水利工程中土石坝坝坡稳定分析
- 格式:doc
- 大小:25.50 KB
- 文档页数:6
有关土石坝坝坡稳定分析的方法探索研究【摘要】本文主要深入分析研究了土石坝坝坡稳定分析的方法。
即刚体极限平衡法和有限元法的基本原理,并对刚体极限平衡法和有限元方法的优缺点进行了比较,得出有限元法可以克服刚体极限平衡法所存在的缺陷。
本文是个人提出的一些见解和观点,可与同行共同探讨。
【关键词】土石坝;坝坡;稳定;刚体极限平衡法;有限元法前言如何更合理、更准确地开展土石坝的坝坡稳定分析工作是工程界普遍关注的问题。
目前土石坝坝坡稳定分析的方法主要有刚体极限平衡法和有限元法。
一、刚体极限平衡法分析研究1)刚体条件:在分析滑坡的受力和变形过程中,忽略滑体的内部变形,认为滑体为不可变形的刚体。
2)极限强度条件:假定滑体处于极限强度状态。
3)力的平衡条件:在考虑安全系数后,滑体在所受各种力的作用下处于平衡状态。
目前通用的刚体极限平衡法主要指的是条分法。
采用条分法来分析稳定问题一般为高次的超静定问题,要使问题有解就必须建立新的条件方程。
对条块间作用力作出各种简化假定,以减少未知量或增加方程数。
根据简化假定的条件相同,条分法发展为各种计算方法,这些方法主要有:一是瑞典圆弧滑动法。
瑞典圆弧滑动法(简称瑞典法或费伦纽斯法)是条分法中最古老而又最简单的方法。
除了假定滑裂面是个圆柱面(剖面图上是个圆弧)外,还假定不考虑土条两侧的作用力,安全系数定义按式计算。
由于不考虑条间力的作用,严格地说,对每一土条力的平衡条件是不满足的,对土条本身的力矩平衡也不满足,仅能满足整个滑动土体的整体力矩平衡条件。
由此产生的误差,一般使求出的安全系数偏低 10% , 20% ,这种误差随着滑裂面圆心角和孔隙压力的增大而增大。
二是毕肖普法。
毕肖普法考虑了条块间的法向作用力,但忽略了条块间的切向作用力。
其安全系数定义为沿整个滑裂面的抗剪强度与实际产生的剪应力之比,即:( 1)毕肖普法满足整体力矩平衡条件,满足各条块间力的多边形闭合条件,但不满足条块的力矩平衡条件。
土石坝渗透及稳定性分析探讨摘要:渗流问题是土石坝安全的关键,渗流控制是土石坝建设的重中之重。
在渗流控制措施上,随着渗流控制理论的发展,由原来的以防为主逐渐向防渗、排渗和反滤层三者相结合。
本文从土石坝渗漏问题、防渗措施、有限元渗流场计算的基本数学模型三个方面进行介绍。
关键词:土石坝渗透稳定性随着我国水利水电建设的快速发展和“西电东输”水电项目的实施,众多高土石坝的建设被提上了日程,特别在深厚覆盖层河谷,地质条件差,地震烈度高,多数坝高较大(尤其200m以上)的大坝选择或拟选择建土石坝。
渗流和渗透控制是土石坝工程中的一项极其重要的课题,直接关系到工程的安全和投资。
土石坝施工简便,地质条件要求低,造价便宜,并可就地取材且料源丰富,是水利水电工程中极为重要的一种坝型。
土石坝坝体用散粒材料填筑,挡水后上下游的水头差引起了水流渗过坝体、坝基及两岸坡向下游排出。
由于勘测设计缺陷、施工不良、管理运行不当以及渗流、地震等,都会使土石坝体及其坝基发生缺陷病害,甚至垮坝失事。
在土石坝中,坝体和坝基的渗漏较为频繁,许多中、小型病库,就是因为坝身、坝基等产生渗漏造成险情。
一、土石坝渗漏问题(一)坝基渗漏。
坝基渗漏主要有以下两种渗漏方式:一是铺盖裂缝产生的渗漏。
铺盖裂缝一般是由于施工时防渗土料碾压不严,达不到所要求的容重或铺土时含水量过大, 固结时干缩而产生裂缝;或基础不均匀沉陷时铺盖被拉裂;或铺盖下没有做好反滤层,水库蓄水后在高扬压力下被顶穿破坏;也有施工时就近取土,破坏了覆盖层作为天然铺盖的防渗作用。
二是心墙下截水墙与基础接触冲刷破坏。
截水墙与基础的接触边界是最容易形成渗流通道的薄弱环节。
在截水墙下游与基础接触边界处设置反滤层失效,导致接触冲刷,坝体和基础土料被带走,就会造成坝体严重破坏。
(二)坝身渗漏。
土石坝常因斜墙、心墙等防渗体裂缝形成渗流的集中通道,导致管涌的发生,甚至引起坝体的失事破坏。
具体地讲有以下几种情况:一是心、斜墙裂缝漏水。
土石坝的应变分析及稳定分析关键词:土石坝、应变、蓄水期、稳定性、荷载摘要:我们认为,土石坝应力应变分析中有待解决的问题主要有下列几个方面。
