土石坝的稳定分析
- 格式:ppt
- 大小:2.60 MB
- 文档页数:26
1引言土石坝稳定性分析常用的方法主要是极限平衡法和有限元法。
极限平衡法以毕肖普法、摩根斯顿-普赖斯法、Spencer法、Sarma法、楔形体法等[1-4]为代表,有限元法以强度折减法[5]为代表。
随着土地本构模型(摩尔库仑模型、邓肯张模型、Drucker-Prager模型等)理论应用成熟和有限元软件开发应用,强度折减法越来越多地应用到工程实际,为工程设计提供印证,如边坡、坝坡、隧道、基坑等有限元分析,并趋于成熟。
近年来,国内学者对强度折减法的应用开展了大量工作:李小春[6]采用强度折减法对边坡的多滑面进行了模拟,认为该方法得到的多级滑动面与现场监测数据吻合较好。
王曼等[7]采用ABAQUS软件的强度折减法分析了边坡的稳定性,确认其计算结果的合理性。
王作伟等人[8]采用强度折减方法计算了边坡的极限上限,对比验证强度折减法与传统极限平衡法具有良好的适应性。
雷艳等[9]采用强度折减法对土石坝坝坡进行稳定分析,得出的安全系数与塑型区域可为工程提供借鉴。
以上研究均取得了较好的研究成果,表明强度折减法用于工程实际分析边坡、坝坡稳定性是可行合理的。
故本文基于以上研究,采用ABAQUS软件结合强度折减法对某均质土石坝进行稳定性分析计算,并从水利工程建设管理的角度,浅析建设管理对工程质量的控制。
2强度折减法所谓强度折减法是指给一强度折减系数F r[10],采用公式(1)和(2)将土体抗剪强度指标进行降低,导致土体逐渐失稳,土体单元发生塑性变形,当临界失稳时,折减系数就是边坡对应的安全系数。
具体公式如下所示:c m=c/F r(1)φm=arctan(tanφ/F r)(2)式中,c和φ为土体的抗剪强度指标(粘聚力和内摩擦角);c m和φm是折减后的抗剪强度;F r是强度折减系数。
强度折减法精髓在于降低土地的抗剪强度指标,使土地单元应力不能配套而失稳。
3土石坝稳定性分析某均质土石坝,最大坝高100m,正常蓄水位在坝高90m处,坝顶宽8m,上下游坡比为1∶3√,坝体材料密度为2200kg/m3,强度参数如表1所示。
土石坝渗透及稳定性分析探讨摘要:渗流问题是土石坝安全的关键,渗流控制是土石坝建设的重中之重。
在渗流控制措施上,随着渗流控制理论的发展,由原来的以防为主逐渐向防渗、排渗和反滤层三者相结合。
本文从土石坝渗漏问题、防渗措施、有限元渗流场计算的基本数学模型三个方面进行介绍。
关键词:土石坝渗透稳定性随着我国水利水电建设的快速发展和“西电东输”水电项目的实施,众多高土石坝的建设被提上了日程,特别在深厚覆盖层河谷,地质条件差,地震烈度高,多数坝高较大(尤其200m以上)的大坝选择或拟选择建土石坝。
渗流和渗透控制是土石坝工程中的一项极其重要的课题,直接关系到工程的安全和投资。
土石坝施工简便,地质条件要求低,造价便宜,并可就地取材且料源丰富,是水利水电工程中极为重要的一种坝型。
土石坝坝体用散粒材料填筑,挡水后上下游的水头差引起了水流渗过坝体、坝基及两岸坡向下游排出。
由于勘测设计缺陷、施工不良、管理运行不当以及渗流、地震等,都会使土石坝体及其坝基发生缺陷病害,甚至垮坝失事。
在土石坝中,坝体和坝基的渗漏较为频繁,许多中、小型病库,就是因为坝身、坝基等产生渗漏造成险情。
一、土石坝渗漏问题(一)坝基渗漏。
坝基渗漏主要有以下两种渗漏方式:一是铺盖裂缝产生的渗漏。
铺盖裂缝一般是由于施工时防渗土料碾压不严,达不到所要求的容重或铺土时含水量过大, 固结时干缩而产生裂缝;或基础不均匀沉陷时铺盖被拉裂;或铺盖下没有做好反滤层,水库蓄水后在高扬压力下被顶穿破坏;也有施工时就近取土,破坏了覆盖层作为天然铺盖的防渗作用。
二是心墙下截水墙与基础接触冲刷破坏。
截水墙与基础的接触边界是最容易形成渗流通道的薄弱环节。
在截水墙下游与基础接触边界处设置反滤层失效,导致接触冲刷,坝体和基础土料被带走,就会造成坝体严重破坏。
(二)坝身渗漏。
土石坝常因斜墙、心墙等防渗体裂缝形成渗流的集中通道,导致管涌的发生,甚至引起坝体的失事破坏。
