§2.2 等差数列(1)导学案
- 格式:doc
- 大小:120.00 KB
- 文档页数:1
2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
张喜林制2.2.1 等差数列教材知识检索考点知识清单1.等差数列的定义:一般地,如果一个数列从第 项起,每一项与它的前一项的 都等于____ ,那么这个数列就叫做等差数列.这个常数d 叫做等差数列的 .2.等差数列的单调性:等差数列的公差 时,数列为递增数列;等差数列的公差 时,数列为递减数列; 等差数列的公差 时,数列为常数列.等差数列不会是 .3.等差数列的通项公式=n a4.要证明数列}{n a 为等差数列,只要证明:当2≥n 时,要点核心解读1.等差数列的定义在等差数列的定义中,要强调“从第二项起”和“同一常数”,这体现了等差数列的基本特征,还要注意公差是“每一项与它前一项的差”,防止将被减数和减数颠倒,如果用数学符号来描述,可叙述为:若d n d a a n n ,2(]≥=-- 为常数),则}{n a 是等差数列.还可以写成:若d N n d a a u n ,1++∈<=- 为常数),则}{n a 是等差数列.[注意] 以上定义中的常数是相对于变量n (项数)而言的.2.等差中项如果a 、b 、c 成等差数列,则称b 是a 与c 的等差中项,由以上定义知:b 是a 与c 的等差中项甘a 、b 、c 成等差数列22c a b b c a +=⇔=+⇔ 3.等差数列的判定(1)用定义判定:即判定d a a n n =-+1(常数))(+∈N n 或122++=+n n n a a a (即)112n n n n a a a a -=-+++ 是否成立.(2)用通项公式判定:即用}{n a 为等差数列q pn a n +=⇔q p 、(为常数)判定.4.等差数列的通项公式及其变式通项公式:d n a a n )1(1-+=(其中1a 为首项,d 为公差).变式1:).()(⋅=/-+=m n d m n a a m n变式2:).2(11+∈≥--=N n n n a a d n 且 变式3:).(m n m n a a d m n =/--= [注意] (1)等差数列的通项公式是关于变量n (项数)的一次函数或常数函数(d=0时),因此在解决有关问题时,可用函数方法处理.(2)等差数列的通项公式实质是d a n a n ,,,1四者之间的关系式,只要知道其中三个的值,由它们便可求出另一个的值,特别地,要求等差数列的通项公式,只需先求出首项1a 和公差d5.等差数列的性质(1)等差数列}{n a 中,⋅∈-=-+),()(N m n d m n a a m n(2)若a ,b ,c 成等差数列,则k mc k mb k ma +++,.,也成等差数列(m ,k 为常数).(3)等差数列}{n a 中,若,q p n m +=+则q p m n a a a a +=+).,,,(+∈N q p m n[特别注意] “数列}{n a 中,若,q p m +=则=m a ,,q P a a +是不成立的.(4)等差数列}{n a 中,若公差d>0,则数列}{n a 为递增数列;等差数列}{n a 中,若公差d<0,则数列}{n a 为递减数列.(5)等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按原来的顺序排列,构成的新数列不一定是等差数列,证明:假设从第p 项起,每隔q 项抽出等差数列的项,则组成的新数列是,,,,32q p q q p p a a a a +++ρ ,,)1(q n p a -+ 则有--+q n p a )1(=-+q n p a )2(---+]1)1({q n r p qd d q n p =--+]}1)2([为常数所以等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,显然,剩下的项按原来的顺序排列,构成的新数列不一定是等差数列.(6)若数列}{n b 也是公差为d 的等差数列,则数列+n a 1{λ212}(λλλh n b 是常数)是公差为d )(21λλ+ 的等差数列.证明:因为,)1(,)1(11d n b b d n a a n n -+=-+=所以+n a ]λ])1([112d n a b n -+=λλ-++n b ([12λ,))(1()(]12]1211d n b a d λλλλ+-++=)所以=+--1211n n b a λλ+11[a λ+-])2(d n ])2([12d n b -+λ =)2()(1211-++n b a λλ+](λ,)2d λ所以=+-+--)()(121121n n n n b a b a λλλλ.)(21d λλ+所以数列2121,}{λλλλ<+n n b a 是常数)是公差为d )(21λλ+的等差数列.利用等差数列的性质可使有些问题的解题过程十分简捷.6.等差数列与一次函数的关系通项公式,)1(11d a dn d n a a n -+=-+=即n a 是n 的一次函数式,故表示等差数列各项的点都在一条直线上.如:首项为l ,公差为2的等差数列的通项公式为,12-=n a n 相应的图象是直线12)(-=x x f 上均匀排列开的无穷多个孤立的点,如图2 -2 -1 -1所示,由函数的图象可得等差数列的单调性:当d>0时,数列}{n a 为递增数列(图2 -2 -1-2甲);当d<0时,数列}{n a 为递减数列(图2 -2 -1-2乙);当d=0时,数列}{n a 为常数列(图2 -2 -1-2丙).