库水位降落对土石坝坝坡稳定的影响分析
- 格式:pdf
- 大小:103.82 KB
- 文档页数:2
库水位升降对水库库岸边坡稳定性的影响张全(环境与土木工程学院,2009030403)摘要:库水位的升降是诱发水库库岸产生滑坡的重要原因,运用工程地质分析原理和模型试验模拟库水位的变化,得出滑坡在库水位变化过程中破坏的一般规律。
关键词:库水位升降边坡稳定性模型试验水库库岸滑坡的危害主要包括两个方面:一是大量的岩土体滑入水库,减少了有效库容,甚至形成坝前坝,使水库不能继续使用;二是如果滑坡体高速滑入水库,会造成巨大的涌浪,直接危及大坝安全及电站的运营,并给库区人民的生命财产安全造成巨大威胁。
水库蓄水后会对库区存在的大量滑坡产生不利影响,所以研究库水位的变化对滑坡稳定性的影响有重要意义。
[1]三峡库区是滑坡等地质灾害多发地带. 据不完全统计, 三峡库区在175m 库水位影响的范围内共有大小滑坡2000 余个, 各类变形体分布更是广泛[ 1-2] . 自2003 年135 m 蓄水开始, 2006年水库蓄水达到156m 以来, 绝大多数滑坡经受到了库水位缓慢上升和稳定库水长时间浸泡的考验没有复活[ 3-4] . 但随着2009 年三峡大坝基本完工, 三峡水库开始正常运营,三峡水库坝前水位将在短时间内在145 m- 175m-145m 之间波动, 水位变幅为30 m. 滑坡短时间内经历水位频繁升降且幅度之大是此前从未经历过的. 库水位波动不仅降低岩体力学强度、减轻岩体有效重力, 而且还改变库岸边坡内地下水位分布, 在三峡库水位升降过程中很可能使原己稳定的滑坡再度失稳.1.工程地质分析原理分析库水位对库岸滑坡的影响水库蓄水或正常调度(水位骤然升降)期间,地表水位的变化将直接导致岸坡地下水动力场的变化。
1.1在水库蓄水水位上升阶段,对岸坡稳定性起主要作用的是空隙水压力效应(悬浮减载效应)。
在库水位还未上升之前库岸边坡情况如图1,库水位上升之后库岸边坡情况如图2。
图1 库水位上升之前库岸边坡情况(许强)图2 库水位上升之后库岸边坡情况(许强)由图1和图2可知,由于库水位的上升,增加了库岸边坡的浮重度区和饱和重度区。
土石坝边坡稳定性的设计与分析摘要:在我国水利工程的建设与施工过程中,土石坝属于一种极为常见的建筑结构,也是十分重要的水工建筑物,在水利工程建筑中有着举足轻重的地位。
通常而言,土石坝结构具有较强的稳定性,其施工工序也比较简单,因而在大部分水利工程中获得广泛应用,特别是北方地区。
同时,土石坝也存在一定缺点,土石坝边坡容易出现不稳定现象,而土石坝边坡的不稳定现象会影响整体工程的安全性。
本文根据水利工程中土石坝相关知识进行阐述,并指出存在的问题及原因,提出水利工程土石坝的设计与防治要点。
关键词:土石坝;边坡稳定;设计分析引言在所有结构工程领域,采用可靠度理论与方案进行分析与设计已经成为了当前的一种趋势,而关于《水利水电工程结构可靠度设计统一标准》的可靠度理论已经在很多混凝土结构、混凝土重力坝等项目结构中得到广泛应用,但在土石坝工程中应用成功案例并不多,必须加大力度提高大坝安全度。
1稳定性理论分析土坝的稳定性破坏有滑动、液化及塑性流动三种状态。
(1)坝坡的滑动是由于坝体的边坡太陡,坝体填土的抗剪强度太小,致使坍滑面以外的土体滑动力矩超过抗滑力矩,因而发生坍滑或由于坝基土的抗剪强度不足,因而坝体坝基一同发生滑动。
(2)坝体的液化是发生在用细砂或均匀的不够紧密的砂料做成的坝体中,或由这种砂料形成的坝基中。
