2019-2020学年度初中数学七年级上册[3.4 实际问题与一元一次方程]人教版课后辅导练习[含答案解析]三十
- 格式:docx
- 大小:248.01 KB
- 文档页数:6
数学:3.4《实际问题与一元一次方程(3)》学案(人教版七年级上)【学习目标】:1、通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法;2、培养学生分析问题、解决问题的能;【学习重点】:审清题意,分析实际问题中的数量关系,找出解决问题的等量关系。
【学习难点】:难点是把生活中的实际问题抽象成数学问题【导学指导】一、知识链接1.你知道篮球比赛时是如何计算积分的?2.如果不知道记分规则,你能从比赛后的积分表中得出来吗?请同学们尝试解决下面的问题。
二、自主探究探究3:球赛积分问题:某次篮球联赛积分榜(1)探究某球队总积分与胜、负场数之间的数量关系:若某球队总积分为M,胜场为n,则用含n的式子表示M:M=_____________(2)有人说:在这个联赛中,有一个队的胜场总积分等于它的负场总积分。
你认为这个说法正确吗?请说明理由。
分析;对于问题(1)要弄清积分与胜负场数的关系,必须清楚胜一场得几分,负一场得几分?表中哪个信息最特别?能马上解决上面哪个问题?另一个问题又如何解决呢?若一球队胜了m场,则负了几场?总积分的代数式如何表示?对于问题(2)能否应用方程知识来说明吗?【课堂练习】:1.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。
(1)小明同学参加了竞赛,成绩是96分。
请问小明在竞赛中答对了多少题?(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分。
”请问小王有没有可能拿到100分?试用方程的知识来说明理由。
【要点归纳】:1、列方程解应用题的关键是什么?2、解应用题步骤是什么?3、球赛积分问题的等量关系是什么?4、列方程解应用题除正确列出方程求出解外,还要注意什么?【拓展训练】:1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?2、在一次数学竞赛中,共有60题选择题,答对一题得2分。
2019-2020学年七年级数学上册 3.4 实际问题与一元一次方程复习教案(新版)新人教版一、双基回顾1、列方程解应用题的步骤(1)审:明确已知什么,求什么及基本关系。
(2)找:找能表示题目全部含义的相等关系。
(3)设:设未知数。
可直接设,也可间接设,要尽量使列出的方程简单。
(4)列:根据等量关系列方程。
(5)解:解方程(6)验:检验方程的解和解是否符合实际问题。
(7)答:怎么问怎么答。
2、分析数量关系的方法(1)译式法:把题目中关键性的数量关系语句译成含有未知数的代数式。
(2)列表法:用一类量作为“行”,一类量作为“列”制成表格,把已知量和未知量(用所设字母表示)“对号入座”。
(3)图解法:用图形表示题目中的数量关系,例如行程问题中的线段图。
3、设未知数的方法(1)直接设未知数:题目求什么就设什么。
(2)间接设未知数:设的未知数不是题目直接求的量。
(3)设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去。
二、例题导引例1 某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路,虽然行车的速度增加到每小时12千米,但比去时还是多用了10分钟,求甲、乙两地的距离。
例2 张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半及所得的利息又全部买了这种一年期的债券(利率不变),到期后得本息和1320元,问张叔叔当初购买这种债券花了多少钱?(利率问题暂不在讨论范围之内)例3 某市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果超过60立方米,超过部分按每立方米1.2元收费。
已知11份某用户的煤气费平均每立方米0.88元,那么11月份该用户应交煤气费多少元?例4 某学校八年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:“羽毛球及球拍都打9折”优惠,乙商店说:“买一副球拍赠送2只羽毛球”优惠。
第三章一元一次方程3.4.1 实际问题与一元一次方程(球赛积分表)精选练习答案一、选择题(共10小题)1.(2019·中山市期末)在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.【名师点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(2019·广州市期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场【答案】C【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【名师点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.3.(2018·大庆市期末)小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A.1个B.2个C.3个D.4个【答案】B【详解】解: 设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.