请注意图象,公差d 恰好为所在直线的斜率,因此有=d ,(n m n m a a n m =/--斜率公式). 典例分类剖析考点1 等差数列的概念命题规律(1)判断所给出的数列是否为等差数列.(2)判断某一项或某些项是否为等差数列中的项.(3)证明某一数列为等差数列.[例1] (1)求等差数列8,5,2,…的第20项;(2) -401是不是等差数列-5,-9,-13,…中的项?如果是,是第几项?(3)若数列}{n a 的通项⎩⎨⎧≥+==),2(12),1(1n n n a n 试问数列}{n a 是等差数列吗? [解析] 第(1)小题是求等差数列的指定项,我们可以先求出首项1a 和公差d ,然后将它们代入等差数列的通项公式,即可求出相应的项,第(2)小题是判断一个数是否为一个等差数列的项,只需令此数等于通项公式,并求解此方程,如果它有正整数解,则此数为该数列的项,否则不是.[答案] (1) 由,20,385,81=-=-==n d a 得.49)3()120(820-=-⨯-+=a(2)由,4)5(9,51-=---=-=d a得到这个数列的通项公式为).1(45---=n a n设-401=-5 -4(n -1)成立.解这个关于n 的方程,得n=100.∴ -401是这个数列的第100项.(3)数列}{n a 不是等差数列,根据等差数列定义,一个数列是等差数列的充要条件是从第二项起,每一项与前一项的差都等于同一个常数,而此数列中虽然有,23423==-=- a a a a 但是,2412=/=-a a 因此此数列不满足等差数列的条件,所以它不是一个等差数列,但可以这样说:此数列从第2项起组成一个等差数列.[启示]d a ,]和n 是等差数列的三个基本量,有关等差数列的问题都可以利用这三个基本量来求解这种方法称为基本量法.[例2]在等差数列}{n a 中,已知,5,1185==a a 求⋅10a[解析] 由题目可获取以下主要信息:已知等差数列中的某两项,求另外一项,解答本题可利用通项公式进行.[答案] 设数列}{n a 的公差为d .由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得⎩⎨⎧-==.2,191d a 故.212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a[规律方法] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 1.若,2b c a =+则是否有++c b c a (),5(22)(),2b ac a +能构成等差数列.考点2 等差数列的性质及应用命题规律(1)考查对性质的灵活运用.(2)利用等差数列的性质解决一些计算繁琐的问题,达到减小计算量,优化解题过程的目的.[例3] (1)在等差数列}{n a 中,==++642741,15a a a a a a ,45求数列的通项公式;(2)设}{n a 为等差数列,若,45076543=++++a a a a a 求,82a a +(3)若数列}{n a 为等差数列,),(,q p p a q a q p =/==求⋅+q p a[答案] ,2)1(62471a a a a a +==+.1354741==++∴a a a a10,5624=+∴=∴a a a 且.962=a a62,a a ∴是方程09102=+-x x 的两根,⎩⎨⎧==∴9,162a a 或⎩⎨⎧==1,962a a 若12=a 且,96=a 则.32,2-=∴=n a d n同理可得.213n a n -=故32-=n a n 或.213n a n -=(2)解法一:,28256473a a a a a a a +==+=+.0455576543==++++∴a a a a a a.1802,905825==+∴=∴a a a a解法二:因为}{n a 为等差数列,设首项为,1a 公差为d ,+=++++++=+++∴11117435632a d a d a d a a a a ,20d 即d a d a 4,45020511+∴=+ ,90=.180********=+=+++=+∴d a d a d a a a(3)解法一:可用通项公式求解,,)1(,)1(11d q a a d p a a q p -+=-+=①⎩⎨⎧=-+=-+∴.)1(,)1(11p d q a q d p a 两式相减,得⋅-=-p q d q p )(.1,-=∴=/d q p 代入①,有.1,)1)(1(11-+=∴=--+q p a q p a故.0)1()1(1)1(1=-⋅-++-+=-++=+q p q p d q p a a q p解法二:利用关系式d m n a a m n )(-+=求解,,)(,)(d q p p q d q p a a q p -+=∴-+=即.1,.)(-=∴=/-=-d q p d q p p q故.0)1()][(=-+=-++=+q q d p q p a a p q ρ解法三:利用一次函数图象求解.不妨设p<q ,由于等差数列中,n a 关于n 的图象是一条直线上均匀排开的一群孤立的点,故三点 ,(),,q a p p (),(),q p q a q p a ++共线.设,m a q p =+由已知得三点),(),,(),,(m q p p q q p +共线(如图2 -2 -1-3).由 △ABE ∽ △BCF 得,CFBF BE AE = pm p q q p m p p q p q -=∴-+-=--∴1)( 得,0=m 即.0=+q p a[启示] (1)等差数列性质q p n m +=+“且,,,p n m ”q p n m a a a a N q +=+⇒∈+是否可推广为“若,,+∈N n m 则+m a ”?n m n a a +=不行.