通用版2019版高考数学一轮复习第九章解析几何课时达标检测四十三椭圆理
- 格式:doc
- 大小:76.50 KB
- 文档页数:7
单元质检九解析几何(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1:mx+y-1=0与直线l2:(m-2)x+my-1=0,则“m=1”是“l1⊥l2”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件2.与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有()A.2条B.3条C.4条D.6条3.已知点P(x,y)为曲线y=x+上任一点,点A(0,4),则直线AP的斜率k的取值范围是()A.[-3,+∞)B.(3,+∞)C.[-2,+∞)D.(1,+∞)4.(2017浙江金丽衢模拟)过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为坐标原点,则△OAB外接圆的方程是()A.(x-2)2+(y-1)2=5B.(x-4)2+(y-2)2=20C.(x+2)2+(y+1)2=5D.(x+4)2+(y+2)2=205.(2017辽宁沈阳期末)已知直线x-y+4=0与圆x2+y2=16交于A,B两点,则在x轴正方向上投影的绝对值为()A.4B.4C.2D.26.(2017江苏盐城模拟)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为()A.=1B.=1C.=1D.=17.(2017浙江绍兴一模)已知抛物线y2=2px(p>0)的焦点为F,过点M(p,0)的直线交抛物线于A,B两点,若=2,则=()A.2B.C.D.与p有关8.如图,已知椭圆C:=1(a>0),点A,F分别为其右顶点和右焦点,过F作AF的垂线交椭圆C于P,Q两点,过P作AP的垂线交x轴于点D,若|DF|=-,则椭圆C的长轴长为()A.2B.4C.2D.49.已知F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围是()A.(1,)B.(,+∞)C.(1,2)D.(2,+∞)10.设双曲线=1(a>0,b>0)的右焦点为F,过点F与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的其中一个交点为P,设坐标原点为O,若=m+n(m,n∈R),且mn=,则该双曲线的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.将答案填在题中横线上)11.(2017浙江联考)已知直线l1:2x-2y+1=0,直线l2:x+by-3=0,若l1⊥l2,则b=;若l1∥l2,则两直线间的距离为.12.(2017浙江镇海模拟)已知圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则m=;|MP|=.13.(2017浙江温州期末)若△OAB的垂心H(1,0)恰好为抛物线y2=2px的焦点,O为坐标原点,点A,B在此抛物线上,则此抛物线的方程是,△OAB面积是.14.(2017浙江杭州模拟)已知抛物线y=x2和直线l:y=kx+m(m>0)交于两点A,B,当=2时,直线l 过定点;当m=时,以AB为直径的圆与直线y=相切.15.(2017浙江绍兴)已知圆O1和圆O2都经过点A(0,1),若两圆与直线4x-3y+5=0及y+1=0均相切,则|O1O2|=.16.双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线上一点,且=0,△F1PF2的内切圆半径r=2a,则双曲线的离心率e=.17.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x-1)2+y2=1引两条切线分别与y轴交于B,C两点,则△ABC的面积的最小值是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.(14分)(2017浙江名校联考)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B 两点.(1)当l经过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45°时,求弦AB的长.19.(15分)(2017课标Ⅲ高考)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.20.(15分)已知椭圆C1:=1,直线l1:y=kx+m(m>0)与圆C2:(x-1)2+y2=1相切且与椭圆C1交于A,B 两点.(1)若线段AB的中点的横坐标为,求m的值;(2)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.21(15分)已知抛物线C:x2=4y,过点P(0,m)(m>0)的动直线l与C相交于A,B两点,抛物线C在点A和点B处的切线相交于点Q,直线AQ,BQ与x轴分别相交于点E,F.(1)写出抛物线C的焦点坐标和准线方程;(2)求证:点Q在直线y=-m上;(3)判断是否存在点P,使得四边形PEQF为矩形?若存在,求出点P的坐标;若不存在,说明理由.22.(15分)(2017浙江四模)设x,y∈R,向量i,j分别为直角坐标平面内x,y轴正方向上的单位向量,若向量a=(x+)i+y j,b=(x-)i+y j,且|a|+|b|=4.(1)求点M(x,y)的轨迹C的方程;(2)设椭圆E:=1,P为曲线C上一点,过点P作曲线C的切线y=kx+m交椭圆E于A,B两点,试证:△OAB的面积为定值.答案:1.A当m=0时,两条直线方程分别化为y-1=0,2x+1=0,此时两条直线相互垂直,∴m=0.当m≠0时,若l1⊥l2,则-m--=-1,解得m=1.综上可得m=0或m=1.故“m=1”是“l1⊥l2”的充分不必要条件,故选A.2.C过原点与圆x2+(y-2)2=1相切的直线有2条;斜率为-1且与圆x2+(y-2)2=1相切的直线也有2条,且此两条切线不过原点,由此可得与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有4条.3.A由题意知k AP=-=1---3≥-3.4.A由题意知,O,A,B,P四点共圆,所以所求圆的圆心为线段OP的中点(2,1).又圆的半径r=|OP|=,所以所求圆的方程为(x-2)2+(y-1)2=5.5.C因为圆x2+y2=16的圆心到直线x-y+4=0的距离为d==2,所以|AB|=2-=4,由于直线x-y+4=0的倾斜角为 ,所以在x轴正方向上投影的绝对值为||cos =4=2,故选C.6.D设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16,∴M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,故所求的轨迹方程为=1,故选D.7.B设直线方程为x=my+p,代入y2=2px,可得y2-2pmy-2p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=-2p2,=2,∴(p-x1,-y1)=2(x2-p,y2),∴x1=-2x2+p,y1=-2y2,可得y2=p,y1=-2p,∴x2=p,x1=2p,,故选B.8.B由题意可得A(a,0),F(c,0),即有c=-,令x=c,可得y=±-=±,可得P-,由AP⊥PD,可得k AP·k PD=-1,即-----=-1,解得x D=---,由|DF|=-,可得--x D=---,即为a2[a2-(a2-2)]=8,即a2=4,解得a=2.则椭圆C的长轴长为4.故选B.9.D由于图形的对称性,不妨联立--解得-M-,F1(-c,0),F2(c,0), -,由题意可得>0,即>0, 化简可得b2>3a2,即c2-a2>3a2,故可得c2>4a2,c>2a,可得e=>2.故选D.10.B不妨令A,B-,由=m+n可得P-,代入双曲线方程得-=1,化简得4mn=1,∵mn=,,,故双曲线的渐近线方程为y=±x,故选B.-=-1,解得b=1.11.1①∵l1⊥l2,则--②若l1∥l2,则-=-,解得b=-1.∴两条直线方程分别为x-y+=0,x-y-3=0.---则两直线间的距离为12.-13∵圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,∴直线l:x+my+1=0过圆心C(1,2),∴1+2m+1=0.解得m=-1.圆C:x2+y2-2x-4y+1=0,可化为(x-1)2+(y-2)2=4,圆心(1,2),半径r=2,∵经过点M(m,m)作圆C的切线,切点为P,∴|MP|=-=3.13.y2=4x10本题考查抛物线的标准方程与几何性质.因为焦点为H(1,0),所以抛物线的方程是y2=4x.设A(a2,2a),B(b2,2b),由抛物线的对称性可知,b=-a.又因为AH⊥OB,得=-1,解得a=(不妨取正值),从而可得△OAB面积是10-14.(0,2)设A(x1,y1),B(x2,y2),整理得x2-kx-m=0,则x1+x2=k,x1x2=-m,y1y2=(x1x2)2=m2,y1+y2=k(x1+x2)+2m=k2+2m,由=2,则x1x2+y1y2=m2-m=2,即m2-m-2=0,解得m=-1或m=2,由m>0,得m=2,直线l:y=kx+2,∴直线l过定点(0,2),设以AB为直径的圆的圆心M(x,y),圆M与y=相切于点P,由x=,则P-,由题意可知=0,即--=0,整理得x 1x 2- (x 1+x 2)++y 1y 2+ (y 1+y 2)+=0,代入整理得m 2-=0,解得m=,∴当m= ,以AB 为直径的圆与直线y=相切. 15 如图,∵原点O 到直线4x-3y+5=0的距离d= - =1,到直线y=-1的距离为1,且到(0,1)的距离为1,∴圆O 1和圆O 2的一个圆心为原点O ,不妨看作是圆O 1, 设O 2(a ,b ),则由题意得- - 解得∴|O 1O 2|=16.5 可设P 为第一象限的点,由双曲线的定义可得|PF 1|-|PF 2|=2a ,① =0,可得PF 1⊥PF 2, 由勾股定理可得|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,② 由①②可得2|PF 1|·|PF 2|=4c 2-4a 2=4b 2,由三角形的面积公式可得r (|PF 1|+|PF 2|+|F 1F 2|)=|PF 1|·|PF 2|, 即有c+2a= ,两边平方可得c 2+4a 2+4ac=c 2+b 2=c 2+c 2-a 2, 即c 2-4ac-5a 2=0,解得c=5a (c=-a 舍去), 即有e==5.17.8 设B (0,y B ),C (0,y C ),A (x 0,y 0),其中x 0>2, 所以直线AB 的方程化简得(y 0-y B )x-x 0y+x 0y B =0,直线AB 与圆相切,圆心到直线的距离等于半径,两边平方化简得(x 0-2)+2y 0y B -x 0=0,同理可得(x 0-2)+2y 0y A -x 0=0,故y C ,y B 是方程(x 0-2)y 2+2y 0y-x 0=0的两个不同的实根,所以y C+y B=-,y C y B=-,所以S=|y C-y B|x0=-=(x0-2)+-+4≥8,所以当且仅当x0=4时,S取到最小值8,所以△ABC的面积的最小值为8.18.