第一是多数的研究限于施工期, 而回避了蓄水期的计算。
但是土石坝是挡水建筑物, 因此可以说, 不解决水对坝体的作用问题就是根本上没有解决问题。
实际上现代设计的高土石坝也多是在初蓄水期发生严重变形甚致破坏的。
此外, 现有计算方法本身也存在许多问题, 例如对于由刚度相差悬殊的几种材料组合的坝型就不能很好适应, 特别当土体中存在混凝土结沟的时候。
但是我们相信, 随着试验和原观测资料的积累及计算技术的发展, 这些问题将会逐步得到决,应力应变分析也一定会在土石坝设计中占据越来越重要的位置, 总有一天设计工作者将能摆脱目前滑坡稳定分析加经验的设计方法, 走上按极限变形和抗裂设计的轨道。
一、蓄水期土石坝工作状态的特点现有的原体观测资料表明, 施工期坝体内的应力主轴的方向变化不大, 坝坡局部偏转较大的地方也不超过15度, 而且大部分区域大小主应力比都在一之间, 也就是说接近于单向压缩状态。
这就意味着, 施工期坝体内的应力状态比较简单, 而月坝体的变形以垂直压缩变形为主。
可是, 一旦受到水的作用, 问题就大大复杂化了。
水对坝体的工作状态的影响表现在三个方面:(1)水平荷载引起的主应力轴偏转;(2)浮托力引起的卸荷作用;(3)土骨架浸水软化引起的附加变形(以下简称浸水变形)。
根据高米的堆石坝模型试验的结果,水平压力与浮托力的共同作用使大范围内应力主轴偏转十几度,并使上游坝壳应力减小,下游坝壳应力加大。
但从应力水平看则是下游降低,上游增高,并在上游坝壳靠心墙处达到破坏状态,形成个相当于主动土压力状态。
同时,国内外大量的观测资料表明,由于水压力及软化变形的共同作用,坝顶既可能向上游位移,也可能向下游位移,而且往往是先向上游,后向下游,同时中心线发生明显的挠曲图。
软化作用还会引起显著的沉降如果仅从浮托力考虑,蓄水时坝顶应当上抬。
土石坝边坡稳定可靠度分析与研究的开题报告
一、研究背景和意义
随着经济的快速发展,大量的土石坝被建造或加固,土石坝边坡的稳定性成为了工程建设中的一个重要问题。
土石坝边坡的稳定性受到多种因素的影响,例如土原性、水力条件、地震等。
因此,进行土石坝边坡稳定性的可靠度分析和研究,对于评估土石坝的稳定性和工程的安全性具有重要的意义。
二、研究内容和方案
本研究将以某水库土石坝为研究对象,分析土石坝边坡的稳定性,并通过可靠度分析方法评估土石坝边坡的稳定可靠度。
具体研究内容和方案如下:
1.研究土石坝边坡的稳定性指标及影响因素
通过文献调研和现场调查,梳理土石坝边坡稳定性的相关指标和影响因素,包括土体的强度、水文条件、地震动力学等因素。
2.建立土石坝边坡稳定性模型
以某水库土石坝边坡为例,建立土石坝边坡稳定性分析模型。
该模型将考虑土壤的强度参数、水文条件和地震动力学因素,从而评估边坡的稳定性。
3.进行可靠度分析
在建立土石坝边坡稳定性模型的基础上,引入可靠度分析方法,通过概率论与数理统计的知识计算土石坝边坡的可靠度,为工程安全性评估提供科学依据。
4.开展实验验证
为了验证所建议的土石坝边坡稳定性分析模型和可靠度分析方法的有效性,将开展实验室与现场实验,在对比实验数据和计算结果的基础上,进一步完善土石坝边坡稳定性的可靠性评估方法。
三、预期成果
本研究将建立一套土石坝边坡稳定性的评估方法,能够评估该水库土石坝边坡的稳定可靠度,并为工程建设提供科学的技术支持,进一步提高土石坝工程的安全性。
第五节土石坝的稳定分析
一、目的
分析坝体及坝基在各种不同的工作条件下可能产生的稳定破坏形式,通过必要的力学计算,校核坝剖面的安全度,经过反复修改定出经济剖面。
确定土坝稳定性,主要指边坡的抗滑稳定。
二、坝坡的滑动面形式
坝坡的滑动面形式主要与坝体结构型式、筑坝材料和地基情况、坝的工作条件等因素有关。
1、曲线滑动面:滑动面通过粘性土部位时,
2、折线滑动面:滑动面通过非粘性土部位时;
3、复式滑动面:滑动面通过粘性土和非粘性土构成的多种土质坝时。
图6-17 坝坡坍滑破坏形式
1-坝壳或者坝体;2-防渗体;3-滑动面;4-软弱夹层
三、荷载及其组合
(一)作用力
1、自重:水上——湿容重,水下——浮容重。
2、渗透力:与渗透坡降有关。
3、孔隙水压力:总应力法和有效应力法.