例如,当n a n 213-=时,则,854=+a a 而.59-=a 显然 ,n m n m a a a +=/+但该性质可推广为三项情形,即s q p t n m ++=++且+⇒∈+m a N s q p t n m ,,,,,”s q p t n a a a a a ++=+以及四项乃至一般情形,只要两边项数一样,且下标和相等即可,请你完成它的证明.(2)上述各种解法无不体现了等差数列性质的灵活运用.母体迁移 2.等差数列}{n a 中:(1)若,,147n a m a ==则=21a(2)若,1531-=++a a a 则=++++54321a a a a a(3)若,52.,34525432==+++a a a a a a 且,24a a >则=5a(4)若,53=a 则=+412a a考点3 等差数列的通项公式命题规律(1)利用解方程组的方法求1a 和d ,从而求出通项公式.(2)利用通项公式及其变形形式解决一些简单的问题[例4] (2010年辽宁省部分重点中学联考题)在等差数列{n a }中,已知,5,1185==a a 求⋅10a[答案] 方法一:设数列}{n a 的公差为d ,由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得 ⎩⎨⎧-==.2,191d a 故 .212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a 方法二:,,)(m n a a d d m n a a m n m n --=∴-+=,231155858-=-=--=∴a a d .1)2(252810=-⨯+=+=d a a[方法技巧] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 3.已知两个等差数列 ,11,8,5:}{n a 与,,11,7,3:}{ n b 它们的项数均为100项,则它们有多少个彼此具有相同数值的项?考点4 等差数列与一次函数命题规律(1)深刻理解等差数列,进一步理解数列是一特殊的函数,特例是等差数列是一次函数,其中公差d 为斜率.(2)可用函数的性质来处理等差数列问题.[例5] 已知(1,1),(3,5)是等差数列}{n a 图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.[答案] (1)由于(1,1),(3,5)是等差数列}{n a 图象上的两点,所以,5,131==a a 由1213=+=d a a,52=+d 解得,2=d 于是.12-=n a n(2)图象是直线12-=x y 上一些等间隔的点(图略).(3)因为一次函数12-=x y 是增函数,所以数列}{n a 是递增数列.[启示] 本题综合考查数列的通项公式、图象和性质.母体迁移 4.已知数列}{n a 的通项公式为+=2pn a n qn (常数).,R q p ∈(1)当p ,q 满足什么条件时,数列}{n a 是等差数列?(2)求证:对于任意的实数p 和q ,数列}{1n n a a -+是等差数列.考点5 等差数列模型的实际应用命题规律(1)利用等差数列的知识从实际问题中抽象出等差数列的模型.(2)通过构造等差数列的模型去解决实际问题.[例6] 某人有七位朋友,第一位朋友每天晚上都去他家看他,第二位朋友每隔一个晚上到他家去,第三位朋友每隔两个晚上去他家串门,第四位朋友每隔三个晚上去他家做客.依此类推,直至第七位朋友每隔六个晚上在他家出现.这七位朋友昨晚在主人家中碰面,他们还会同一个晚上在主人家中碰面吗?[答案] 第一位朋友每天晚上在主人家;第二位朋友以后在主人家中的天数为:2,4,6,8,…,这些数构成以2为首项,公差为2的等差数列,通项公式为:,2⋅=n a n第三位朋友以后在主人家中的天数为:3,6,9,…,这些数构成以3为首项,公差为3的等差数列,通项公式为:,3⋅=n a n第四、五、六、七位朋友晚上在主人家的天数分别构成以4,5,6,7为首项,公差为4,5,6,7的等差数列;通项公式分别为:;7,6,5,4n a n a n a n a n n n n ====他们要在同一晚上出现,这个数应为这七个数列的公共项,这一项是2,3,4,5,6,7的倍数,而2,3,4,5,6,7的最小公倍数为420,因此第420,840,1260,…天晚上他们会同时在主人家出现.母体迁移 5.为了测试某种金属热膨胀性质,将这种金属的一根细棒加热,从C 100开始第1次测量细棒长度,以后每升高C50测量一次,把依次量得的数据所成的数列}{n l 表示成图象如图2 -2 -1-4,根据图象解答下列问题:(1)第5次量得金属棒的长度是多少?此时金属棒的温度是多少?(2)求}{n l 的通项公式和金属长度L (单位:m )关于温度t 单位:℃)的函数关系式(设长度是关于温度的一次函数);(3)在C 30的温度条件下,如果把两块这种矩形金属板平铺在一个平面上,这个平面的最高温度可达到,500C o 问铺设时两块金属板之间至少要留多宽的空隙?优化分层测讯学业水平测试1.2006是等差数列4,6,8,…的( ).A .第1002项B .第1001项C .第1003项D .第1006项 2.在数列}{n a 中,),(122,211++∈+==N n a a a n n 则101a 的值为( ).49.A 50.B 51.C 52.D3.