解(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),∵直线过点P,C,∴k PC=--=2,直线l 的方程为y=2(x-1),即2x-y-2=0;(2)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0,圆心C 到直线l的距离为圆的半径为3,∴弦AB的长为19.解(1)设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为-=-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M 的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-20.解(1)将l1:y=kx+m代入C1:=1得(1+4k2)x2+8kmx+4(m2-4)=0,Δ>0恒成立,设A(x1,y1),B(x2,y2),则--所以-,①又d==1,得k=-,②联立①②得m4-m2-2=0,解得m=(2)由(1)得|x1-x2|=-,所以|AB|=-,把l2:y=kx代入C1:=1得x2=,所以|CD|=,所以λ=--=--=----,当m=k=-时,λ取最小值21.(1)解焦点坐标为(0,1),准线方程为y=-1.(2)证明由题意,知直线l的斜率存在,故设l的方程为y=kx+m.由方程组得x2-4kx-4m=0,由题意,得Δ=16k2+16m>0.设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=-4m,所以抛物线在点A处的切线方程为y-x1(x-x1),化简,得y=x1x-, ①同理,抛物线在点B处的切线方程为y=x2x-②联立方程①②,得x1x-x2x-,即(x1-x2)x=(x1-x2)(x1+x2),因为x1≠x2,所以x=(x1+x2),代入①,得y=x1x2=-m,所以点Q-,即Q(2k,-m).所以点Q在直线y=-m上.(3)解假设存在点P,使得四边形PEQF为矩形,由四边形PEQF为矩形,得EQ⊥FQ,即AQ⊥BQ,所以k AQ·k BQ=-1,即x1x2=-1.由(2),得x1x2=(-4m)=-1,解得m=1.所以P(0,1).以下只要验证此时的四边形PEQF为平行四边形即可.在①中,令y=0,得E-,直线FQ的斜率同理得F所以直线EP的斜率为k EP=---,k FQ=---所以k EP=k FQ,即EP∥FQ.同理PF∥EQ.所以四边形PEQF为平行四边形.综上所述,存在点P(0,1),使得四边形PEQF为矩形.22.(1)解∵a=(x+)i+y j,b=(x-)i+y j,且|a|+|b|=4,-=4.∴点M(x,y)到两个定点F1(-,0),F2(,0)的距离之和为4.∴点M的轨迹C是以F1,F2为焦点的椭圆,设所求椭圆的标准方程为=1(a>b>0),则c=,a=2,故b2=a2-c2=1.其方程为+y2=1.(2)证明设A(x1,y1),B(x2,y2),将y=kx+m代入椭圆E的方程,消去x可得(1+4k2)x2+8kmx+4m2-16=0,显然直线与椭圆C的切点在椭圆E内,故Δ>0,由韦达定理可得x1+x2=-,x1x2=--所以|x1-x2|=因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积S=|m||x1-x2|=-=-=2-设=t,将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0.由Δ=0,可得m2=1+4k2,即t=1,又因为S=2-=2-,故S=2为定值.。
§9.6 椭 圆1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离的和等于常数2a (2a ______|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.※(2)另一种定义方式(见人教A 版教材选修2-1 P47例6、P50):平面内动点M 到定点F 的距离和它到定直线l 的距离之比等于常数e (0<e <1)的轨迹叫做椭圆.定点F 叫做椭圆的一个焦点,定直线l 叫做椭圆的一条准线,常数e 叫做椭圆的__________.焦点在x 轴上 焦点在y 轴上(1)图形(2)标准 方程y 2a 2+x2b 2=1 (a >b >0) (3)范围 -a ≤x ≤a , -b ≤y ≤b-a ≤y ≤a , -b ≤x ≤b(4)中心原点O (0,0)(5)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ), B 2(0,b )(6)对称轴 x 轴,y 轴(7)焦点F 1(0,-c ),F 2(0,c )(8)焦距 2c =2a 2-b 2(9)离心率※(10)准线x =±a 2cy =±a 2c自查自纠1.(1)> 焦点 焦距 (2)离心率2.(2)x 2a 2+y 2b2=1(a >b >0)(5)A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0) (7)F 1(-c ,0),F 2(c ,0) (9)e =c a(0<e <1)(2015·广东)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解:由25-m 2=4,得m 2=9,又m >0,∴m =3.故选B . “-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:要使方程x 25-m +y2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B .(2013·全国课标Ⅱ)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解:设||F 1F 2=2c ,则||PF 2=233c ,∴||PF 1=433c .∴2a =||PF 1+||PF 2=23c ,故e =ca =33.故选D . 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是____________.解:由椭圆C 的右焦点为F (1,0)知c =1,且焦点在x 轴上,又e =c a =12,∴a =2,a2=4,b 2=a 2-c 2=3,椭圆C 的方程为x 24+y 23=1.故填x 24+y 23=1.已知椭圆x 2m +y 24=1的焦距是2,则该椭圆的长轴长为____________.解:当焦点在x 轴上时,有m -4=1,得m =5,此时长轴长为25;当焦点在y 轴上时,长轴长为4.故填25或4.类型一 椭圆的定义及其标准方程求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P 到两焦点的距离之和等于10;(2)过点P (-3,2),且与椭圆x 29+y 24=1有相同的焦点;(3)已知点P 在以坐标轴为对称轴的椭圆上,且点P 到两焦点的距离分别为5,3,过点P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,2c =6,即a =5,c =3, ∴b 2=a 2-c 2=52-32=16.∴所求椭圆的标准方程为x 225+y 216=1.(2)∵所求的椭圆与椭圆x 29+y 24=1的焦点相同,∴其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵所求椭圆过点P (-3,2),∴有9a 2+4b2=1.又a 2-b 2=c 2=5,∴联立上述两式,解得⎩⎪⎨⎪⎧a 2=15,b 2=10.∴所求椭圆的标准方程为x 215+y 210=1. (3)由于焦点的位置不确定,可设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,∴b 2=12.故椭圆方程为x 216+y 212=1或y 216+x 212=1. 【点拨】(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过两点P 1(2,2),P 2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x 轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.解:根据题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),将两已知点坐标代入得⎩⎪⎨⎪⎧4a 2+4b 2=1,9a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=323,b 2=325.故椭圆方程为332x 2+532y 2=1,长半轴长a =323=436,短半轴长b =325=4105. ∵c 2=a 2-b 2=323-325=6415,∴离心率e =ca=c 2a 2=105.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为____________.解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.解法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0),∵c 2=16,且c 2=a 2-b 2,∴a 2-b 2=16.① 又点(3,-5)在所求椭圆上,∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得⎩⎪⎨⎪⎧a 2=20,b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.故填y 220+x 24=1.