17.2 实际问题与反比例函数(2)-2009
- 格式:ppt
- 大小:1.74 MB
- 文档页数:20
初二学案记录学科八下数学时间月日
y
o
(毫克)t (小时)
1
2
13
P
17.2实际问题与反比例函数
针对性练习
例3 针对性练习:
1、一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6小时到达目的地 .(1)当他按原路匀速返回时,汽车的速度v 与时间t 有怎么的函数关系?(2)如果该司机 必须在4个小时之内回到甲地,则返程时的速度不能低于多少?
2、某运输队要运300吨物资到江边防洪 (1)运输时间t (小时)与运输速度v (吨/时)有怎样的函数关系?(2)运了一半时,接到防洪指挥部命令,剩下的物资要在2小时之内运到江边,则运输速度至少为多少?
例4 针对性练习: 为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。
已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系
式为为常数)a t
a
y (
,如图所示,据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?。
双曲线数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离的差的绝对值始终为一定值2a(2a小于F1和F2之间的距离)时所成的轨迹叫做双曲线(Hyperbola).两个定点F1,F2叫做双曲线的焦点(focus).两焦点的距离叫焦距,长度为2c.双曲线的第二定义:x=a^2/c (c>a>0)平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数.定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率.注意:定点要在直线外;比值大于1双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2,动点与两个定点距离之差的绝对值为定值2a几何性质:1.取值区域:x≥a,x≤-a或者y≥a,y≤-a2.对称性:关于坐标轴和原点对称.3.顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b.4.渐近线:横轴:y=±(b/a)x竖轴:y=±(a/b)x5.离心率:e=c/a 取值范围:(1,+∞)6 双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离.过右焦点的半径r=|ex-a|过左焦点的半径r=|ex+a|8 等轴双曲线双曲线的实轴与虚轴长相等2a=2b e=√29 共轭双曲线(x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线(1)共渐近线(2)e1+e2>=2√210 准线:x=±a^2/c,或者y=±a^2/c11.通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2b^2/a12.焦点弦长公式:2pe/(1-e^2cos^2θ) [p为焦点到准线距离,θ为弦与X轴夹角]13.d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:由直线的斜率公式:k = (y1 - y2) / (x1 - x2)得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k分别代入两点间的距离公式:|AB| = √[(x1 - x2)² + (y1 - y2)² ] 稍加整理即得:|AB| = |x1 - x2|√(1 + k²) 或 |AB| = |y1 - y2|√(1 + 1/k²)[编辑本段]双曲线的标准公式为:X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)而反比例函数的标准型是 x y = c (c ≠ 0)但是反比例函数确实是双曲线函数经过旋转得到的因为xy = c的对称轴是 x=0, y=0 而X^2/a^2 - Y^2/b^2 = 1的对称轴是 y=x, y=-x 所以应该旋转45度设旋转的角度为 a (a≠0,顺时针)(a为双曲线渐进线的倾斜角)则有X = xcosa + ysinaY = - xsina + ycosa取a = π/4则X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2= (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2= 4 (√2/2 x) (√2/2 y)= 2xy.而xy=c所以X^2/(2c) - Y^2/(2c) = 1 (c>0)Y^2/(-2c) - X^2/(-2c) = 1 (c<0)由此证得,反比例函数其实就是双曲线函数。
17.2. 实际问题与反比例函数(2)姓名:一、学习目标:1、学会把实际问题转化为数学问题,掌握用反比例函数的方法解决实际问题.2、利用函数思想解决物理学问题,理解数学是自然科学的基础学科,提高同学们学习数学的兴趣。
二、学习过程:(一)预习导引:1、复习物理教材,理解杠杆原理,谈谈你对“给我一个支点,我可以撬动地球”——阿基米德这句话的体验与感受。
2、向你的父母了解生活用电常识,弄清家用电路的正常电压是多少?弄清电风扇的转速可调及灯泡亮度可调是根据什么原理设计的。
3、认真阅读P51-52页的例3,掌握运用函数知识解决物理学中的杠杆问题的思想方法;4、认真阅读P53页的例4,掌握运用函数知识解决物理学中的电学知识的思想方法。
5、请就对预习过程中存有疑问的问题进行讨论并作好标记。
(二)讨论展示:1、复习回顾:(1)甲、乙两地相距250千米,如果把汽车从甲地到乙地所用的时间y (小时),表示为汽车的平均速度为x (千米/小时)的函数,则此函数的图象大致是( ).(2)下列两个变量之间的关系为反比例关系的是( )A.匀速行驶过程中,行驶路程与时间的关系B.体积一定时,物体的质量与密度的关系C.质量一定时,物体的体积与密度的关系D.长方形的周长一定时,它的长与宽的关系(3)某种汽车可装油400L ,若汽车每小时的用油量为x (L ).①汽车的行驶时间y (h )与每小时的用油量x (L )的函数关系式为 ;②若每小时的用油量为20L ,则这些油可供汽车行驶的时间为 ;③若要使汽车行驶40h2、理解运用:例3:(1)动力F 和动力臂l 有怎样的数量关系?当动力臂为1.5(2)若想使动力F 不超过题(1(理解阻力、阻力臂、动力、动力臂四者之间的关系)学习反思:智慧与心灵的碰撞: 小组讨论对“给我一个支点,我可以撬动地球——阿基米德”这句话的体验与感受。