在等差数列中,),(,n m m a n a n m =/==则n m a +为( ).n m A -. 0.B 2.m C 2.n D4.设数列}{},{n n b a 都是等差数列,且=+==2211,75,25b a b a ,100则3737b a +等于( ). 0.A 37.B 100.C 37.-D5.在等差数列}{n a 中,若,45076543=++++a a a a a 则82a a +的值等于 6.若,b a =/两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为,,21d d 则=21d d 7.已知数列}{n a 中,,66,2171==a a 通项n a 是项数n 的一次函数,则通项公式=n a 8.体育场一角的看台座位是这样排列的:第一排有15个座位,从第二排起每一排都比前一排多2个座位.你能用n a 表示第n 排的座位数吗?第10排能坐多少个人?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意) 1.(2011年重庆高考题)在等差数列}{n a 中,,4,232==a a 则=10a ( ).12.A 14-B 16.C 18.D)23lg(2-⋅与)23lg(+的等差中项为( ).0.A 2323lg+-⋅B )625lg(-⋅C 1.D3.等差数列}{n a 中,),(,l m m a l a i m =/==则通项公式为( ).n l m a A n ++=. n m a B n -+=1. l m n a C n --=. 2.nl m a D n ++=4.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则=-||n m ( ). 1.A 43.B 21.C 83.D5.-个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( ).2.-A3.-B4.-C 6.-D 6.(2010年湖北黄冈调考题)已知数列}{n a 的前n 项和为=n s ,2n 则++++322111a a a a200620051a a ++的值是( ).214010.-A 214011.-B 214012.-C 214013.-D 7.(高考题改编)下表给出一个等差数阵,其中每行每列都是等差数列,⋅ij a 表示第i 行第J 列的数,则66a 的值是( ).50.A 43.B 24.C 58.D8.(2010年北京海淀区练习题)已知数列}{},{n n b a 都是公差为l 的等差数列,其首项分别为,11b a 、且∈=+1111,,5b a b a ⋅+N 设),(+∈=N n a c n b n 则数列}{n c 的前10项和等于( ).55.A 70.B 58.C 010.D二、填空题(本题包括4小题,每小题5分.共20分)9.(2009年上海高考题)已知函数.,tan sin )(x x x f +=项数为27的等差数列}{n a 满足),2,2(ππ-∈n a 且公差.0=/d 若+)(1a f ,0)()(272=++a f a f 则当=k 时,.0)(=k a f10.(2010年南京市调考题)将等差数列2,7,12,17,22,…中的数按顺序抄写在本子上,如下表所示,若每行写12个数,每页共15行,则数2007应抄在第 页第 行第 个位置上.11.(2010年苏州市模拟题)在正整数100至500之间能被11整除的整数的个数为 12.若)23lg(),23lg(,lg +-x x x 成等差数列,则=22log x三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)已知数列}{n a 为等差数列,,1c a =公差为l ,若=n b ),(122++∈-N n a a n n 试判断数列}{n b 是否为等差数列?并证明你的结论.14.(13分)(2010年东北八校联考题)已知数列}{n a 为等差数列,关于x 的方程2122++++i i i a x a x a),,,2,1(0n i ==且d d a i (0=/为公差). (1)这些方程是否有公共根?若有,求出它;若没有,请说明理由; (2)在方程有一个公共根的条件下,设另一个根为,i x 则⋅+++11,,11,1121n x x x 是否成等差数列?证明你的结论.15.(14分)(2010年北京模拟题)已知数列}{n a 和}{n b 满足关系式:⋅∈+++=+)(21N n na a ab nn (1)若,2n b n =求数列}{n a 的通项公式;(2)若}{n b 是等差数列,求证:}{n a 也是等差数列.。
§2.2 等差数列1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列,∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n=-1,易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1. ∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则a m b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3.