类型二 椭圆的离心率设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1解法一:由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. ∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c-c ,整理得13≤e 2<1,33≤e <1. ∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D . 【点拨】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是____________.解:设左焦点为F 1,由F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,∴F 1Q ⊥QF .不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a=ck +bk ,∴c a =a b +c ,即a 2=c 2+bc ,得b =c ,a =2c ,∴e =c a =22.故填22.类型三 椭圆的焦点三角形已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证△F 1PF 2的面积只与椭圆的短轴长有关.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),P 点坐标为(x 0,y 0).(1)||PF 1=a +ex 0,||PF 2=a -ex 0. 在△F 1PF 2中,cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2=(a +ex 0)2+(a -ex 0)2-4c 22(a +ex 0)(a -ex 0)=cos60°=12,解得x 20=4c 2-a 23e2. ∵x 0∈(-a ,a ),∴x 20∈[0,a 2),0≤4c 2-a 23c 2a 2<a 2, 有0≤4c 2-a 2<3c 2,解得12≤e <1.∴椭圆离心率e ∈⎣⎢⎡⎭⎪⎫12,1. (2)证明:将x 20=4c 2-a 23e 2代入b 2x 20+a 2y 20=a 2b 2,求得y 20=b 43c 2,∴||y 0=b 23c . ∴S △F 1PF 2=12||y 0||F 1F 2=12·b 23c ·2c =33b 2.得证.【点拨】椭圆的焦点三角形是描述椭圆的焦距、焦半径之间的相互制约关系的一个载体.由于其位置、边的特殊性决定了它易于同椭圆的定义、长轴长、离心率等几何量发生联系,内容丰富多彩.(2014·安徽)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1,∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k ,由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得 |AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,∴椭圆E 的离心率e =c a =22. 类型四 椭圆的弦长(2015·陕西)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a =c2, 得a =2b =2a 2-c 2,解得离心率e =c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其直线方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.【点拨】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略对判别式的判断.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,则椭圆C 的方程为____________.解:由题意知离心率e =c a =23,c =23a ,由b 2=a 2-c 2,得b =53a ,∴椭圆C 的方程为x 2a2+9y25a2=1 .① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝ ⎛⎭⎪⎫x -23a ,与①联立得32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8.由|AB |=1+3|x 1-x 2|=2⎪⎪⎪⎪⎪⎪a 4-78a =54a =154,解得a =3,∴b =53a = 5.∴椭圆C 的方程为x29+y25=1.故填x29+y25=1.类型五 椭圆中的最值问题(1)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解:由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6 ,∴|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.∴|PA |+|PF |的最大值为6+2,最小值为6- 2.(2)求A (0,2)到椭圆x 24+y 2=1上的动点的距离的最大值和最小值.解:设椭圆上的动点B (x ,y ),则|AB |=x 2+(y -2)2=-3y 2-4y +8=-3⎝ ⎛⎭⎪⎫y +232+283,∵点B 是椭圆上的点,∴-1≤y ≤1.∴|AB |的最大值为2213,最小值为1.(3)在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解:设所求点坐标为A (32cos θ,22sin θ),θ∈R ,由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+(-3)2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).【点拨】椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上,如(2)中的点A );③用椭圆的参数方程设动点的坐标,转化为三角问题求解.(1)(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B.46+ 2 C .7+ 2D .6 2解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到椭圆的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ),则|MQ |=10cos 2θ+(sin θ-6)2=-9sin 2θ-12sin θ+46=-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,∴|PQ |max =52+2=6 2.故选D .(2)(2015·安徽合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为____________.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.∴椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.故填4.1.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.2.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n=1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.3.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出关于a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.4.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.5.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.6.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.7.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b2a.(4)AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|;②直线AB 的斜率k AB =-b 2x 0a 2y 0.以上常用结论在教材的例题与习题中都有体现.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.故选A .2.方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)解:将方程x 2+ky 2=2变形为x 22+y 22k=1,根据椭圆的定义,要使焦点在y 轴,只须2k>2,解得0<k <1.故选D .3.(2014·全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 解:由椭圆的定义知△AF 1B 的周长为4a =43,a = 3.由e =c a=c3=33,得c =1,∴b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选A .4.(2015·豫西五校联考)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值是( )A .1B. 2C.32D. 3解:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,∴|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,通径最短,则2b2a=3,∴b 2=3,即b = 3.故选D .5.(2013·四川)从椭圆x 2a 2+y 2b2=1()a >b >0上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解:由题意知A ()a ,0,B ()0,b ,AB →=()-a ,b ,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,OP →=⎝ ⎛⎭⎪⎫-c ,b 2a ,∵AB∥OP ,∴AB →∥OP →,因此有()-a ·b 2a =b ·()-c ,解得b =c .