故选:B.【名师点睛】本题考查一元一次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解题关键是找出之间的相等关系列方程.4.(2018·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.6【答案】B【详解】解:设答对的题数为x道,则不答或答错的有(10﹣x)道,由题意可得,5x﹣3(10﹣x)=34解得:x=8.∴该同学答对题的个数是8个.故选B.【名师点睛】本题考查了一元一次方程的应用,正确找出题目中的等量关系,根据等量关系列出方程是解决问题的关键.5.(2018·仙桃市期末)一次知识竞赛共有20道选择题,规定答对一道得5分,不做或错一题扣1分,结果某学生得分为88分,则他做对题数为()A.16 B.17 C.18 D.19【答案】C【详解】解:设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=88,解得:x=18.即他做对题数为18道.故选:C.【名师点睛】本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(2019·咸阳市期末)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.【名师点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键7.(2019·武汉市期末)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【名师点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.8.(2018·佛山市期末)在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了A.2场B.4场C.5场D.7场【答案】C【详解】解:设这个足球队共胜了x场,则平了场,由题意,得,解得:.故选:C.【名师点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据三种比赛结果的得分之和为17分建立方程是关键.9.(2018·大连市期末)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道.A.17 B.18 C.19 D.20【答案】B【详解】设小明答对了题,根据题意可得:,解得:.故选:.【名师点睛】此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.10.(2019·锦州市期末)数学考试出了15道题,做对一题得4分,做错一题倒扣2分,若王刚做了全部15道题,共得36分,则他做对了( )A.10道题B.11道题C.12道题D.13道题【答案】B【详解】解:设做对了道,则做错了道,由题意得:,解得:=11.故答案选:B.【名师点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据做对的得分+做错的得分=最后总得分36建立方程是关键.提高篇二、填空题(共5小题)11.(2019·厦门市期末)在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为________________【答案】【详解】设设该队共胜了x场,根据题意得:3x+(11-x)=23.故答案为:3x+(11-x)=23.【名师点睛】此题考查了列一元一次方程.列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.12.(2018·河间市期末)在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.【答案】2a+3b+9【详解】解:2×a+3×b+9=2a+3b+9(分).答:他一共得了(2a+3b+9)分.故答案为:2a+3b+9.【名师点睛】本题考查了一元一次方程的应用,解题关键是找出数量关系,再列式解答.13.(2018·仙桃市期末)下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.球队场次胜平负总积分切尔西 6 ?? 1 ?基辅迪纳摩 6 3 2 1 11波尔图 6 3 1 2 10【答案】13【详解】解:由特拉维夫马卡比队负6场积0分,可知负一场积0分,根据基辅迪纳摩队和波尔图队的胜场数相同,负场数相差1,积分差1,得平一场得1分,设胜一场积x分,根据题意得3x+1=10解得x=3,即胜一场积3分,平一场积1分,负一场积0分,又因为胜场数=负场数,所以切尔西队胜1+1+2+6-3-3=4场,平6-4-1=1场,总积分是3×4+1=13场,故答案为13.【名师点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.(2019·高平市期末)某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对________道题.【答案】13【详解】解:设他要对x题,依题意得:6x-2(15-x)≥70,解之得x≥12.5;因为题数应该是整数,所以至少要对13题.故答案为:13.