液化的原因是由于饱和的松砂受振动或剪切而发生体积收缩,这时砂土孔隙中的水分不能立即排出,部分或全部有效应力即转变为孔隙压力,砂土的抗剪强度减少或变为零,砂粒业就随着水的流动向四周流散了。
(3)土坝的塑性流动是由于坝体或坝基内的剪应力超过了土料实际具有的抗剪强度,变形超过了弹性限值,不能承受荷重,使坝坡或者坝脚地基土被压出或隆起,因而使坝体的坝基发生裂缝、沉陷等情况。
软黏性土的坝或坝基,如果设计不良,就容易产生这种破坏。
进行坝坡稳定计算时,应该杜绝以上三种破坏稳定的现象,尤其前两种,必须加以计算以及研究。
2土石坝边坡稳定参数的统计应用可靠度理论于土石坝稳定问题时应首先确定基本随机变量,这些基本变量可以是几何尺寸、材料性能指标和作用荷载等。
水位骤变下土石坝非稳定渗流及稳定分析作者:李子阳马福恒张湛胡江张磊来源:《人民黄河》2019年第01期摘要:以库水位骤变全过程为分析工况,基于非稳定渗流理论,考虑渗透系数与基质吸力之间的非线性关系,研究了典型土石坝工程的非稳定渗流场变化规律和渗透稳定性,并对坝坡瞬态抗滑稳定系数进行了计算。
结果表明:水位骤变过程中,坝体处于非稳定渗流状态,浸润线呈突起弯曲状并不断变化,且水位变化速率越快,弯曲越明显;水位骤升阶段,非稳定渗流场等势线整体向上游偏移,对应大坝典型部位的渗透坡降明显大于该水位时稳定渗流场的,且水位上升速率越大,渗透坡降越大,超过允许渗透坡降时可能发生渗透破坏;上游坝坡在非稳定渗流阶段的瞬态稳定安全系数变化较大,水位升高对其稳定有利,水位骤降超静孔隙水压力来不及消散,形成反向渗流,坝坡稳定性降低明显,且水位下降速率越大,稳定性越低。
关键词:水位骤变;土石坝;非稳定渗流;瞬态稳定中图分类号:TV641.2文献标志码:Adoi:10.3969/j .issn. 1000- 1379.2019.01.024近年来受全球气候变化影响,区域性极端气候事件频发,旱涝灾害发生的强度与频率不断增加。
如受强厄尔尼诺影响.2016年汛期多地短时强降雨显著增加,尤其是北方干旱地区多处遭遇历史罕见降雨。
对于水库而言,旱涝灾害和旱涝急转带来库水位的快速变化,库水骤升的快速浸水和库水骤降的反渗流作用极易导致坝体渗透破坏和坝坡失稳[1]。
旱涝灾害条件下,坝前水位处于较快变化状态,坝坡内外水分的相互补给使坝内渗流场不断变化,呈现出明显非饱和非稳定渗流特征[2]。
当库水位骤降时,坝内孑L隙水压力不能很快消散,在渗透力的作用下上游坝坡呈下滑趋势,对上游坝坡稳定不利,约600/0的水库滑坡发生在库水位骤降期。
已有研究[3-8]针对库水位骤降情况下土石坝渗流、稳定性的较多,主要基于非饱和渗流理论分析坝坡稳定性,获取坝坡稳定安全系数与库水下降速度、渗透系数之间的关系等。
大坝滑坡的原因分析及对策摘要:本文对土坝滑坡原因进行分析。
笔者有针对性地提出预防和处理对策。
关键词:土坝滑坡原因对策Abstract: in this paper, the main reason is analyzed the landslide. The author has put forward corresponding prevention and treatment measures.Key words: the main reason landslide countermeasures1 工程概况老官前水库位于宜春市袁州区寨下乡梅岑村境内,坝址以上控制流域面积0.97km2,总库容38万m3,是一座以灌溉为主、兼顾防洪、养殖等综合效益的小(2)型水库,枢纽工程主要建筑物包括:大坝、溢洪道和坝下涵管等。