4、地震力:地震区应考虑地震惯性力。
地震惯性力壳拟静力法计算。
(二)荷载组合:
正常运用:
(1)水库蓄满水(一般为正常蓄水位)形成稳定渗流时,验算下游坝坡稳定。
(2)水库水位为最不利水位时,上游坡的计算。
(3)库水位降落,使上游坡产生渗透压力时的稳定计算
非常运用:
(1)库水位骤降时的上游坝坡的计算
(2)施工期(含竣工期)考虑孔隙水压力上下游坝坡稳定计算
(3)地震情况下,上下游坝坡计算
(4)校核水位时下游坡的计算
四、稳定分析方法
强度分析法和刚体极限平衡法。
1、圆弧滑动法:针对粘性土的坝坡;
2、折线滑动法:针对非粘性土的坝坡;
图6-18 坝坡稳定计算示意图
图6-19 非粘性土坡稳定计算示意图。
土石坝滑坡的原因及预防防护措施和加固措施土石坝是一种常见的水利工程结构,用以堵塞河道或沟渠,形成水库或调节水流。
然而,由于地质条件、工程设计或施工等原因,土石坝滑坡的风险也相应增加。
本文将探讨土石坝滑坡的原因,并介绍预防防护措施和加固措施。
土石坝滑坡的原因主要可以归纳为以下几点:1.地质条件:地质构造、岩性及地下水位等因素对土石坝的稳定性有着重要影响。
例如,地质构造的断层或节理破碎带会导致土石坝滑坡的发生。
土石坝所处的地层的岩性、厚度和倾角等也会影响其稳定性。
此外,地下水位的升高或变化也可能引发土石坝滑坡。
2.设计和施工:不合理的设计和施工是土石坝滑坡的另一个重要原因。
设计阶段未充分考虑地质条件和水文地质特征,使得土石坝在实际运用中出现问题。
施工过程中,未严格按照设计要求进行操作,或者使用了低质量的材料,都会增加土石坝滑坡的风险。
3.自然灾害:地震、洪水和降雨等自然灾害是引发土石坝滑坡的重要因素。
地震会引起土体的震动,进而导致土石坝的破坏。
洪水和降雨会使土石坝饱和,增加土石坝滑坡的可能性。
为了预防土石坝滑坡的发生,需要采取一系列的防护措施和加固措施:1.地质勘察和监测:在土石坝建设前,应进行详细的地质勘察,了解地质条件、地下水位及地质构造等情况。
同时,还应建立完善的地质监测系统,实时监测土石坝的变形和应力状况,及时发现问题。
2.合理设计和施工:土石坝的设计和施工应充分考虑地质条件和水文地质特征,采用合理的坝型和材料。
在施工过程中,要严格按照设计要求进行操作,确保质量和稳定性。
3.加强排水系统:土石坝的排水系统对于保持土体稳定起着重要作用。
应合理设置排水管道和溢流设施,及时排除土体内部的水分,降低土体饱和度。
4.加固土体:对于已建成的土石坝,可以采用加固措施来提高其稳定性。
常见的加固措施包括增加坝体自重、加固坝体底部、加装防渗层、增设抗滑桩等。
5.加强监测和维护:对土石坝进行定期的监测和维护工作至关重要。
水利工程中土石坝坝坡稳定分析【摘要】水利工程中最重要的基础设施就是堤坝,而目前我国有很多堤坝都是以土石坝的结构方式建筑的,这是因为土石坝具有施工简便、成本低廉、抗震耐久等很多优点,是以在堤坝结构中有着广泛的应用。
堤坝的安全稳定对于水利工程的正常运行以及下游居民的安全都有着重要的意义,尤其是保证土石坝的安全稳定,更是非常有必要的。
本文通过分析土石坝坝坡失稳的危害及原因,探讨相应的解决对策。
【关键词】水利工程;土石坝;坝坡稳定;失稳原因;解决对策
