到了一种把部分2a b +. 请你仿照小明的方法解决下列问题:(1)若3a b +2(3)m n +(其中a ,b ,m ,n 均为正整数),用含m ,n 的式子分别表示a ,b :a= ,b= ;(2)填空: + 3=( +32(写一组正整数a ,b ,m ,n 即可);(3)若43a +=2(3)m n +,且a ,m ,n 均为正整数,求a 的值.第二章 实数综合测评一、1.A 2.B 3.C 4. B 5. D 6.C 7. A 8. C 9. A10. C 提示:因为32≈3×1.414=4.242,所以3⊕2=5,而53≈5×1.732=8.66,所以(3⊕2)*3=8. 二、11. 3 12. 2 13. 23 14.23315. 23-2 16. 34+92 三、17.解:(1)原式=3+2-=;(2)原式=π-3+2+1+1=π+1.18. (1)x=3或x=-1;(2)x=-1.19. 解:(1)原式=32-65-32=-65.(2)原式=12-43+1+3-4=12-43. 20. 解:如图,连接AD.根据三角形的面积公式,得S △ABC =S △ABD +S △ACD =12AB•DE+12AC•DF. 因为AB=AC ,所以S △ABC =12AB (DE+DF ). 因为DE+DF=22,所以12AB×22=(32+26),解得AB=32262+,即AB=3+23. 21.解:数轴上的点可以表示无理数(1) -2(2)因为x 2=2,1.42 =1.96 ,2>1.96,所以x >1.4.(3)点B ,点C 如图所示.22. 2211112++2211123++2211134++ (22)111910++=1+112⨯+1+123⨯+1+134⨯+…+1+1910⨯=1+1-12+1+12-13+1+13-14+ (1)11910-=1×9+1-12+12-13+13-14+…+11910-=9+1-110=9910.23. 解:(1)m2+3n22mn. (2)答案不唯一,如4,2,1,1(3)∵2(m+= m2+3n2∴a=m2+3n2,4=2mn.∴2=mn.∵a,m,n均为正整数,∴即m=1,n=2或m=2,n=1.当m=1,n=2时,a=m2+3n2=13;当m=2,n=1时,a=m2+3n2=7.∴a的值为13或7.。
八 年 级 上 册 数 学第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。
1、若x 2=a ,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )(C )113 (D )…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是的算术平方根,则x=( )(A ) (B )± (C ) (D )±6、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )b a = a=b (D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。
(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。
(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。
3、如果a 21-有意义,则a 的取值范围是 。
4、算术平方根等于本身的数有 。
5、a 是9的算术平方根,而b 的算术平方根是9,则=+b a 。
第二章 实数 单元检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.下面四个实数,你认为是无理数的是( )A .13B . 3C .3D .0.3 2.下列四个数中,是负数的是( )A .|-2|B .(-2)2C .- 2D .(-2)23.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是( )A .①④B .②③C .①②④D .①③④4.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .2a +bB .-2a +bC .bD .2a -b5.k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k<m =nB .m =n<kC .m<n<kD .m<k<n 6.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( )A .1个B .2个C .3个D .4个 7.下列计算正确的是( )A .(-3)(-4)=-3×-4B .42-32=42-32C .62= 3D .62=3 8.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 9.下列各式中,正确的是( )A .22+32=2+3B .32+53=(3+5)2+3C .152-122=15+12·15-12D .412=21210.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0, [3.14]=3,按此规定[10+1]的值为( )A .3B .4C .5D .6二、填空题(每小题3分,共24分)11.-5的相反数是___.12.16的算术平方根是____.13.写出一个比-3大的无理数___.14.计算:8-18=____.15.比较大小:22____π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是____. 17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)的值为____. 18.已知m =20132014-1,则m 2-2m -=____.三、解答题(共66分)19.(10分)(1) (-π)0-(13)-1+|3-2|+3;(2) 1+(-12)-1-(3-2)2÷(13-3)020.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3;(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3.21.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32E .0问题的答案是(只需填字母):____;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示)22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234; (3)(6-412+38)÷2 2.23.