2011年10月,老官前水库除险加固工程开始实施,在涵管破坝开挖过程中,开挖料大量堆积在坝坡上,引发大坝外坡滑坡开裂。
2 土坝滑坡原因分析2.1 勘探设计方面(1)坝基有淤泥层或可压缩土层,坝脚附近有淤泥质填充的深坑,而在勘探时没有查清,或者虽然查明但在设计时又没提出必要的处理措施,以致基础承载力不够,筑坝后产生剪切破坏。
(2)垂直于坝轴线方向坝基的承载力差异很大,在筑坝后,承载力小的则沉陷大,而承载力大的沉陷小,致使坝体产生剪切破坏失去整体性引起滑坡。
(3)坝的两岸岩石风化破碎或节理较发育,在设计时没有提出处理措施,以致蓄水后形成绕坝渗流,使两岸土体饱和形成局部滑坡。
2.2 施工方面(1)实际使用的土料比勘查的差, 在施工时的辅土厚度、碾压遍数、填土容重以及含水率未达到设计要求,因而坝体的各项指标不能达到设计标准,引起渗漏,抗滑能力差,致使滑坡。
(2)使用残坡积土筑坝时,由于表层与底层风化程度不同,施工中对土料未加考虑,以致坝体中土料的分布层是:上部的土粘性小渗透系数大,下部的土粘性较大渗透系数小,因而浸润线不能按设计形成,下游坝坡上容易湿润饱和造成滑坡。
土石坝渗透及稳定性分析探讨摘要:渗流问题是土石坝安全的关键,渗流控制是土石坝建设的重中之重。
在渗流控制措施上,随着渗流控制理论的发展,由原来的以防为主逐渐向防渗、排渗和反滤层三者相结合。
本文从土石坝渗漏问题、防渗措施、有限元渗流场计算的基本数学模型三个方面进行介绍。
关键词:土石坝渗透稳定性随着我国水利水电建设的快速发展和“西电东输”水电项目的实施,众多高土石坝的建设被提上了日程,特别在深厚覆盖层河谷,地质条件差,地震烈度高,多数坝高较大(尤其200m以上)的大坝选择或拟选择建土石坝。
渗流和渗透控制是土石坝工程中的一项极其重要的课题,直接关系到工程的安全和投资。
土石坝施工简便,地质条件要求低,造价便宜,并可就地取材且料源丰富,是水利水电工程中极为重要的一种坝型。
土石坝坝体用散粒材料填筑,挡水后上下游的水头差引起了水流渗过坝体、坝基及两岸坡向下游排出。
由于勘测设计缺陷、施工不良、管理运行不当以及渗流、地震等,都会使土石坝体及其坝基发生缺陷病害,甚至垮坝失事。
在土石坝中,坝体和坝基的渗漏较为频繁,许多中、小型病库,就是因为坝身、坝基等产生渗漏造成险情。
一、土石坝渗漏问题(一)坝基渗漏。
坝基渗漏主要有以下两种渗漏方式:一是铺盖裂缝产生的渗漏。
铺盖裂缝一般是由于施工时防渗土料碾压不严,达不到所要求的容重或铺土时含水量过大, 固结时干缩而产生裂缝;或基础不均匀沉陷时铺盖被拉裂;或铺盖下没有做好反滤层,水库蓄水后在高扬压力下被顶穿破坏;也有施工时就近取土,破坏了覆盖层作为天然铺盖的防渗作用。
二是心墙下截水墙与基础接触冲刷破坏。
截水墙与基础的接触边界是最容易形成渗流通道的薄弱环节。
在截水墙下游与基础接触边界处设置反滤层失效,导致接触冲刷,坝体和基础土料被带走,就会造成坝体严重破坏。
(二)坝身渗漏。
土石坝常因斜墙、心墙等防渗体裂缝形成渗流的集中通道,导致管涌的发生,甚至引起坝体的失事破坏。
具体地讲有以下几种情况:一是心、斜墙裂缝漏水。
水库水位降落对边坡稳定性的影响摘要:在我国具有防洪和灌溉功能的水库比较多,由于以一些因素的影响,水库的水位变化比较频繁,尤其是在枯水季节和灌溉时期,水库的水位降落程度极为明显,这也对水库边坡的稳定性造成了一定程度的影响,常常导致水库边坡出现滑坡现象,这直接影响这水库大坝的安全和正常使用。
本文将就水库水位降落对边坡稳定性的影响进行浅要地分析和论述。