答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下:因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0,所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列.二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 (1)∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5. 解方程组得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧a =4a (a 2-d 2)=48, ∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1.四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知: 当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n=⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝ ⎛⎭⎪⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1.六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.ij(1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列, 因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k=41k ,所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S nT n=5n +32n +7矛盾). 3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110. 故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90,∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.1.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数. 又由(1)知a m +2为奇数,所以a m+2=2m-3=±1,即m=1,2.经检验,符合题意的正整数只有m=2.赏析试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。
2.2等差数列性质预习案【学习目标】1.准确理解等差数列的性质,掌握由等差数列的通项公式研究其图象的方法,提高运算求解能力.2.通过对等差数列通项公式的推导和等差数列性质的探究,进一步渗透数形结合思想、函数思想及方程思想.3.激情参与、惜时高效,激励学生自主探究,发现规律,感受等差数列的内在奥妙. 【重点】:等差数列的性质. 【难点】:等差数列的性质的应用. 【学法指导】1. 阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法;2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.Ⅰ.相关知识1. 等差数列的通项公式是什么?与一次函数有什么关系?2. 利用等差数列的通项公式可以解决那些问题?3. 若a 、A 、b 成等差数列,则A 叫做a 、b 的________,即A=_______________4. 判断一个数列是否为等差数列的方法有哪些? Ⅱ.教材助读1.依据等差数列的概念,你能写出等差数列的通项公式吗?公差对数列的增减性有何影响?2.已知等差数列的公差为d ,第m 项为m a ,第n 项为n a (n>m )则n a =m a +_________3.已知一个等差数列的首项是1a ,公差为d ,(1)将数列的前m 项去掉,其余各项组成的数列是等差数列吗?如果是,它的首项和公差各是什么?(2)取出数列的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(3)取出数列中所有项数是7的倍数的项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(4)数列,,,543432321a a a a a a a a a ++++++......是等差数列吗?如果是,它的首项和公差各是什么?【预习自测】1.在△ABC 中,A 、B 、C 成等差数列,则B 等于( ) A .30 B.60 C.90 D.不能确定2.若{a n }是等差数列,则,,,543432321a a a a a a a a a ++++++987a a a ++,……,n n n a a a 31323++--,……( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D .一定是递减数列 3.已知等差数列{a n }中,741a a a ++=39,33852=++a a a ,则963a a a ++等于( ) A .30 B.27 C.24D.21【我的疑惑】探究案Ⅰ.质疑探究——质疑解惑、合作探究 探究一:等差数列的性质问题1:如果数列{a n}是等差数列,首项为a1,公差为d,则通项公式a n=____________=___________.