我国的水利工程在建国后大批上马,很大程度上促进了国民经济的发展,为社会主义建设提供了强有力的支持,由于水利工程对国家建设的很多方面都有积极的促进作用,所以水利工程施工技术的发展也很迅猛,极大的支持了水利工程的建设,保障了工程的质量。
由于土石坝大部分的由当地的土石混合料建筑而成,因此其坝体结构的整体性较差,在长期的水流冲击作用下,很可能会导致坝坡失稳的现象发生。
据统计,几乎所有的土石坝都存在着不同程度的坝坡失稳现象,而产生这些坝坡失稳现象的原因除了因土石坝自身具有的特点因素以外,还有其他的一些外在因素的影响,如建筑施工中施工技术较为落后,施工质量没有得到保障,堤坝常年使用却没有得到良好的维修养护等等,都会造成坝坡失稳,降低了土石坝的效益,甚至会导致严重的水利工程安全事故。
1.水利工程中土石坝坝坡失稳的危害
相对于其他坝体结构的堤坝来讲来讲,土石坝是比较容易引起坝坡失稳现象的,而坝坡失稳一旦形成滑坡,就会从产生极大的危害,后果也极其严重。
土石坝的滑坡会摧毁修建在山坡脚下或沟口的建筑设施或居民房屋,若其下方有公路、铁路或桥梁,也会遭到严重破坏,导致交通中断,人员伤亡。
另外,由于坝坡失稳,滑坡会使大量土石混合料滑入水库中,使水库水位上涨,当水位漫过坝顶高度或产生涌浪时,就会使得河水泛滥,甚至会引起堤坝失事,给下游的田地、城镇、建筑以及人民的人身安全都带来巨大的损害。
因此,加强土石坝坝坡稳定性分析,及时发现坝坡失稳现象的发生,采取有效措施防治失稳滑坡,是目前水利工作技术人员所关注的重点问题。
2.土石坝坝坡失稳滑坡的原因分析
通常当土石坝坝坡稳定性较差时,都会产生不同程度的滑坡现象,而导致土石坝稳定差的原因有很多种,通常会在其中一种或几种的因素影响下,才会造成滑坡现象,继而带来巨大的社会影响。
笔者通过调查分析,总结整理出以下几点引起土石坝坝坡失稳滑坡的因素:
2.1内部因素
土石坝结构松散,抗剪强度和抗风化能力较低,坝体在水作用下性质发生变化,组成坝体的岩、土体被各种构造面切割分离成不连续状态,坝体坡度过陡,地下水对岩土体的软化作用,以及其他
各种因地质原因而引起的土石坝坝坡失稳滑坡。
2.2外部因素
地壳运动及气候变化对土石坝滑坡的诱发作用。
主要的诱发因素有,地震、降雨和融雪、地表水的冲刷、浸泡、河流等地表水体对斜坡坡脚的不断冲刷,海啸、风暴潮、冻融等作用也可诱发滑坡,滑坡对水利工程的破坏极其严重,后果不堪设想,虽然都是不可抗拒力的破坏活动,但是我们可以在建设之初就要考虑到遭受这类灾害的可能,并通过提高设计与施工水平,增加工程对于此类灾害的抵抗力。
2.3人为因素
人类工程活动的频繁是引起土石坝滑坡的重要因素,如开挖坡脚,修建铁公路、依坝建房、建厂等工程,常常因使坝体下部失去支撑而发生下滑。
蓄水、排水均易使水流渗入坡体,加大孔隙水压力,软化岩、土体,增大坝体容重,从而促使或诱发土石坝滑坡的发生。
在运行管理方面,放水时库水位降落太快,使上游坝体的孔隙水下降速度远跟不上库水位,形成很大的孔隙水压力而造成滑坡。
3.坝坡失稳的防治
由于土石坝坝坡失稳会产生严重的危害,因此,必须加强对土石的维护管理,提高对土石坝稳定性的检测技术,加大检查力度,以便及时发现坝坡失稳,提早防治,将坝坡失稳带来的危害降低到最小。
以下几点建议是笔者结合实地考察、资料研究和自身经验得