∴a 2-b 2=a 2-c 2=c 2,得e =22.故选C .6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||AB =10,||BF =8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解:由余弦定理||AF 2=||BF 2+||AB 2-2||BF ·||AB cos ∠ABF =82+102-2×8×10×45=36,||AF =6,∵||AF 2+||BF 2=||AB 2,∴△AFB 为直角三角形.设椭圆的右焦点为F ′,连接AF ′,BF ′,由对称性知四边形AFBF ′为平行四边形. 又∵∠AFB =90°,∴四边形AFBF ′为矩形. ∴⎩⎨⎧2c =||FF ′=||AB =10,2a =||AF +||AF ′=||AF +||BF =14, 得⎩⎪⎨⎪⎧c =5,a =7.∴e =c a =57.故选B .7.(2015·乌鲁木齐调研)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是__________.解:设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.故填⎣⎢⎡⎦⎥⎤33,22.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.解:设MN 的中点为P ,椭圆C 的左、右焦点分别为F 1,F 2,连接PF 1,PF 2,则PF 1,PF 2分别为△ANM 与△BNM 的中位线,有|PF 1|=12|AN |,|PF 2|=12|BN |,又∵点P 在椭圆上,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2·2a =12.故填12.9.已知椭圆中心在原点,长轴在坐标轴上,离心率为53,短轴长为4,求椭圆的方程. 解:由题意得c a =53,2b =4, 又a 2=b 2+c 2,则有a 2=9,b 2=4, 于是椭圆方程为x 29+y 24=1或x 24+y 29=1.10.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.11.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解:(1)由题意知|BF 2|2=b 2+c 2=a 2=2,∵点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, ∴⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫132b2=1,解得b 2=1.∴椭圆的方程为x 22+y 2=1.(2)易知BF 2→=(c ,-b ).∵点B (0,b ),F 2(c ,0)在直线AB 上, ∴直线AB 的方程为x c +y b=1. 设A (x 1,y 1),联立⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,∴点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC ⊥x 轴,∴由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2. ∴F 1C →=⎝ ⎛⎭⎪⎫3a 2c +c3a 2+c 2,b 3a 2+c 2.又∵F 1C ⊥AB , ∴F 1C →·BF 2→=c 2(3a 2+c 2)a 2+c 2-b 4a 2+c 2=0,即c 2(3a 2+c 2)-(a 2-c 2)2=0,化简得5c 2=a 2,e 2=15,e =55.(2015·全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k,∴k OM ·k =-9,即直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.∵直线l 过点⎝ ⎛⎭⎪⎫m3,m ,∴l 不过原点且与椭圆C 有两个交点的充要条件是k >0,k ≠3. 由(1)得直线OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入(1)中l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.∵k >0,k ≠3,∴当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。
§9.3椭圆及其性质考纲解读分析解读从近几年的高考试题来看,椭圆的定义、标准方程、几何性质以及直线与椭圆的位置关系一直是高考命题的重点和热点,离心率问题是每年高考考查的重点,多在选择题和填空题中出现,主要考查学生结合定义、几何性质等分析问题、解决问题的能力以及运算能力,分值为5分,属于中档题目;在解答题中主要以直线与椭圆的位置关系为考查对象,考查面较广,往往会和平面向量、函数、导数、不等式等知识相结合,在考查对椭圆基本概念和性质理解及应用的同时,又考查直线与圆锥曲线的位置关系,考查数形结合思想和转化与化归思想的应用.(1)设椭圆的离心率为e.由已知,可得(c+a)c=.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0<e<1,解得e=.所以,椭圆的离心率为.(2)(i)依题意,设直线FP的方程为x=my-c(m>0),则直线FP的斜率为.由(1)知a=2c,可得直线AE的方程为+=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=,y=,即点Q的坐标为.由已知|FQ|=c,有+=,整理得3m2-4m=0,所以m=,即直线FP的斜率为.(ii)由a=2c,可得b=c,故椭圆方程可以表示为+=1.由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得消去y,整理得7x2+6cx-13c2=0,解得x=-(舍去),或x=c.因此可得点P,进而可得|FP|==,所以|PQ|=|FP|-|FQ|=-=c. 由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QN⊥FP,所以|QN|=|FQ|·tan∠QFN=×=,所以△FQN的面积为|FQ||QN|=,同理△FPM的面积等于,由四边形PQNM的面积为3c,得-=3c,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为+=1.五年高考考点一椭圆的定义及其标准方程1.(2015广东,8,5分)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=( )A.2B.3C.4D.9答案 B2.(2014大纲全国,9,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C 于A、B两点.若△AF1B的周长为4,则C的方程为( )A.+=1B.+y2=1C.+=1D.+=1答案 A3.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案124.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA=∠MAO⇔|MA|=|MO|,即(x M-2)2+=+,化简得x M=1,即=1,解得k=-,或k=. 所以,直线l的斜率为-或.5.(2015重庆,21,12分)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.解析(1)由椭圆的定义,2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|===2,即c=,从而b==1.故所求椭圆的标准方程为+y2=1.(2)如图,连接QF1,由PF1⊥PQ,|PQ|=λ|PF1|,得|QF1|==|PF1|.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,进而|PF1|+|PQ|+|QF1|=4a.于是(1+λ+)|PF1|=4a,解得|PF1|=,故|PF2|=2a-|PF1|=.由勾股定理得|PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2,从而+=4c2,两边除以4a2,得。
(全国通用版)2019版高考数学一轮复习 第九章 解析几何 课时达标检测(四十)椭圆 文对点练(一) 椭圆的定义和标准方程1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.2.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重合.若M关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( )A .4B .8C .12D .16解析:选B 设MN 的中点为D ,椭圆C 的左、右焦点分别为F1,F 2,如图,连接DF 1,DF 2,因为F 1是MA 的中点,D 是MN 的中点,所以F 1D 是△MAN 的中位线,则|DF 1|=12|AN |,同理|DF 2|=12|BN |,所以|AN |+|BN |=2(|DF 1|+|DF 2|),因为D 在椭圆上,所以根据椭圆的定义知|DF 1|+|DF 2|=4,所以|AN |+|BN |=8.3.已知三点P (5,2),F 1(-6,0),F 2(6,0),那么以F 1,F 2为焦点且经过点P 的椭圆的短轴长为( )A .3B .6C .9D .12解析:选B 因为点P (5,2)在椭圆上,所以|PF 1|+|PF 2|=2a ,|PF 2|=5,|PF 1|=55,所以2a =65,即a =35,c =6,则b =3,故椭圆的短轴长为6,故选B.4.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1 C.x 230+y 210=1 D.x 245+y 225=1 解析:选B 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=52-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.5.