【名师点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式组.准确的解不等式是需要掌握的基本计算能力.注意:根据题意,未知数应该是最小整数.15.(2018·十堰市期末)小丽和爸爸一起玩投篮球游戏,两人商定规则为:小丽投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等.小丽投中了_____个.【答案】5【详解】设小丽投中x个,根据题意得出:3x=20﹣x解得:x=5.故答案为:5.【名师点睛】本题考查了一元一次方程的应用,根据已知得出等量关系是解题的关键.三、解答题(共5小题)16.(2018·石家庄市期末)数学课上,教师出示某区篮球赛积分表如下:(1)从表中可以看出,负一场积多少分,胜一场积多少分;(2)请你帮忙算出二队胜了多少场?(3)在这次比赛中,一个队胜场总积分能不能等于它的负场总积分?(4)在计算五队、六队胜出场次的时候,老师还没等同学们计算出来就立刻说出了答案,老师解释说:“我是通过找到积分与胜场之间的数量关系求出来的”,请你说出其中的奥秘.【答案】(1)负1场积分2分;胜1场积3分;(2)二队胜了7场;(3)不能;(4)积分与获胜的场数之差=22.【分析】(1)根据三队负11场得22分,可知负1场,积2分;由一队胜10场负1场积分32分可得胜一场的积分;(2)设二队胜x场,负(11-x)场,根据积分29分列方程,求解即可;(3)设这次比赛一个队共胜x场,则负(11﹣x)场,然后根据得分列出方程求解即可;(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据y=胜场积分+负场积分=3x+2(11﹣x)=x+22,即可得到结论.【详解】(1)三队负11场得22分,可知负1场积分=22÷11=2(分);由一队胜10场可知,其负1场,故胜1场积分=(32-1×2)÷10=3(分);(2)设二队胜x场,负(11-x)场.根据题意得:3x+2(11-x)=29解得:x=7.答:二队胜了7场.(3)设这次比赛一个队共胜x场,则负(11﹣x)场,根据题意得:3x=2(11-x)解得:x=.∵比赛场次x是正整数,∴一个队胜场总积分不能等于它的负场总积分.(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据题意得:y=3x+2(11﹣x)=x+22,∴积分与获胜的场数之差=22.【名师点睛】本题考查了一元一次方程的应用以及从统计表中获取信息的能力.根据题意找出相等关系是解答本题的关键.17.(2018·南平市期末)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个参赛学生的得分情况.问:参赛者答对题数答错题数得分A 20 0 100B 19 1 94C 18 2 88D 14 6 64E 10 10 40(1)答对一题得分,答错一题得分;(2)有一同学说:同学甲得了70分,同学乙得了90分,你认为谁的成绩是准确的?为什么?【答案】(1)5,﹣1;(2)同学甲的成绩是准确的,同学乙的成绩不准确.【详解】解:(1)∵答对20道题,答错0道题,得分100分,∴答对一题得5分,∵答对19道题,答错1道题,得分94分,∴答错一题得﹣1分;(2)同学甲的成绩是准确的,同学乙的成绩不准确.设同学甲答对了x道,则答错了(20﹣x)道,由题意得:5x﹣(20﹣x)=70,解得:x=15,设同学乙答对了y道,则答错了(20﹣y)道,由题意得:5y﹣(20﹣y)=90,解得:y=18,因为x,y是做对题目个数,所以x,y是自然数.因此,同学甲的成绩是准确的,同学乙的成绩不准确.【名师点睛】此题主要考查了一元一次方程的应用,正确表示出得分情况是解题关键.18.(2019·永州市期末)某次知识竞赛共有20道题,每题答对得5分,答错或不答都扣3分.小明共得了68分,那么小明答对了几道题?【答案】小明答对了16道题.【详解】设小明答对了x道题.根据题意,得5x-3(20-x)=68,解得x=16.经检验x=16符合题意.答:小明答对了16道题.【名师点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
2019-2020学年七年级数学上册 3.4 实际问题与一元一次方程(3)教案新人教版教学目标:1.掌握“球赛积分”中的数量关系,并从表格中提取关键信息;2.感受方程与生活的密切联系,增强应用意识.重点:阅读、分析表格并从表格中提取信息,进而建立方程模型,解决问题.难点:根据问题背景,分析数量关系,找出可以作为列方程依据的相等关系,正确列方程.教学流程:一、探究球赛积分表问题:某次篮球联赛积分榜如下:答案:前进队在比赛中胜了10场钢铁队在比赛中一场也没胜雄鹰队在比赛中一共得了21分……问题2:积分与哪些量有关呢?答案:积分与胜、负场数有关追问1:你能从表格中看出负一场积多少分吗?答案:负一场积1分追问2:胜一场能积多少分呢?解:设胜一场积x分,依题意,得10x+1×4=24解得:x=2∴胜一场积2分.胜一场积2分负一场积1分问题3:你能用式子表示总积分与胜、负场数之间的数量关系吗?解:若一个队胜m场,则负(14-m)场,胜场积分为2m分,负场积分为(14-m)分总积分为:2m+(14-m)=m+14问题4:某队的胜场总积分能等于它的负场总积分吗?相等关系:胜场总积分=负场总积分解:设一个队胜了x场,则负了(14-x)场,根据题意可列方程2x=14-x解得143 x追问:想一想,x表示什么量?它可以是分数吗?