动小组讨论:谈谈你所了解和收集到的用电常识,然后互相交流。
函数概念发展史1.早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的.1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系.2.十八世纪函数概念──代数观念下的函数1718年约翰•贝努利(Bernoulli Johann,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量.”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示.1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式.”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”.不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义.3.十九世纪函数概念──对应关系下的函数1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数.”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式.不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限.1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次.1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x 与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x 值,y都有一个或多个确定的值,那么y叫做x的函数.”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受.这就是人们常说的经典函数定义.等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象.4.现代函数概念──集合论下的函数1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念.库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了.1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.”术语函数,映射,对应,变换通常都有同一个意思.但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系.可以说函数包含于映射.正比例函数:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.(另:中文“函数”名称的由来在中国清代数学家李善兰(1811—1882)翻译的《代数学》一书中首次用中文把“function”翻译为“函数”,此译名沿用至今.对为什么这样翻译这个概念,书中解释说“凡此变数中函彼变数者,则此为彼之函数”;这里的“函”是包含的意思.)深入研究一次函数徐若翰在学习一次函数时,根据中学要求,我们还要深入研究它的实际应用,以及如何改变图象的位置.一、实际问题中的分段函数[例1](2005年武汉市)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图.若返回时上、下一个坡的速度不变,那么小明从学校骑车回家用的时间是多少?分析:上、下坡的速度不同,问题要分两段来研究.根据函数图象提供的信息,可知小明从家去学校时,上坡路程为3600米,下坡路程为9600-3600=6000(米).∴上坡速度为3600÷18=200(米/分钟)下坡速度为6000÷(30-18)=500(米/分钟)小明回家时,上坡路程6000米,下坡路程3600米,所用时间为6000÷200+3600÷500=37.2(分钟).二、在物理学科中的应用[例2](2004年黄冈市)某班同学在探究弹簧的长度与外力的变化关系时,实验记录得到的相应数据如下表:求y关于x的函数解析式及自变量的取值范围.分析:根据物理学知识可知,弹簧在外力(所挂砝码的重力)作用下发生形变(伸长),外力与指针位置的关系可以用一次函数表示;但是,每个弹簧所受的外力都有一定的限度,因此我们必须求出自变量的取值范围.由已知数据求出:在弹簧受力伸长过程中,令y=7.5,得x=275∴所求函数为注两段之间的分界点是x=275,不是x=300.三、直线平移的应用[例3](2005年黑龙江省)在直角坐标系中,已知点A(-9,0)、P(0,-3)、C (0,-12).问:在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,求直线PQ的解析式;若不存在,请说明理由.分析:在所研究的梯形中哪两边平行?有两种可能:如果,就是把直线CA平移,经过P点易求直线CA的解析式为平移后得到直线的解析式为如果把直线PA:平移,经过C点得到直线:直线交x轴于点(-36,0)直线的解析式为如何理解函数概念曹阳函数是数学中的一个极其重要的基本概念,在中学数学中,函数及其有关的内容很丰富,所占份量重,掌握好函数的概念对今后的学习非常有用.回顾函数概念的发展史,“函数”作为数学术语是莱布尼兹首次采用的,他在1692年的论文中第一次提出函数这一概念,但其含义与现在对函数的理解大不相同.现代初中数学课程中,函数定义采用的是“变量说”.即:在某变化过程中,有两个变量x,y,如果对于x在某一范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么就把y称为x的函数,x称为自变量,y称为因变量.