其中变化的量为n,a n,则点(n,a n)在直线____________上;点(n,a n)的横坐标每增加1,函数值增加_____.问题2:等差数列的性质:已知一个等差数列{a n},其中首项是a1,公差为d,(1)下标成等差数列且公差为m的项a k,a k+m,a k+2m,…(k,m∈N*)组成公差为_____的等差数列.(2)a1+a2,a3+a4,a5+a6,…组成公差为_____的等差数列. a1+a2+…+a m,a m+1+a m+2+…+a2m,a2m+1+a2m+2+…+a3m,…组成公差为_____的等差数列.(3)若{b n}是公差为d0的等差数列,则数列{pa n+qb n}(p,q为常数)是公差为________的等差数列.(4)若{a n}是有穷等差数列,则与首末两项等距离的两项之和都_______,且等于_______________.(5)若正整数m,n,p,q满足m+n=p+q,则a m+a n与a p+a q相等吗?说明理由.(6)若m+n=2p,则a m+a n_____2a p,a m+a n_____a2p(填“=”或“≠”).【归纳总结】等差数列的性质有哪些?数列{a n}为等差数列,首项是a1,公差为d.(1)d>0,{a n}是递增数列;d<0,{a n}是递减数列;d=0,{a n}是常数列.(2)a n=a m+(n-m)d(m,n∈N*).(3)a1+a2+…+a m,a m+1+a m+2+…+a2m,…组成公差为m2d的等差数列.(4)a m,a2m,a3m,…,a km,…组成公差为md的等差数列.(5)若数列{b n}是公差为b的等差数列,p,q为常数,则{pa n±qb n}是公差为pd±qb的等差数列.(6)若m,n,p,q∈N*,且满足m+n=p+q,则a m+a n=a p+a q.探究二:等差数列性质的应用(重难点)【例1】若{a n}是等差数列,a15=8,a60=20,求a75的值. 【规律方法总结】等差数列{an}的性质:(1)a1+a n=a2+a n-1=….(2)m,n,p,q∈N*,且m+n=p+q a m+a n=a p+a q.(3)若m,n,p∈N*,且m,n,p 成等差数列,则a m,a n,a p成等差数列.(4)a n=a m+(n-m)d.(5)若数列{a n}是等差数列,则a n=an+b(a,b为常数,n∈N*).(6)若{a n}与{b n}均为等差数列,则{a n±b n}也是等差数列.【拓展提升】已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的通项公式.探究三:综合应用(重难点)【例2】数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8等于( )A.0B.3C.8D.11【规律方法总结】(1)求通项公式常用的方法:①不完全归纳法;②公式法;③叠加法;④累积法.(2)判断一个数列是等差数列常用的方法有:①定义法;②等差中项法;③函数法:若a n=an+b(a,b为常数),则数列{a n}是等差数列.(3)求数列的最大(小)项常用的方法:①不等式组法;②函数单调性判断法.Ⅱ.我的知识网络图训练案一、基础巩固------把简单的事做好就叫不简单!1.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( )A.15 B.30 C.31 D.642.已知{a n}是等差数列,a3+a11=40,则a6-a7+a8等于( )A.20 B.48 C.60 D.723. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( ).A.a1+a101>0 B.a2+a100<0 Ca3+a100≤0 D.a51=04.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m等于( ) A.4 B.6 C.8 D.125. 在等差数列{a n}中,a18=95,a32=123,a n=199,则n=________.6. 已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=_________7. 设数列{a n},{b n}都是等差数列, 若711=+ba,2133=+ba, 则=+55ba___。
2.1 等差数列的概念(1)一等奖创新教学设计4.2.1 等差数列的概念(1)(详案)通过研究最新版《普通高中课程方案及课程标准》,我按照“高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识”的要求,遵从“既要重结论,又要重过程”的现代教育理念,着眼于概念和结论的生成过程来上等差数列的概念(第一课时)这一节课。
教学模式对于这一节课的教学模式,我严格按照滨州市数学教研员王文清老师倡导的“自主学习与创新意识培养”数学课堂教学模式进行,大体按照以下7个环节展开:1.设计问题,创设情境;2.学生探索,尝试解决;3.信息交流,揭示规律;4.运用规律,解决问题;5.变练演编,深化提高;6.信息交流,教学相长;7.反思小结,观点提炼。
教材分析:等差数列是在学生已经学习了数列的有关概念,并且可以观察归纳得出通项公式之后的基础上对数列的知识进一步深入学习。
等差数列作为数列部分的主要内容,它起着承前启后的作用,是学生探究特殊数列的开始,为以后学习等差数列的求和、等比数列奠定基础,同时也培养了学生数学能力。
同学们在学习后续内容时,会感受到无论在知识上,还是在方法上这节的学习都具有积极的意义。