由此你能得出什么结论?答案:x表示某队获胜的场数,它应是自然数,不能是分数.这个问题说明:利用方程不仅能求具体数值,而且可以进行推理判断.练习1:小强是学校的篮球明星,在一场篮球比赛中,他一人得了27分(没有罚球得分),已知他投进的2分球比3分球的2倍多3个.若设他投进的3分球为x个,则列出的方程应为( )A.3(2x+3)+2x=27B.2(2x+3)+3x=27C.3(2x-3)+2x=27D.2(2x-3)+3x=27答案:B二、巩固提高某足球协会举办了一次足球赛,其记分规则及奖励方案(每人)如下表:(1)试判断A队胜、平各几场?(2)若每赛一场每名队员均得出场费500元,那么A队的某一名队员所得奖金与出场费的和是多少元?解:(1)设A队胜x场,则平(12-x)场,由题意得3x+(12-x) ×1=20,解得x=4,则 12-x=8,答:胜4场,平8场.(2)1500×4+700×8+500×12=17600(元)答:这名队员所得奖金与出场费的和是17600元.三、体验收获今天我们学习了哪些知识?1.你能读懂球赛积分表吗?2.如何通过积分表了解球赛的积分规则?3.借助方程解决实际问题,为什么要检验方程的解是否符合问题的实际意义?四、达标测评1.一张试卷,只有25道选择题,做对一题得4分,做错一题倒扣1分,某学生做了全部试题,共得70分,他做对的题数是_________.答案:192.某市中学生足球联赛共12轮(即每队均赛12场),比赛规则是胜一场得3分,平一场得1分,负一场得0分.红星中学足球队胜的场数与负的场数相等,结果共得16分,则红星中学足球队胜的场数为( )A.2B.3C.4D.5答案:C3.为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?解:设九年级一班胜x场,则负(8-x)场,由题意得2x+(8-x)=13,解得x=5,则 8-x=3,答:九年级一班胜5场,负3场.五、布置作业教材106页练习第3题.。
实际问题与一元一次方程综合练习【配套问题】1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套,现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?3.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?5.一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?6.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问7.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?8.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净?纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?10.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。
2019-2020年七年级数学上册 3.4 实际问题与一元一次方程教学案(新版)新人教版教学内容:人教版义务教育课程标准实验教科书《数学》七年级上册第100页例2.教学目标:1.知识与技能进一步掌握利用一元一次方程解决实际问题。
培养分析问题,解决问题的能力。
2.过程与方法经历分析工程问题中的数量关系,运用方程解决实际问题的过程,进一步体会“建模”思想。
3.情感、态度与价值观鼓励学生积极思考,合作交流,发展数学才能。
教学重难点:1.重点:工程中的工作量、工作效率和工作时间的关系,以及找出相等关系。
2.难点:把全部工作看作1,建立等量关系。
本课的难点应该是:从具体问题中找出等量关系。
这是因为:在小五年级和六年级的教学中,题目中没明确问题的工作量时,都是将工作量视为单位1处理的,只要小学基础在中等水平的学生,都能自觉地将工作量看作单位1,这就体现该知识点不可能成为难点。
而题目中所蕴藏的等量关是隐蔽的,学生不易发现,特别是七年级的学生,阅读理解能力有待提高,要发现并用文字表述等量关系是有困难的,为此找出问题中等量关系并用文字表述才是该课时的难点也是关键所在。
如果要说难点是:把全部工作量看作1,我认为也应该是:为什么将全部工作量看作单位1。
教学过程及评析:一、复习提问师:工程问题有哪三个基本量?这些基本量之间有怎样的关系?生:工作量=工作效率×工作时间,师:还可变形为什么?生:工作效率=工作量÷工作时间;工作时间=工作量÷工作效率师:问题:一件工作,如果甲单独做2小时完成,那么甲单独做1小时完成全部工作量的多少?生答:二分之一师:怎样理解?生:也为1小时的工作效率,即1小时完成全部工作的二分之一。
师:如果一件工作甲单独做a小时完成,那么甲单独做1小时完成全部工作量的几分之几?生:称为1小时的工作效率。
评析:复习提问这一问题情境设置引入新课,为本节课的学习作了知识铺垫,同时唤醒学生的最近发展区,能使学生更好地理解和掌握该课时的内容。