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.24.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC 中,请判断AB ,BC ,AC 三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=.②参照(三)式化简25+3=.(2)化简:13+1+15+3+17+5+…+199+97.答案:一、选择题(每小题3分,共30分)1—5 BCCCD 6---10 CDCCB 二、填空题(每小题3分,共24分)11.-5的相反数是. 12.16的算术平方根是__4__.13.写出一个比-3大的无理数__-2__.14.计算:8-18=.15.比较大小:22__<__π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是__494__.17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)的值为__1__. 18.已知m =20132014-1,则m 2-2m -=__0__.三、解答题(共66分)19.(10分)(1) (-π)0-(13)-1+|3-2|+3;解:原式=0(2) 1+(-12)-1-(3-2)2÷(13-3)0.解:原式=-3+320.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3; 解:原式=a 2-5b 2=-13(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3. 解:原式=x 2-5=-221.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32 E .0问题的答案是(只需填字母):__A ,D ,E __;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示) 解:(2)设a 为有理数,这个数为x ,则x ·2=a ,∴x =a 2=22a22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234; 解:原式=62+ 5 解:原式=35(3)(6-412+38)÷2 2. 解:原式=123+223.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13, 即点C 表示数13(2)画图略.在△ODE 中,∠EDO =90°,OD =5,DE =2,则OF =OE =29,即F 点为-2924.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.解:(1)AB=4,AC=32+32=32,BC=12+32=10,所以AB的长度是有理数,AC和BC的长度是无理数(2)图略25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__5-3__.②参照(三)式化简25+3=__5-3__.(2)化简:13+1+15+3+17+5+…+199+97.解:(1)①2×(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-33-1 2+5-32+7-52+……+99-972=99-12=311-12(2)原式=。
八年级数学上册《第2章实数》测试卷姓名:班级:一、选择题(每小题3分,共30分)1.(3分)的值等于()A.3 B.﹣3 C.±3 D .2.(3分)在﹣1.414,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.43.(3分)下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④4.(3分)下列计算正确的是()A .=2B .•=C .﹣=D .=﹣35.(3分)下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根6.(3分)若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为()A.2 B.0 C.﹣2 D.以上都不对7.(3分)若,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤38.(3分)若代数式有意义,则x的取值范围是()A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠29.(3分)下列运算正确的是()A .+x=x B.3﹣2=1C.2+=2D.5﹣b=(5﹣b )10.(3分)2015年4月25号,尼泊尔发生8.1级地震,为了储存救灾物资,特搭建一长方形库房,经测量长为40m,宽为20m,现准备从对角引两条通道,则对角线的长为()A.5m B.10m C.20m D.30m二、填空题(每小题3分,共24分)11.(3分)的算术平方根是.12.(3分)﹣1的相反数是,绝对值是.13.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.14.(3分)若,则xy的值为.15.(3分)若的整数部分为a ,的小数部分为b,则ab= .16.(3分)当x=﹣2时,代数式的值是.17.(3分)计算:﹣= ;(2+)÷= .三、解答题(共66分)19.(8分)化简:(1)(π﹣2015)0++|﹣2|;(2)++3﹣.20.(8分)计算:(1)(2﹣3)2;(2)+﹣2.21.(8分)实数a、b在数轴上的位置如图所示,请化简:|a|﹣﹣.22.(8分)已知y=,求3x+2y的算术平方根.23.(10分)已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.三、简答题26、先化简,再求值:÷(2+1),其中=-1.27、先化简,后求值:,其中.28、已知,求下列代数式的值:(1);(2).29、已知为等腰三角形的两条边长,且满足,求此三角形的周长.。