学情分析:高二的学生已经具有一定的理性分析能力和概括能力,并且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程。
以及对函数和方程思想有所体会,也能够应用数学公式解决简单问题。
但是他们的思维仍然需要依赖一定的具体实例来理解并抽象出数学概念,同时思维的严密性有待加强。
教学目标:1. 通过实例,让学生理解等差数列的定义,了解等差中项的定义及性质;2.使学生掌握等差数列的通项公式,体会等差数列通项公式与一次函数的关系;3. 让学生学会用等差数列的通项公式解决简单的数学问题.核心素养目标:数学抽象、数学运算、逻辑推理、数学建模。
教学重点:等差数列的定义、等差数列的通项公式及其运用.教学难点:等差数列定义的生成及通项公式的推导.教学过程:复习引入:引导语:同学们,我们上一节课学习了数列的定义、性质及其相关概念(如:通项公式、递推公式、前n项和等),并且知道了数列是一类特殊的函数。
§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学 ※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.5.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 一个式子 来表示,那么 这个公式 就叫做这个数列的通项公式.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,-12,13,-14;⑵1,0,1,0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系.反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.变式:已知数列5,11,17,23,29,…,则55是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.※动手试试练1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,13,15,17;⑵1,2,3,2 .练2. 写出数列2{}n n-的第20项,第n+1项.三、总结提升※学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项.※知识拓展数列可以看作是定义域为正整数集的特殊函数.思考:设()f n=1+12+13+…+131n-(n∈*N)那么(1)()f n f n+-等于()A.132n+B.11331n n++C.113132n n+++D.11133132n n n++++学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列说法正确的是().A. 数列中不能重复出现同一个数B. 1,2,3,4与4,3,2,1是同一数列C. 1,1,1,1…不是数列D. 两个数列的每一项相同,则数列相同2. 下列四个数中,哪个是数列{(1)}n n+中的一项().A. 380B. 392C. 321D. 2323. 在横线上填上适当的数:3,8,15,,35,48.4.数列(1)2{(1)}n n--的第4项是.5. 写出数列121-⨯,122⨯,123-⨯,124⨯的一个通项公式.课后作业1. 写出数列{2n}的前5项.2. (1)写出数列2212-,2313-,2414-,2515-的一个通项公式为.(2)已知数列3,7,11,15,19,…那么311是这个数列的第项.§2.1数列的概念与简单表示法(2)学习目标1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法.学习过程一、课前准备(预习教材P 31 ~ P 34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式?复习2:数列如何分类?二、新课导学 ※ 学习探究探究任务:数列的表示方法问题:全体正偶数按从小到大的顺序构成数列:2,4,6, (2)1. 通项公式法:试试:上面数列中n a 与项数n 之间关系的一个通项公式是 .2 .列表法:试试:上面数列中n a 与项数n 之间关系用列表法如何表示?n 1 2 3 …… n …… n a246……2n……3.图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y 轴的 侧,而点的个数取决于数列的 .从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.4. 递推公式法: 递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.反思:所有数列都能有四种表示方法吗?※ 典型例题例1 设数列{}n a 满足11111(1).nn a a n a -=⎧⎪⎨=+>⎪⎩写出这个数列的前五项.变式:已知12a =,12n n a a +=,写出前5项,并猜想通项公式n a .小结:由递推公式求数列的项,只要让n 依次取不同的值代入递推公式就可求出数列的项.例2 已知数列{}n a 满足10a =,12n n a a n +=+, 那么2007a =( ). A. 2003×2004 B. 2004×2005 C. 2007×2006 D. 22004变式:已知数列{}n a 满足10a =,12n n a a n +=+,求n a .