已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A ,B ,则△ABM 的周长为________.解析:M (3,0)与F (-3,0)是椭圆的焦点,则直线AB 过椭圆的左焦点F (-3,0),且|AB |=|AF |+|BF |,△ABM 的周长等于|AB |+|AM |+|BM |=(|AF |+|AM |)+(|BF |+|BM |)=4a =8.答案:86.若方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:因为方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,所以|a |-1>a +3>0,解得-3<a <-2.答案:(-3,-2)对点练(二) 椭圆的几何性质1.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),以O 为圆心,短半轴长为半径作圆O ,过椭圆长轴的一端点P 作圆O 的两条切线,切点分别为A ,B ,若四边形PAOB 为正方形,则椭圆的离心率为( )A.32 B.22 C.53D.33解析:选B 由题意知|OA |=|AP |=b ,|OP |=a ,OA ⊥AP ,所以2b 2=a 2,即b 2a 2=12,故e=1-b 2a 2=22,故选B.2.已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1―→·EF 2―→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8解析:选B 由题意知F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1―→=(-1-x ,-y ),EF 2―→=(1-x ,-y ),所以EF 1―→·EF 2―→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x=0时,EF 1―→·EF 2―→有最小值7;当x =±3时,EF 1―→·EF 2―→有最大值8.故选B.3.焦点在x 轴上的椭圆方程为x 2a 2+y 2b2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则该椭圆的离心率为( )A.14B.13C.12D.23解析:选C 短轴的一个端点和两个焦点相连构成一个三角形的面积S =12×2c ×b =12×(2a +2c )×b 3,整理得a =2c ,即e =c a =12.故选C.4.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1 解析:选A 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+-2≥45,所以1≤b <2,而e =ca=1-b 2a2=1-b 24,所以0<e ≤32.5.已知椭圆x 24+y 2b2=1(0<b <2)与y 轴交于A ,B 两点,点F 为椭圆的一个焦点,则△ABF面积的最大值为________.解析:由题意可知b 2+c 2=4,则△ABF 的面积为12×2bc =bc ≤b 2+c22=2,当且仅当b =c =2时取等号.答案:26.已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝ ⎛⎭⎪⎫1-x 20a 2a 2-x 20=b2a 2=14, 从而e = 1-b 2a 2=32. 答案:327.已知椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,以原点为圆心,椭圆的短轴为直径作圆.若点P 是圆O 上的动点,则|PF 1|2+|PF 2|2的值是________.解析:由椭圆方程可知a 2=4,b 2=1,∴c 2=4-1=3,∴c =3,a =2,b =1.∴F 1(-3,0),F 2(3,0).圆O 的方程为x 2+y 2=1.设P (x 0,y 0),则x 20+y 20=1.∴|PF 1|2+|PF 2|2=[(x 0+3)2+y 20]+[(x 0-3)2+y 20]=2(x 20+y 20)+6=8. 答案:88.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a2+c a-1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝ ⎛⎭⎪⎫5-12,1[大题综合练——迁移贯通]1.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2―→=2F 2B ―→, AF 1―→·AB ―→=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22. (2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2―→=2F 2B ―→,得(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1―→·AB ―→=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.2.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 在第一象限上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,由k MN =kMF 1=34,得b 2a -0c --c =34,即2b 2=3ac .将b 2=a 2-c 2代入,解得c a =12,c a=-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得a 2-4a 4a 2+14a=1, 解得a =7,b 2=4a =28, 故a =7,b =27.3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,设直线l 的方程为y =x +c ,其中c =a 2-b 2. 设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y2b2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2ca 2+b 2,x 1x 2=a 2c 2-b 2a 2+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|=x 1+x 22-4x 1x 2],即43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =ca =1-b 2a2= 1-12=22. (2)设AB 的中点为N (x 0,y 0), 由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3, y 0=x 0+c =c3.由|PA |=|PB |,得k PN =-1, 即y 0+1x 0=-1,得c =3, 从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.。
椭圆、双曲线、抛物线”双基过关检测一、选择题1.抛物线顶点在原点,焦点在y 轴上,若其上一点P (m,1)到焦点的距离为5,则抛物线的标准方程为( )A .y =8x 2B .y =16x 2C .x 2=8yD .x 2=16y解析:选D 根据题意知,点P (m,1)在x 轴上方,则抛物线开口向上, 设其标准方程为x 2=2py ,其准线方程为y =-p2,由点P 到焦点的距离为5,得1-⎝⎛⎭⎫-p2=5, 解得p =8, 则抛物线的标准方程为x 2=16y .2.椭圆x 216+y 2m =1的焦距为27,则m 的值为( )A .9B .23C .9或23D .16-7或16+7解析:选C 由椭圆x 216+y 2m =1的焦距为27,可得,216-m =27或2m -16=27, 解得m =9或23.3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( )A .9B .8C .7D .6解析:选B 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1. 根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.4.若双曲线C :x 24-y 2=1的左、右焦点分别为F 1,F 2,P 为双曲线C 上一点,满足PF 1―→·PF 2―→=0的点P 依次记为P 1,P 2,P 3,P 4,则四边形P 1P 2P 3P 4的面积为( )A.855B .2 5 C.865D .2 6解析:选C 设P (x ,y ),由已知得F 1(-5,0),F 2(5,0), 则(-5-x ,-y )·(5-x ,-y )=x 2-5+y 2=0,即x 2+y 2=5,与双曲线方程x 24-y 2=1联立,可得交点分别为⎝⎛⎭⎫2305,55,⎝⎛⎭⎫-2305,55,⎝⎛⎭⎫-2305,-55,⎝⎛⎭⎫2305,-55,它们构成一个长为4305,宽为255的长方形,所以四边形P 1P 2P 3P 4的面积为4305×255=865. 5.若双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为10,则其渐近线方程为( )A .y =±3xB .y =±12xC .y =±2xD .y =±13x解析:选D 因为双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为10,所以e =ca =10,即e 2=c 2a 2=a 2+b 2a 2=1+b 2a2=10,所以ba =3.因为双曲线y 2a 2-x 2b 2=1的焦点在y 轴上,其渐近线方程为y =±ab x ,所以该双曲线的渐近线方程为y =±13x .6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , 又∵|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3. 又e =33,∴c =1,∴b 2=a 2-c 2=2, ∴椭圆的方程为x 23+y 22=1.7.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B.()-3,3C.⎣⎡⎦⎤-33,33 D.