出的解决土石坝坝坡失稳问题的对策,以供同行参考借鉴。
(1)对于已建水库,要结合原始的坝体和坝基物理力学指标、施工、筑坝土料控制、碾压质量、接缝处理等综合分析,选取可靠的计算参数,条件允许时可进行现场取样试验,取得物理力学指标作为计算参数,作为坝坡稳定安全复合时的设计指标。
了解库区已有滑坡和崩塌的地点,不同岩层特别是软弱泥质岩层的发布,查明附近有无断层、断裂。
以利于根据实际情况采取相应措施进行处理整治。
(2)研究重点区的地质情况,预测可能滑坡的地点和规模。
对可能滑坡的库岸,通过钻孔了解滑体的厚度和滑动面的位置,确定滑动面抗剪强度。
然后结合地质、地貌分析,确定若干滑动面,并进行岸坡的稳定计算和模型试验,以论证岸坡是否稳定,并对可能滑动地段估算其滑落体积。
(3)修筑支挡工程。
若土石坝在修建时使坝体的上半部分结构体积较大而坝基部分体积较小时,易使坝坡失稳,产生滑坡,这种情况下可以采用削坡减重的方法,使土石坝的重心降低,提高坝坡稳定性。
而当因失去支撑而滑动较快的滑坡,可采用修筑支挡工程的办法,增加滑坡的重力平衡条件,使滑体迅速恢复稳定。
(4)改善滑动带的土石性质。
一般采用焙烧法、爆破灌浆法等物理化学方法对滑坡进行整治。
由于滑坡成因复杂,影响因素多,因此需要上述几种方法同时使用,综合治理,方能达到目的。
通过一定的工程技术措施,改善边坡岩土体的力学强度,提高其抗滑力,
减小滑动力。
(5)边坡人工加固。
常用的方法有:①修筑挡土墙、护墙等支挡不稳定岩体;②钢筋混凝土抗滑桩或钢筋桩作为阻滑支撑工程;
③预应力锚杆或锚索,适用于加固有裂隙或软弱结构面的岩质边坡;④固结灌浆或电化学加固法加强边坡岩体或土体的强度。
(6)合理地进行震区工程建设。
库区建筑应尽量避开滑坡,在设计上尽可能少对边坡进行开挖,严禁盲目乱开、乱采和乱堆废矿渣以防止破坏山体的稳定性。
保护植被是防止水土流失的一种有效方法,它不仅可以防止滑坡和泥石流的发生,还可以改善生态环境。
(7)限制库水位降落过快。
在管理运用期间,要做好调度运用计划,按照计划执行,防止水库大量宣泄,水位降落快,以致坝内渗水不能及时排除,产生反向渗透压力,造成裂缝,严重者滑坡。
土坝建后,在运行期间,发现坝基有淤泥层未处理,出现坝体滑坡裂缝,可以采取放缓坝坡。
如果淤泥层含水量过高,也可以采用滤水并辅以排水反滤固结。
(8)当地基处理不彻底,渗透稳定遭到破坏,产生流土、管涌时,则应在坝的上游加强防渗措施,在下游做好反滤导渗减压设施,以控制坝基渗流稳定,防止产生裂缝坍陷。
坝面上不得堆存大量料物,特别是上下游马道上,以免造成裂缝滑坡。
防止坝下游坡脚滤水坝址被淤塞,排水不畅,坝体浸润线抬高,坝坡渗水,土料抗剪强度减低而出现裂缝,影响坝坡的稳定。
在坝下游坡渗水区内,设置纵横向排水沟,填入反滤料,以利排水,降低浸润线,稳固坝坡。
4.结语
土石坝是目前我国水利工程建设中应用最为广泛的一种堤坝结构,保证其坝坡的稳定对于提高水利工程的经济效益和社会效益有着重大的意义,同时坝坡的稳定也能够保证下游居民的人身财产安全。
因此,对于土石坝的坝坡稳定分析是很有必要的,通过对坝坡稳定的分析,可以明确产生坝坡失稳滑坡的因素,以利于水利技术人员针对不同的情况采取有效措施进行防范治理,最大程度的保证土石坝的稳定,降低坝体失事的发生率。
[科]。