它明确指出,自变量x在某一给定范围可以取任一个值,因变量y按一定的规律也相应每次取唯一确定的值.但是,初中阶段并不要求掌握自变量的取值范围(看一下初中要学的几个函数可知,这个定义完全够用,而且,对于初中生来说,也容易理解).函数概念的抽象性很强,学生不易理解,要理解函数概念必须明确两点:第一,明确自变量和因变量的关系,在某变化过程中,有两个变量x,y,如果看成y随x的变化而变化,那么x称为自变量,y称为因变量;如果看成x随y的变化而变化,那么y称为自变量,x称为因变量.第二,函数定义的核心是“一一对应”,即给定一个自变量x的值就有唯一确定的因变量y的值和它对应,这样的对应可以是“一个自变量对应一个因变量”(简称“一对一”),也可以是“几个自变量对应一个因变量”(简称“多对一”),但不可以是“一个自变量对应多个因变量”(简称“一对多”),下面以图1来阐述这样的对应关系(其中x是自变量,y是因变量):“一对一” “多对一” “一对多”是函数是函数不是函数图1下面举4个例子帮助大家理解函数的概念:例1 一根弹簧的长度为10cm,当弹簧受到拉力F(F在一定的范围内)时,弹簧的长度用y表示,测得有关的数据如表1:表1拉力F(kg)1234…弹簧的长度y(c)…弹簧的长度y是拉力F的函数吗?分析:从表格中可读出信息,当拉力分别是1kg、2kg、3kg、4kg时,都唯一对应了一个弹簧的长度y,满足函数的定义,所以弹簧的长度y是拉力F的函数.一般地,以表格形式给出的函数,第一行是自变量的值,第二行是因变量的值.例2 图2是某地区一年内每个月的最高气温和最低气温图.图2图2描述了哪些变量之间的关系?你能将其中某个变量看成另一个变量的函数吗?分析:图中给出了三个变量,最高气温、最低气温和月份,从图中可以直观地看出最高气温和最低气温随着月份的变化而变化,而且每月的最高气温和最低气温都是唯一的,所以最高气温(或最低气温)是月份的函数.我们还可以发现7月和8月的最高气温相同,也就是说两个自变量对应了同一因变量.一般地,以图象形式给出的函数,横轴表示自变量,纵轴表示因变量.例3 下列变量之间的关系是不是函数关系?说明理由.(1)圆的面积S与半径r之间的关系;(2)汽车以70千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)之间的关系;(3)等腰三角形的面积是,它的底边长y(厘米)和底边上的高x(厘米)之间的关系.分析:(1)圆的面积S与半径r之间的关系式是,当半径确定时,圆的面积S也唯一确定,所以圆的面积S与半径r之间的关系是函数关系.(2)路程s(千米)和所用时间t(时)的关系式是,当时间t确定时,路程s也唯一确定,所以路程s(千米)和所用时间t(时)之间的关系是函数关系.(3)底边长ycm和底边上的高xcm的关系式是,当底边上的高x确定时,底边长y也唯一确定,所以底边长ycm和底边上的高xcm之间的关系是函数关系.一般地,以关系式形式给出的函数,等号左边是因变量,等号右边的未知数是自变量.例4 下列图象中,不能表示函数关系的是()分析:在上面四个图象中,A、C、D都可以表示函数关系,因为任意给定一个自变量x 的值,都有唯一的一个y值与它相对应,但是B图中,任意给定一个自变量x的值,却有两个不同的y值与它对应,所以本题应选B.[问题2.9]设m是一个小于2006的四位数,已知存在正整数n,使得m-n为质数,且mn是一个完全平方数,求满足条件的所有四位数m.。
17.2实际问题与反比例函数
牛占田
【期刊名称】《数学学习与研究:八年级学生适用》
【年(卷),期】2008(000)002
【总页数】4页(P21-23,37)
【作者】牛占田
【作者单位】长春市解放大路中学
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.浅谈初中数学教学中的认知激活——以“实际问题与反比例函数”教学为例 [J], 冯建全;
2.初中数学解题中的认知激活研究--以“实际问题与反比例函数”为例 [J], 沈满仙
3.初中数学解题中的认知激活研究——以“实际问题与反比例函数”为例 [J], 沈满仙;
4.浅谈初中数学教学中的认知激活——以“实际问题与反比例函数”教学为例 [J], 冯建全;
5.运用反比例函数巧解初中数学实际问题 [J], 张向彬
因版权原因,仅展示原文概要,查看原文内容请购买。
tv 3600=分米/240=153600=v 分12=t ,t 3600300=,500104=d米20=d 17.2实际问题与反比例函数教学目标:1、能综合利用物理力学,电学知识,反比例函数知识解决一些实际问题。
2、体会数学与物理间的密切联系,增强应用意识,提高运用代数方法解决问题的能力。
3、积极参与交流,并积极发表意见。
教学重点:掌握从物理力学,电学问题中建构反比列函数的模型。
教学难点:从实问题中寻找变量之间的关系,关键还是充分运用所学的知识分析物理中的力学,电学问题,建立函数模型,教学时注意分析过程,体会反比例关系,在练习本上画图分析题目变量之间的关系,体会数形结合的思想。
教学过程:一、创设问题情境,引入新课活动1例1.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v 〔米/分〕,所需时间为t 〔分〕〔1〕那么速度v 与时间t 之间有怎样的函数关系?〔2〕假设小林到单位用15分钟,那么他骑车的平均速度是多少?〔3〕如果小林骑车的速度为300米/分,那他需要几分钟到达单位?分析:根据 路程 = 速度×时间解:〔1〕〔 t > 0 )〔2〕当 t = 15 时 ,〔3〕当v = 300 时, 答:小林需要12分钟到达单位。
这里要分析,当时间越大,速度就越小,时间越小,速度就越大,表达了速度和时间之间的反比例函数关系。
例2:市煤气公司要在地下修建一个容积为 104 m3 的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S 定为500m2 ,施工队施工时应该向下掘进多深? 〔3〕当施工队按(2)中的方案掘进到地下15m 时,公司临时改变方案,把储存室的深度改为15m 。
相应地,储存室的底面积应改为多少?(结果保存小数点后两位)? 分析:体积 = 底面积×高解:(1) 〔 d > 0 ) (2)当 S = 500 时, (3)当d = 15 时, ≈ 666.67 平方米答:当深度改为15m 时,储存室底面积改为666.67平方米。