[]-3,3解析:选C 由题意知F (4,0), 双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点, 画出图象,数形结合可知应选C.8.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( )A.12B.22C .1D. 2解析:选B 如图,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义可得,|PF 1|+|PF 2|=2a 1, |PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2. 设|F 1F 2|=2c ,又∠F 1PF 2=π4,在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得:(2-2)a 21+(2+2)a 22=4c 2,即2-2e 21+2+2e 22=4. 又∵2-2e 21+2+2e 22≥222-2e 1·e 2=22e 1·e 2,∴22e 1·e 2≤4,即e 1·e 2≥22, ∴椭圆和双曲线的离心率乘积的最小值为22. 二、填空题9.(2017·北京高考)若双曲线x 2-y 2m =1的离心率为3,则实数m =________.解析:由双曲线的标准方程可知a 2=1,b 2=m ,所以a =1,c =1+m ,所以e =1+m1=3, 解得m =2. 答案:210.(2017·全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.解析:∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.答案:511.与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程为__________.解析:由椭圆x 29+y 24=1,得a 2=9,b 2=4,∴c 2=a 2-b 2=5,∴该椭圆的焦点坐标为()±5,0. 设所求椭圆方程为x 2a 2+y 2b 2=1,a >b >0,则c =5,又c a =55,得a =5,∴b 2=25-5=20.∴所求椭圆方程为x 225+y 220=1.答案:x 225+y 220=112.(2018·西安中学模拟)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0), 所以AB ―→·DC ―→=-1. 答案:-1 三、解答题13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,且函数y =x 2-6516的图象与椭圆C仅有两个公共点,过原点的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)若点P 为线段MN 的中垂线与椭圆C 的一个公共点,求△PMN 面积的最小值,并求此时直线l 的方程.解:(1)由题意可得,2b =2,所以b =1. 联立x 2a 2+y 2=1(a >1)与y =x 2-6516,消去y ,整理得x 4+⎝⎛⎭⎫1a 2-658x 2+81×49162=0, 根据椭圆C 与抛物线y =x 2-6516的对称性,可得Δ=⎝⎛⎭⎫1a 2-6582-4×81×49162=0,a >1,解得a =2. ∴椭圆C 的标准方程为x 24+y 2=1.(2)①当直线l 的斜率不存在时,S △PMN =12×2b ×a =2;当直线l 的斜率为0时,S △PMN =12×2a ×b =2;②当直线l 的斜率存在且不为0时. 设直线l 的方程为y =kx ,由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1, 解得x 2=41+4k 2,y 2=4k 21+4k 2.∴|MN |=2x 2+y 2=41+k 21+4k 2. 由题意可得,线段MN 的中垂线方程为y =-1k x ,联立⎩⎨⎧y =-1k x ,x24+y 2=1,可得x 2=4k 2k 2+4,y 2=4k 2+4.∴|OP |=x 2+y 2=21+k 2k 2+4. ∴S △PMN =12·|MN |·|OP |=4(1+k 2)(1+4k 2)(k 2+4)≥4(1+k 2)(1+4k 2)+(k 2+4)2=85, 当且仅当k =±1时取等号,此时△PMN 的面积的最小值为85.∵2>85,∴△PMN 的面积的最小值为85,直线l 的方程为y =±x .14.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.。
课时规范练43 椭圆基础巩固组1.已知椭圆x 23+x 24=1的两个焦点F 1,F 2,M 是椭圆上一点,|MF 1|-|MF 2|=1,则△MF 1F 2是( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形2.(2019山东临沂质检,6)点A ,B 分别为椭圆x 2x 2+x 2x 2=1(a>b>0)的左、右顶点,F 为右焦点,C 为短轴上不同于原点O 的一点,D 为OC 的中点,直线AD 与BC 交于点M ,且MF ⊥AB ,则该椭圆的离心率为( )A.12B.13C.√23D.√323.(2019福建福州八县(市)联考,7)椭圆x 225+x 216=1的左右焦点分别为F 1,F 2,过F 1的一条直线与椭圆交于A ,B 两点,若△ABF 2的内切圆面积为π,且A (x 1,y 1),B (x 2,y 2),则|y 1-y 2|=( )A.√53B.103C.203D.534.已知椭圆C :x 29+x 25=1,若直线l 经过M (0,1),与椭圆交于A ,B 两点,且xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-23xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则直线l 的方程为( )A.y=±12x+1B .y=±13x+1C.y=±x+1D .y=±23x+15.(2019河南八市重点高中联考,9)已知F1、F2为椭圆C:x2x2+x24=1(a>2)的左、右焦点,若椭圆C上存在四个不同点P满足△PF1F2的面积为4√3,则椭圆C的离心率的取值范围为()A.(0,12) B.(12,1)C.(0,√32) D.(√32,1)6.已知椭圆中心在原点,一个焦点为F(-2√3,0),且长轴长是短轴长的2倍,则该椭圆的长轴长为,其标准方程是.7.(2019北京顺义区模拟,9)已知F1,F2分别为椭圆C:x29+x25=1的左、右焦点,P是C上的任意一点,则|PF1|·|PF2|的最大值为.若A(0,4√6),则|AP|-|PF2|的最小值为.综合提升组8.已知椭圆x24+x23=1上有n个不同的点P1,P2,P3,…,P n,F为其右焦点,若|P n F|是公差d>110的等差数列,则n的可能取值为()A.19B.20C.21D.229.(2019黑龙江哈尔滨三中期末,9)已知椭圆x2x2+x2=1(a>1)的离心率e=2√55,P为椭圆上的一个动点,则P与定点B(-1,0)连线距离的最大值为()A.32B.2 C.52D.310.(2019河北省衡水中学一调,15)如图,A1,A2分别是椭圆x24+y2=1的左、右顶点,圆A1的半径为2,过点A2作圆A1的切线,切点为P,在x轴的上方交椭圆于点Q,则|xx||xx2|=.11.已知椭圆x2x2+x2x2=1(a>b>0)短轴的端点P(0,b),Q(0,-b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA,PB的斜率之积等于-14,则点P到直线QM的距离为.12.(2019山西晋城高三三模,19)已知△ABC的周长为6,B,C关于原点对称,且B(-1,0).点A的轨迹为Γ.(1)求Γ的方程;(2)若D(-2,0),直线l:y=k(x-1)(k≠0)与Γ交于E,F两点,若1x xx ,xx,1x xx成等差数列,求λ的值.13.(2019河南洛阳高三统考,19)在平面直角坐标系xOy中,椭圆E:x2x2+x2x2=1(a>0,b>0)经过点A-√62,√2,且点F(0,-1)为其一个焦点.(1)求椭圆E的方程;(2)设椭圆E与y轴的两个交点为A1,A2,不在y轴上的动点P在直线y=b2上运动,直线PA1,PA2分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.14.已知动点M(x,y)满足:√(x+1)2+x2+√(x-1)2+x2=2√2,(1)求动点M的轨迹E的方程;上,线段AB的中垂线与E交于(2)设A,B是轨迹E上的两个动点,线段AB的中点N在直线l:x=-12P,Q两点,是否存在点N,使以PQ为直径的圆经过点(1,0),若存在,求出N点坐标,若不存在,请说明理由.创新应用组15.(2019贵州遵义模拟,20)已知椭圆x2x2+x2x2=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2√3,点P为椭圆上一点,∠F1PF2=90°,△F1PF2的面积为1.(1)求椭圆的标准方程;(2)设点B为椭圆的上顶点,过椭圆内一点M(0,m)的直线l交椭圆于C,D两点,若△BMC与△BMD的面积比为2∶1,求实数m的取值范围.参考答案课时规范练43椭圆1.B由题意|MF1|+|MF2|=4,又|MF 1|-|MF 2|=1,联立后可解得|MF 1|=52,|MF 2|=32,又|F 1F 2|=2c=2√4-3=2,∵22+(32)2=254=(52)2,∴MF 2⊥F 1F 2,∴△MF 1F 2是直角三角形.故选B .2.B 由题意作出椭圆如图,∵MF ⊥AB ,且OC ⊥AB ,∴MF ∥OC ,同理MF ∥OD ,∴xx xx=xx xx=xx +x, ①xx xx=xx xx=x -xx, ②①×②,得到xx xx ·xx xx =xx +x ·x -x x=x -x x +x =xx xx =12,∴2(a-c )=c+a ,∴a=3c ,∴e=xx =13.故选B .3.B ∵椭圆x 225+x 216=1的左、右焦点分别为F 1,F 2,过焦点F 1的直线交椭圆于A (x 1,y 1),B (x 2,y 2)两点,△ABF 2的内切圆的面积为π,∴△ABF 2内切圆半径r=1,x △xxx 2=12×1×(AB+AF 2+BF 2)=2a=10.∵x △xxx 2=12|y 1-y 2|×2c=12|y 1-y 2|×2×3=10,∴|y 1-y 2|=103.故选B .4.B 设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),则直线l 的方程为y=kx+1.