第三章一元一次方程3.4实际问题与一元一次方程第课时1一、教学目标1.会通过列方程解决“配套问题”和“工程问题”.2.培养学生数学建模能力、分析能力、解决问题的能力.二、教学重点及难点重点:将实际问题抽象为方程,列方程解应用题.难点:将实际问题抽象为方程的过程中,如何找等量关系.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)温故知新解一元一次方程的一般步骤是什么呢?师生活动:学生思考,回答问题,教师边聆听边板书.小结:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.设计意图:复习旧知识的目的是检验上一节课的学习效果,为本节课进一步学习起到一个基石的作用.(二)例题分析例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?师生活动:教师提示学生思考以下问题:(1)“1 个螺钉配2 个螺母”这句话是什么意思,包含着什么等量关系?(2)本问题有哪些等量问题?1学生讨论后,独立尝试列方程.在本问题中“1 个螺钉配 2 个螺母”中包含的等量关系较 隐蔽,是本问题的难点,要让学生真正理解其中的含义.教师巡视检查学生完成的情况.然 后让学生打开教材,把自己的解法和教材上的相比较,看一看过程中有什么不足之处,修改 以后思考下面问题.你的解法与教材上是否相同?如果相同,你是否能换一种设未知数的方法解决这个问 题?如果不同,请与其他同学交流讨论比较两种方法间的异同点.解:设应安排 x 名工人生产螺钉,(22-x )名工人生产螺母.依题意得:2 000(22-x )=2×1 200x .解方程,得:5(22-x )=6x ,110-5x =6x ,x =10.22-x =12.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.另解:设应安排 x 名工人生产螺母,(22-x )名工人生产螺钉.依题意得:2×1 200(22-x )=2 000x .解方程,得:x =12.22-x =10.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.例 2 整理一批图书,由一个人做要 40 h 完成.现计划由一部分人先做 4 h ,然后增加 2 人与他们一起做 8 h ,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工 作?师生活动:学生先自主探究讨论,教师可以点拨以下问题:(1)人均效率为________.(指一个人 1 小时的工作量).(2)若设先由 x 人做 4 小时,完成的工作量是________.再增加 2 人和前一部分人一起 做 8 小时,两段完成的工作量之和是________.师生共同完成本题的解答过程,教师要书写出规范完整的答案.教师点评:工作量=人均效率×人数×工作时间,这是在此类问题中常用的数量关系. 解:设安排 x 人先做 4 h . 8 x +2 4x 依题意得: + 40=1. 40 2解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4。
第三章一元一次方程3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 结合球赛积分表,掌握从图表中获取信息的方法,培养观察与推理能力;2.增强运用数学知识解决实际问题的意识,激发学生学习数学的热情;3.认识到由实际问题得到的方程的解要符合实际意义。
学习重点:从表格中获取有关数据信息,利用方程进行计算、推理、判断。
学习难点:从图表中获取有关信息,寻找数量之间的隐蔽关系,正确建立方程。
学习要求:1. 阅读教材P106的探究3;2.限时25分钟完成本导学案;(独立或合作)3.课前在组内交流展示。
4.组长根据组员完成情况进行等级评价。
一、自主学习:1.篮球比赛积分中,胜一场积几分?负一场积几分?这与足球比赛的积分制是否相同?2.足球赛规定:胜一场得3分,平一场得1分,负一场得0分。
“猛虎”队赛了9场,共得17分,已知这个队只输2场,问这个队胜几场?又平几场?二、合作探究:1.认真阅读P106探究.(1)要解决探究中的问题,必须先求出胜一场积几分,负一场积几分。
你能从积分表中选出其中哪一行最能说明负一场积几分吗?能否求出胜一场得几分?又如何检验结论的正确性呢?① 观察积分榜,从________行的数据可以发现负一场积______ 分;②设胜一场积x分,则从表中任何一行都可以列出方程,求出x的值。
若选第三行数据,则列方程为:_________________________ ,由此得 x=________ ,若选第5行呢?再试一试,又会怎样?③ 用表中其他行可以验证,得出此次比赛的积分规则:负一场积_____ 分,胜一场积______分。
(2)如何计算积分?你能否列一个式子来表示积分与胜负场数之间的关系?① 要弄清两个关系:★ 总积分=_______积分+_______积分;★ 总场数=__________ +___________。
②如果设一个队胜a场,则负______场,胜场积分为__________,负场积分为_______ ,总积分为:_____________________ 。