具体地讲有以下几种情况:一是心、斜墙裂缝漏水。
土石坝边坡稳定分析与计算方法土石坝作为常见的水利工程构筑物,在防洪、供水、发电等方面发挥着重要的作用。
土石坝边坡稳定性是影响其安全运行的关键因素之一,因此边坡稳定性分析与计算方法十分重要。
本文将介绍土石坝边坡稳定性分析与计算方法的基本理论和应用技术。
一、土石坝边坡稳定性基本理论土石坝边坡稳定性分析的基本理论包括弹性地基理论、破坏力学理论、岩土力学和数值计算方法等。
1.弹性地基理论弹性地基理论是建立在弹性力学基础上的一种土体稳定性分析方法。
其核心思想是将土体与石坝看成一体,在一定的约束条件下,求解土坝体系和地基的弹性应力和应变分布,评估土石坝边坡的稳定性。
这种方法适用于土石坝边坡倾角较小、地基水平变形和竖向应力分布较均匀的情况。
2.破坏力学理论破坏力学理论是通过破裂力学和变形理论相结合的方法,对土石坝边坡的稳定性进行分析。
其核心思想是土体在受力作用下,随着剪切应力和水平应力的增加,会发生变形和破裂,并使边坡处于不稳定状态。
通过破坏力学理论,可以预测土石坝边坡的破坏形式,如滑坡、倾斜、涌浅等。
3.岩土力学岩土力学是土石坝边坡稳定性分析的重要理论基础,它研究土、岩体在地下工程中受力、应力、变形、破坏和稳定性等问题。
其核心思想是通过分析土石坝边坡的岩土力学性质,如强度、压缩模量、剪切模量、抗裂性、渗透性等,预测边坡在不同条件下的稳定性。
4.数值计算方法数值计算方法是通过数学和计算机技术,对复杂的土石坝边坡稳定性问题进行求解的方法。
其核心思想是将边坡分割成若干个小单元,通过模拟不同荷载条件下的应力和变形情况,预测边坡在不同条件下的稳定性。
常用的数值计算方法包括有限元法、有限差分法和边界元法等。
二、土石坝边坡稳定性计算方法1.经验法经验法是一种基于工程经验、检验和修改的方法。
这种方法一般适用于经验较丰富、边坡较小且地质条件比较安全的情况。
其中常用的经验法有刘安钦法、耐均匀法等。
2.解析方法解析方法是通过对已知物理或参考问题进行分析,求解所需要的未知物理的方法。
土石坝稳定性分析与监测技术研究土石坝作为一种常见的人工坝工程,被广泛应用于水利、环保、能源和交通等领域。
然而,土石坝在长期使用中可能会出现稳定性问题,如滑坡、渗漏和裂缝等,对人们的生命财产安全和环境造成潜在威胁。
因此,对土石坝稳定性进行分析与监测技术的研究具有重要意义。
土石坝稳定性分析是研究土石坝结构是否具有足够的抗滑、抗倾覆和抗压能力的过程。
这一过程通常包括以下几个方面:土石坝的力学特性分析、坝体稳定性分析、滑坡分析以及抗震分析与设计。
首先,土石坝的力学特性分析是对土石材料的力学性质进行研究,包括孔隙比、饱和度、黏聚力和内摩擦角等参数的测定。
这些参数对于土石坝的稳定性具有重要影响。
其次,坝体稳定性分析是通过计算土石坝的滑动力和倾覆力,来评估坝体的稳定性。
滑坡分析是为了识别和预测土石坝可能发生的滑坡形式和程度,从而采取相应的防治措施。
最后,抗震分析与设计是为了保证土石坝在地震作用下能够充分发挥其抵御震害的能力。
土石坝稳定性监测技术是对土石坝运行过程中各种物理量(如温度、应变、压力和位移等)进行实时监测和分析,以判断土石坝是否存在异常情况。
稳定性监测技术广泛应用于土石坝的建设和运维过程中,能够及时发现和处理土石坝的安全问题。
常见的土石坝稳定性监测技术包括激光位移计监测、水平位移测量、孔隙水压力测量和应力监测等。
激光位移计监测技术通过激光束的测量和分析,可实时监测土石坝的位移变化。
水平位移测量技术可以通过测量土石坝结构的水平位置和变形来评估坝体的稳定性。
孔隙水压力测量技术通过在土石坝内部埋设压力传感器,实时监测土石坝内部的水压力变化。
应力监测技术可以通过测量土石坝结构的应变来评估坝体的稳定性。
土石坝稳定性分析与监测技术的研究对于确保土石坝的安全运行具有重要意义。
通过分析土石坝的力学特性和稳定性,可以预先识别潜在的稳定性问题,并采取相应的措施来加固坝体结构。
同时,通过实时监测土石坝的物理量变化,可以及时发现坝体的异常情况,并采取措施进行修复和调整。