2022-2023数学北师大版八年级上册第二章《实数》单元测试卷一、选择题1.9的平方根是()A. ±3B. ±C. 3D. -32.下列实数中是无理数的是( )A. B. C. π D. ( )03.下列说法错误的是()A. 5是25的算术平方根B. 1是1的一个平方根C. (-4)2的平方根是-4D. 0的平方根与算术平方根都是04.下列各式中不是二次根式的是()A. B. C. D.5.已知实数x,y满足,则x﹣y等于()A. 3B. ﹣3C. 1D. ﹣16.下列各式化简后,结果为无理数的是()A. B. C. D.7.若一个有理数的平方根与立方根是相等的,则这个有理数一定是()A. 0B. 1C. 0或1D. 0和±18.若m=-3,则m的范围是( )A. 1<m<2B. 2<m<3C. 3<m<4D. 4<m<59.实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简-|a+b|的结果为( )A. 2a+bB. -2a+bC. bD. 2a-b10.下列说法正确的个数有()①2是8的立方根;②±4是64的立方根;③无限小数都是无理数;④带根号的数都是无理数.A. 1个B. 2个C. 3个D. 4个11.若6-的整数部分为x,小数部分为y,则(2x+)y的值是( )A. 5-3B. 3C. 3 -5D. -3二、填空题12.16的平方根是________,算术平方根是________. 13.下列各数: 3,,,1.414,3,3.12122, ,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有________个,整数有________个.14.已知x ,y 都是实数,且y =++4,则y x =________.15.如果一个正数的平方根是a+3和2a ﹣15,则这个数为________.三、计算题16. 计算: (1)( )+( ) (2)()()17.求下列各式中x 的值: (1)(x -2)2+1=17; (2)(x +2)3+27=0.18.一个数的算术平方根为2M -6,平方根为±(M -2),求这个数. 19.如图,四边形ABCD 中,AB =AD ,∠BAD =90°,若AB =2 ,CD =4,BC =8,求四边形ABCD 的面积.20.设 , , ,…, .若,求S (用含n 的代数式表示,其中n 为正整数).21.用48米长的篱笆在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?并说明理由.22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+)2.善于思考的小明进行了以下探索:设a +b=(m +n)2(其中a ,b ,m ,n 均为整数),则有a +b =m 2+2n 2+2mn.∴a =m 2+2n 2 , b =2mn.这样小明就找到了一种把类似a +b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b =(m +n)2 , 用含m ,n 的式子分别表示a 、b ,得a =________,b =________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________ =(________+________ )2;(3)若a+4 =(m+n )2,且a,m,n均为正整数,求a的值.答案解析部分一、选择题1.【答案】A【考点】平方根【解析】【解答】解:9的平方根是:±=±3.故选:A.【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.2.【答案】C【考点】无理数的认识【解析】【解答】解:因为无理数是无限不循环小数,故答案为:C.【分析】根据无理数的定义:无限不循环的小数是无理数,包括π以及开不尽方的数。
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。
北师版八年级数学上册《实数》单元测试卷(一)
(时间60分钟 满分:100分)
班级 姓名 座号_______成绩___ ___
一.选择题(3×8=24分)
1、在下列各数2.0、π3、0、72
2、327191-、1010010001.6...、11131、27无理数的个数是 ( )
(A) 1 ( B) 2 (C) 3 (D) 4
2、下列六种说法正确的个数是 ( )
(A) 1 ( B) 2 (C) 3 (D) 4
○
1无限小数都是无理数○2正数、负数统称有理数 ○3无理数的相反数还是无理数○4无理数与无理数的和一定还是无理数 ○5无理数与
有理数的和一定是无理数○6 无理数与有理数的积一定仍是无理数
3、下列语句中正确的是 ( )
(A) 9-的平方根是3- (B) 9的平方根是3
(C) 9的算术平方根是3± (D) 9的算术平方根是3
4、下列运算中,错误的是 ( )
(A) 1个 ( B) 2个 (C) 3个 (D) 4个
5、2)5(-的平方根是 ( )
(A) 5± (B) 5 (C) 5- (D) 5±
6、下列运算正确的是 ( ) (A) 3311--=- (B) 3333=- (C) 3311-=- (D) 3311-=-
7、若a 、b 为实数,且47
112
2++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 5
8、一个正方形的边长为a ,面积为S ,则 ( ) (A) a S = (B) S 的平方根是a
(C) a 是S 的算术平方根 (D) S a ±=
二.填空题:(4×6=24分)
9、请你举出三个无理数: ;
10、 0)5(-的立方根是 ,210-的算术平方根是 ,16的平方根是 ;
11、化简:348-=______
12、32
19-的绝对值是: ; 13、已知032=++-b a ,则______)(2=-b a ;
14、______1112=-+-+-x x x ;
三.解答题:(本题共计52分)
15、计算(每题5分,共10分)
(1)、3112561- (2)
16、解方程(每题5分,共10分)
(1)()0423912=--x (2) 16)32(413=+x
17、(本题7分)实数a 、b 、在数轴上的位置如图所示,化简:
18、(本题7分)若实数a 、b 、c 满足等式a+2=b+6=c+10,
求代数式的值
19、(本题8分)已知a 为实数,求代数式2351494a a a a -+----+的值。
20、冲浪题:(10分)已知0)2(12=-+-ab a ,求的值 32)(a c c b b a -+-+-)
2004)(2004(1)2)(2(1)1)(1(11+++∙∙∙+++++++b a b a b a ab 42332381)21()4()4()2(-⨯-+-⨯-。