因为xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-23xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以2x 2=-3x 1,联立{x =xx +1,x 29+x 25=1,得(5+9k 2)x 2+18kx-36=0,则{x 1+x 2=-18x5+9x 2,x 1x 2=-365+9x 2,2x 2=-3x 1,解得k=±13,即所求直线方程为y=±13x+1.5.D 设P (x 0,y 0),x △xx 1x 2=12|F 1F 2|·|y 0|=c|y 0|=4√3,则|y 0|=4√3x=√3√,若存在四个不同点P 满足x △xx 1x 2=4√3,则0<|y 0|<2,即0<√3√2<2,解得a>4,故e=√x 2-4x=√1-4x 2∈(√32,1).故选D . 6.8 x 216+x 24=1 由题意知{x =2x ,x =2√3,x 2-x 2=x 2,可得{x 2=4,x 2=16,2x =8,故所求该椭圆的长轴长为8,其标准方程是x 216+x 24=1.7.9 4 由x 29+x 25=1,可得a=3,c=2,由椭圆定义可知|PF 1|+|PF 2|=2a=6,则|PF 2|=6-|PF 1|,于是|PF 1||PF 2|=|PF 1|(6-|PF 1|)=6|PF 1|-|xx 1|2.∵a-c ≤|PF 1|≤a+c , 即1≤|PF 1|≤5.∴当|PF 1|=3时,|PF 1||PF 2|取最大值,最大值为18-9=9.|AP|-|PF 2|=|AP|-(2a-|PF 1|)=|AP|+|PF 1|-6.又|AP|+|PF 1|≥|AF 1|(当且仅当P 在线段AF 1上时取等号),∴(|AP|-|PF 2|)min =|AF 1|-6=√(0+2)2+(4√6-0)2-6=4.8.AB 设椭圆的左焦点为F'.由题意可得|P i F'|+|P i F|=2a=4,i=1,2,…,n.不妨设|P i F|=|P n+1-i F'|,则2(|P 1F|+|P 2F|+…+|P n F|)=4n ,则n|P 1F|+x (x -1)2d=2n ,可得|P 1F|=2-x -12d ≥1,n ≤2x +1.∵公差d>110,∴n<21.因此n 的可能取值为19,20.故选AB .9.C 椭圆x 2x 2+x 2=1(a>1)的离心率e=2√55,可得√x 2-1x=2√55,解得a=√5,则椭圆方程为x 25+x 2=1.设P (cos θ,√5sin θ),则P 与定点B (-1,0)连线距离为√(cos x +1)2+5sin 2x =√4sin 2x +2cos x +2=√6+2cos x -4cos 2x =√254-4(cos x -14)2≤52,当cos θ=14时,取得最大值52.故选C .10.34 连接PO ,PA 1,可得△POA 1是边长为2的等边三角形,所以∠PA 1O=∠POA 1=60°,可得直线PA 1的斜率k 1=tan60°=√3,直线PO 的斜率为k 2=tan120°=-√3.因此,直线PA 1的方程为y=√3(x+2),直线PO 的方程为y=-√3x.设P (m ,n ),由{x =√3(x +2),x =-√3x ,解得m=-1.因为圆A 1与直线PA 2相切于点P ,所以PA 2⊥PA 1,因此∠PA 2O=90°-∠PA 1O=30°,故直线PA 2的斜率k=tan150°=-√33,直线PA 2的方程为y=-√33(x-2).代入椭圆方程x 24+y 2=1,消去y 得7x 2-16x+4=0,解得x=2或x=27.因为直线PA 2交椭圆于A 2(2,0)与Q 点,设Q (s ,t ),可得s=27.由此可得|xx ||xx 2|=x x -x x x x 2-x x=x -x 2-x=27+12-27=34.11.4√55b 或2√55a 不妨设,A 点的坐标为(x 0,y 0),则B 点坐标为(-x 0,-y 0),则x 0-x x 0×-x 0-x -x 0=-14,由于x 02x 2+x 02x 2=1,则-x 2x 2=-14,则x x=12,不妨设M (a ,0),直线QM 方程为bx-ay-ab=0,则P 到直线QM 的距离为d=√2x2=√1+(xx ) =√4=4√55b=2√55a.12.解(1)依题意,B (-1,0),C (1,0),故|BC|=2,则|AB|+|AC|=4>|BC|=2,故点A 的轨迹是以B ,C 为焦点的椭圆(不含左、右两顶点),故Γ的方程为x 24+x 23=1(x ≠±2).(2)依题意,2·x x=1x xx+1x xx,故2λ=xxxx+xxxx.联立{x =x (x -1),3x 2+4x 2-12=0,整理得(3+4k 2)x 2-8k 2x+4k 2-12=0.设E (x 1,y 1),F (x 2,y 2),则x 1+x 2=8x 23+4x 2,x 1x 2=4x 2-123+4x 2.故xxxx+xxxx=x (x 1+2)x 1+x (x 2+2)x 2=x (x 1+2)x (x 1-1)+x (x 2+2)x (x 2-1)=2+3x 1-1+3x 2-1=2+3(x 1+x 2-2)(x 1-1)(x 2-1)=2+3(x 1+x 2-2)x1x 2-(x 1+x 2)+1=2+3(8x 23+4x 2-2)4x 2-123+4x 2-8x 23+4x 2+1=2+3(8x 2-6-8x 2)4x 2-12-8x 2+3+4x 2=2+2=4=2λ,则λ=2.13.(1)解根据题意可得{32x2+2x 2=1,x 2-x 2=1,可解得{x =√3,x =2,故椭圆E 的方程为x 24+x 23=1.(2)证明不妨设A 1(0,2),A 2(0,-2).P (x 0,4)为直线y=4上一点(x 0≠0),M (x 1,y 1),N (x 2,y 2).直线PA 1方程为y=2xx+2,直线PA 2方程为y=6x 0x-2.点M (x 1,y 1),A 1(0,2)的坐标满足方程组{x 23+x 24=1,x =2xx +2,可得{x 1=-6x03+x 02,x 1=2x 02-63+x 02.点N (x 2,y 2),A 2(0,-2)的坐标满足方程组{x 23+x 24=1,x =6xx -2,可得{x 2=18x27+x 02,x 2=-2x 02+5427+x 02.M -6x 03+x 02,2x 02-63+x 02,N18x 027+x 02,-2x 02+5427+x 02.直线MN 的方程为y-2x 02-63+x 02=-x 02-96x0x+6x3+x 02,即y=-x 02-96x 0x+1.故直线MN 恒过定点B (0,1).又∵F (0,-1),B (0,1)是椭圆E 的焦点,∴△FMN 周长为|FM|+|MB|+|BN|+|NF|=4b=8.14.解(1)x 22+y 2=1;(2)存在.理由如下,当直线AB 垂直于x 轴时,直线AB 方程为x=-12,此时P (-√2,0),Q (√2,0),x 2x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·x 2x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1,不合题意;当直线AB 不垂直于x 轴时,设存在点N -12,m (m ≠0),直线AB 的斜率为k ,设A (x 1,y 1),B (x 2,y 2),由{x 122+x 12=1,x 222+x 22=1得:(x 1+x 2)+2(y 1+y 2)·x 1-x2x 1-x 2=0,则-1+4mk=0,故k=14x ,此时,直线PQ 斜率为k 1=-4m ,直线PQ 的方程为y-m=-4m x+12,即y=-4mx-m.联立{x =-4xx -x ,x 22+x 2=1消去y ,整理得(32m 2+1)x 2+16m 2x+2m 2-2=0,设P (x 3,y 3),Q (x 4,y 4).所以x 3+x 4=-16x 232x 2+1,x 3·x 4=2x 2-232x 2+1. 由题意x 2x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·x 2x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,于是x 2x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·x 2x ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x 3-1)(x 4-1)+y 3y 4=x 3·x 4-(x 3+x 4)+1+(4mx 3+m )(4mx 4+m )=(1+16m 2)x 3·x 4+(4m 2-1)(x 3+x 4)+1+m 2=(1+16x 2)(2x 2-2)32x 2+1+(4x 2-1)(-16x 2)32x 2+1+1+m 2=19x 2-132x 2+1=0,∴m=±√1919,∵N 在椭圆内,∴m 2<78,∴m=±√1919符合条件;综上所述,存在两点N 符合条件,坐标为N -12,±√1919.15.解(1)设|PF 1|=p ,|PF 2|=q ,由题意可得,pq=2,p 2+q 2=12,2a=√(x +x )2=√x 2+x 2+2xx =4,所以a=2,b 2=a 2-c 2=4-3=1,所求椭圆的标准方程为x 24+y 2=1.(2)由题意知,直线l 的斜率必存在,设为k (k ≠0),设直线l 的方程为y=kx+m ,C (x 1,y 1),D (x 2,y 2),因为△BMC 与△BMD 的面积比为2∶1,所以|CM|=2|DM|,则有x 1=-2x 2,联立{x =xx +x ,x 2+4x 2=4,整理得(4k 2+1)x 2+8kmx+4m 2-4=0,由Δ>0得4k 2-m 2+1>0,x 1+x 2=-8xx4x 2+1,x 1x 2=4x 2-44x 2+1,由x 1=-2x 2可求得{x 2=8xx4x 2+1,-2x 22=4x 2-44x 2+1,所以-2·64x 2x 2(4x 2+1)2=4x 2-44x 2+1.整理得4k 2=1-x 29x 2-1.由k 2>0,4k 2-m 2+1>0可得1-x 29x 2-1>0,19<m 2<1,解得13<m<1或-1<m<-13.。
2019高考数学一轮复习第九章平面解析几何9.4 椭圆及其性质练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第九章平面解析几何9.4 椭圆及其性质练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第九章平面解析几何9.4 椭圆及其性质练习理的全部内容。