2019-2020年七年级数学上册3.4 实际问题与一元一次方程专题讲解一、细心选一选(每小题3分,共24分)1.已知甲、乙两数之和为5,甲数比乙数大2,求甲、乙两数.设乙数为x,则所列的方程是()A.x+2+x=5B.x-2+x=5C.5+x=x-2D.x(x+2)=5.2.在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( )A.80 B.98 C.108 D.206.3.如果x a+2y3与-3x3y2b-1是同类项,那么a、b的值分别是()A. B. C. D.4.小明准备在“爱心一日捐”活动中捐款,他现在有30元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x的是 ( )A. 10x-30=100B.10x+30=100C. 30-10x=100D.30x+10=100 5.七年级有甲、乙两个班,甲班有43人,乙班有49人,要使两班人数相等,应从乙班调()人到甲班.A.6人B.5人C.4人D.3人.6.一张试卷有25道选择题,满分100分,若做对一题得4分,做错或不做一题倒扣1分,某同学得了85分,那么他做对的题数是()A.23B.22C.21D.20.7、在足球甲B联赛的前11场比赛中,某队仅负一场,共积22分.按比赛规则,胜一场得三分,平一场得一分,负一场得零分,则该队共胜了( )A.7场B.6场C.5场D.4场.8、某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元 B.27元 C.28元D.29元二、耐心填一填(每小题3分,共24分)9.某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.10.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需元.11.甲、乙两人练习短距离赛跑,甲每秒跑7米. 乙每秒跑6.5米. 如果甲让乙先跑5米. 那么甲追上乙需秒.12.将长为20cm的铁丝做成一个长比宽多2cm的长方形,则此长方形的面积是________________.13.小红一家假期外出旅游5天,已知这5天的日期之和为40. 则他们出发日期是号14、甲仓库有粮120吨.乙仓库有粮90吨.从甲仓库调运________吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.15、一件工作,甲独做20天完成,乙独做15天完成,现在甲乙合作5天后,剩下的由乙单独完成,乙还需要天完成这项工作.16、小贩用蛋糕与王大妈换鸡蛋,谈好1斤蛋糕换2斤鸡蛋,小贩将蛋糕连塑料盒称了2斤,要王大妈连塑料盒称4斤鸡蛋。
2019-2020学年度初中数学七年级上册[3.4 实际问题与一元一次方程]人教版课
后辅导练习[含答案解析]三十
第1题【单选题】
太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为( )
A、80元
B、85元
C、90元
D、95元
【答案】:
【解析】:
第2题【单选题】
某种商品的标价是132元,若以标价的9折销售,仍可获利润10%,则该商品的进价为( )
A、105元
B、108元
C、110元
D、118元
【答案】:
【解析】:
第3题【单选题】
某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,如果要使得利润率为5%,那么销售时应该打( )
A、6折
B、7折
C、8折
D、9折
【答案】:
【解析】:
第4题【单选题】
整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,则应先安排几个人工作?( )
A、3
B、4
C、5
D、6
【答案】:
【解析】:
第5题【填空题】
某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为______元.
【答案】:
【解析】:
第6题【解答题】
在开展校园足球对抗赛中,规定每队胜一场得3分,平一场得1分,负一场得0分,我校女子足球队一共比赛了10场,且保持了不败战绩,一共得了22分,我校女子足球队胜了多少场?平了多少场?
【答案】:
【解析】:
第7题【解答题】
我市某景区的门票售价为:成人票每张50元,儿童票每张30元.今年“元旦”当天该景区售出门票100张,门票收入共4000元.请求出“元旦”当天售出成人票和儿童票各多少张?
【答案】:
【解析】:
第8题【解答题】
某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.
问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?
【答案】:
【解析】:
第9题【解答题】
如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
数轴上点A表示的数为______.
将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为▲.
②设点A的移动距离AA′=x.
ⅰ.当S=4时,x= ▲;
ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=有误OO′,当点D,E所表示的数互为相反数时,求x 的值.
【答案】:
【解析】:
第10题【综合题】
2016年兴义万峰林机场改扩建工程供油及辅助生产生活设施工程招标时,有甲、乙两个工程队投标,经测算甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
乙队单独完成这项工程需要多少天?
甲队施工一天.需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱.还是由甲、乙两队合作完成该工程省钱.
【答案】:
【解析】:。