关键词:水库水位边坡稳定性影响近几年来对水库边坡的失稳问题及边坡的稳定性引起了人们的重视和关注。
水库边坡的稳定性与水库水位的变化有很大的关系,据研究表明水库的水位变化对水库的稳定性造成了一定程度的影响。
就水库的坡体而言,水库水位的降落对水库边坡极为不利,极易引起边坡出现滑坡现象。
水库水位在降落时,水库边坡内部的水由于来不及排除,是水库坡体产生不稳定的渗流,从而产生一定的渗流作用力对水库边坡产生极为不利的影响,对水库边坡稳定造成影响。
1 水库边坡的稳定性分析1.1 随着我国水的利建设的发展,水库的边坡也出现了许多问题,由于水库水位的变化导致的水库的边坡稳定也受到了一定程度的影响,水库边坡的失稳也给工程建设造成了很大程度的破坏和损失。
当水库的水位下降时,水库边坡内部的水由于跟不上外部水位的下降速度,使水库的坡体出现了不稳定渗流现象,水库的大坝在渗流的作用下会一起边坡的冲蚀和滑坡等破坏,导致水库边坡失去了稳定。
水库的边坡在渗流的作用下,边坡的破坏形式一般分为整体破坏和局部破坏。
对于水库边坡的整体破坏,我们要对水库边坡进行整体的稳定性分析,科学合理的考虑渗流作用在水库坡体上的渗透力的大小和方向,从多方面对水库边坡的整体破坏影响边坡稳定性的问题。
而水库边坡局部破坏主要是发生在水库坡体北部水渗流集中的渗出点和水库坡面的交点上,对水库边坡造成的局部破坏。
在实际的工程实验分析中,水库的水位降落引起的水库坡体不稳定的渗流,从而出现不利于水库边坡的稳定的孔隙水压力,在非稳定的渗流作用下,极大的降低了水库边坡的稳定性。
土石坝的应变分析及稳定分析关键词:土石坝、应变、蓄水期、稳定性、荷载摘要:我们认为,土石坝应力应变分析中有待解决的问题主要有下列几个方面。
第一是多数的研究限于施工期, 而回避了蓄水期的计算。
但是土石坝是挡水建筑物, 因此可以说, 不解决水对坝体的作用问题就是根本上没有解决问题。
实际上现代设计的高土石坝也多是在初蓄水期发生严重变形甚致破坏的。
此外, 现有计算方法本身也存在许多问题, 例如对于由刚度相差悬殊的几种材料组合的坝型就不能很好适应, 特别当土体中存在混凝土结沟的时候。
但是我们相信, 随着试验和原观测资料的积累及计算技术的发展, 这些问题将会逐步得到决,应力应变分析也一定会在土石坝设计中占据越来越重要的位置, 总有一天设计工作者将能摆脱目前滑坡稳定分析加经验的设计方法, 走上按极限变形和抗裂设计的轨道。
一、蓄水期土石坝工作状态的特点现有的原体观测资料表明, 施工期坝体内的应力主轴的方向变化不大, 坝坡局部偏转较大的地方也不超过15度, 而且大部分区域大小主应力比都在一之间, 也就是说接近于单向压缩状态。
这就意味着, 施工期坝体内的应力状态比较简单, 而月坝体的变形以垂直压缩变形为主。
可是, 一旦受到水的作用, 问题就大大复杂化了。
水对坝体的工作状态的影响表现在三个方面:(1)水平荷载引起的主应力轴偏转;(2)浮托力引起的卸荷作用;(3)土骨架浸水软化引起的附加变形(以下简称浸水变形)。
根据高米的堆石坝模型试验的结果,水平压力与浮托力的共同作用使大范围内应力主轴偏转十几度,并使上游坝壳应力减小,下游坝壳应力加大。
但从应力水平看则是下游降低,上游增高,并在上游坝壳靠心墙处达到破坏状态,形成个相当于主动土压力状态。
同时,国内外大量的观测资料表明,由于水压力及软化变形的共同作用,坝顶既可能向上游位移,也可能向下游位移,而且往往是先向上游,后向下游,同时中心线发生明显的挠曲图。
软化作用还会引起显著的沉降如果仅从浮托力考虑,蓄水时坝顶应当上抬。