§9。
4 椭圆及其性质考纲解读分析解读1。
能够熟练使用直接法、待定系数法、定义法求椭圆方程.2。
能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题。
3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4。
本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大。
五年高考考点一椭圆的定义及其标准方程1。
(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0〈b〈1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为。
答案x2+y2=12。
(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A。
已知+=,其中O为原点,e为椭圆的离心率。
(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y 轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2—c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2)。
课时达标检测(四十三) 椭 圆[小题对点练——点点落实]对点练(一) 椭圆的定义和标准方程1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.2.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重合.若M关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( )A .4B .8C .12D .16解析:选B 设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2,因为F 1是MA 的中点,D 是MN 的中点,所以F 1D 是△MAN 的中位线,则|DF 1|=12|AN |,同理|DF 2|=12|BN |,所以|AN |+|BN |=2(|DF 1|+|DF 2|),因为D 在椭圆上,所以根据椭圆的定义知|DF 1|+|DF 2|=4,所以|AN |+|BN |=8.3.已知三点P (5,2),F 1(-6,0),F 2(6,0),那么以F 1,F 2为焦点且经过点P 的椭圆的短轴长为( )A .3B .6C .9D .12解析:选B 因为点P (5,2)在椭圆上,所以|PF 1|+|PF 2|=2a ,|PF 2|=5,|PF 1|=55,所以2a =65,即a =35,c =6,则b =3,故椭圆的短轴长为6,故选B.4.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1 C.x 230+y 210=1 D.x 245+y 225=1 解析:选B 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=52-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.5.已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A ,B ,则△ABM 的周长为________.解析:M (3,0)与F (-3,0)是椭圆的焦点,则直线AB 过椭圆的左焦点F (-3,0),且|AB |=|AF |+|BF |,△ABM 的周长等于|AB |+|AM |+|BM |=(|AF |+|AM |)+(|BF |+|BM |)=4a =8.答案:86.若方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:因为方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,所以|a |-1>a +3>0,解得-3<a <-2.答案:(-3,-2)对点练(二) 椭圆的几何性质1.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),以O 为圆心,短半轴长为半径作圆O ,过椭圆长轴的一端点P 作圆O 的两条切线,切点分别为A ,B ,若四边形PAOB 为正方形,则椭圆的离心率为( )A.32B.22C.53D.33解析:选B 由题意知|OA |=|AP |=b ,|OP |=a ,OA ⊥AP ,所以2b 2=a 2,即b 2a 2=12,故e=1-b 2a 2=22,故选B.2.已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1―→·EF 2―→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8解析:选B 由题意知F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1―→=(-1-x ,-y ),EF 2―→=(1-x ,-y ),所以EF 1―→·EF 2―→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x=0时,EF 1―→·EF 2―→有最小值7;当x =±3时,EF 1―→·EF 2―→有最大值8.故选B.3.焦点在x 轴上的椭圆方程为x 2a 2+y 2b2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则该椭圆的离心率为( )A.14B.13C.12D.23解析:选C 短轴的一个端点和两个焦点相连构成一个三角形的面积S =12×2c ×b =12×(2a +2c )×b 3,整理得a =2c ,即e =c a =12.故选C.4.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1 解析:选A 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+-2≥45,所以1≤b <2,而e =ca=1-b 2a2=1-b 24,所以0<e ≤32.5.已知椭圆x 24+y 2b2=1(0<b <2)与y 轴交于A ,B 两点,点F 为椭圆的一个焦点,则△ABF面积的最大值为________.解析:由题意可知b 2+c 2=4,则△ABF 的面积为12×2bc =bc ≤b 2+c22=2,当且仅当b =c =2时取等号.答案:26.已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝ ⎛⎭⎪⎫1-x 20a 2a 2-x 20=b2a 2=14, 从而e = 1-b 2a 2=32. 答案:327.已知椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,以原点为圆心,椭圆的短轴为直径作圆.若点P 是圆O 上的动点,则|PF 1|2+|PF 2|2的值是________.解析:由椭圆方程可知a 2=4,b 2=1,∴c 2=4-1=3,∴c =3,a =2,b =1.∴F 1(-3,0),F 2(3,0).圆O 的方程为x 2+y 2=1.设P (x 0,y 0),则x 20+y 20=1.∴|PF 1|2+|PF 2|2=[(x 0+3)2+y 20]+[(x 0-3)2+y 20]=2(x 20+y 20)+6=8. 答案:88.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1. 答案:⎝⎛⎭⎪⎫5-12,1[大题综合练——迁移贯通]1.已知椭圆x 2a +y 2b=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2―→=2F 2B ―→, AF 1―→·AB ―→=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22. (2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2―→=2F 2B ―→,得(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1―→·AB ―→=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.2.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 在第一象限上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a , 由k MN =kMF 1=34,得b 2a -0c --c =34,即2b 2=3ac .将b 2=a 2-c 2代入,解得c a =12,c a=-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a +1b =1.②将①及c =a 2-b 2代入②得a 2-4a 4a 2+14a=1, 解得a =7,b 2=4a =28, 故a =7,b =27.3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,设直线l 的方程为y =x +c ,其中c =a 2-b 2. 设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y2b2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2ca 2+b 2,x 1x 2=a 2c 2-b 2a 2+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|=x 1+x 22-4x 1x 2],即43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =ca =1-b 2a2= 1-12=22. (2)设AB 的中点为N (x 0,y 0), 由(1)知x 0=x 1+x 22=-a 2c a +b =-2c 3, y 0=x 0+c =c3.由|PA |=|PB |,得k PN =-1, 即y 0+1x 0=-1,得c =3, 从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.。