小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. ※ 动手试试练1. 已知数列{}n a 满足11a =,223a =,且111120n n n n n n a a a a a a -+-++-= (2n ≥),求34,a a .练2.(2005年湖南)已知数列{}n a 满足10a =,1331n n n a a a +-=+ (*n N ∈),则20a =( ).A .0 B.-3 C.3 D.32练3. 在数列{}n a 中,12a =,1766a =,通项公式是项数n 的一次函数. ⑴ 求数列{}n a 的通项公式; ⑵ 88是否是数列{}n a 中的项.三、总结提升 ※ 学习小结1. 数列的表示方法;2. 数列的递推公式.※ 知识拓展n 刀最多能将比萨饼切成几块?意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n 刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n 刀最多与前n -1刀的切痕都各有一个不同的交点,因此第n 刀的切痕最多被前n -1刀分成n 段,而每一段则将相应的一块饼分成两块. 也就是说n 刀切下去最多能使饼增加n 块. 记刀数为1时,饼的块数最多为1a ,……,刀数为n 时,饼的块数最多为n a ,所以n a =1n a n -+. 由此可求得n a =1+2)1(+n n .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测1. 已知数列130n n a a +--=,则数列{}n a 是( ).A. 递增数列B. 递减数列C. 摆动数列D. 常数列2. 数列{}n a 中,2293n a n n =-++,则此数列最大项的值是( ).A. 3B. 13C. 1318D. 123. 数列{}n a 满足11a =,12n n a a +=+(n ≥1),则该数列的通项n a =( ). A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 4. 已知数列{}n a 满足113a =,1(1)2n n n a a -=- (n ≥2),则5a = .5. 已知数列{}n a 满足112a =,111n n a a +=-(n ≥2),则6a = .课后作业1. 数列{}n a 中,1a =0,1n a +=n a +(2n -1) (n ∈N ),写出前五项,并归纳出通项公式.2. 数列{}n a 满足11a =,12()2nn n a a n N a +=∈+,写出前5项,并猜想通项公式n a .§2.2等差数列(1)学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.学习过程一、课前准备(预习教材P 36 ~ P 39 ,找出疑惑之处) 复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?二、新课导学 ※ 学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征? ① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第 2 项起,每一项与它 前 一项的 差 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 公差 , 常用字母 d 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =探究任务二:等差数列的通项公式问题2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 典型例题例1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.例2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数.※ 动手试试练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+.2. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ).A. 2B. 3C. 4D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ;⑵已知13a =,21n a =,d =2,求n ;⑶已知112a =,627a =,求d ;⑷已知d =-13,78a =,求1a .§2.2等差数列(2)学习目标1. 进一步熟练掌握等差数列的通项公式及推导公式;2. 灵活应用等差数列的定义及性质解决一些相关问题.学习过程一、课前准备(预习教材P 39 ~ P 40,找出疑惑之处) 复习1:什么叫等差数列?复习2:等差数列的通项公式是什么?二、新课导学 ※ 学习探究探究任务:等差数列的性质1. 在等差数列{}n a 中,d 为公差, m a 与n a 有何关系?2. 在等差数列{}n a 中,d 为公差,若,,,m n p q N +∈且m n p q +=+,则m a ,n a ,p a ,q a 有何关系?※ 典型例题例1 在等差数列{}n a 中,已知510a =,1231a =,求首项1a 与公差d .变式:在等差数列{}n a 中, 若56a =,815a =,求公差d 及14a .小结:在等差数列{}n a 中,公差d 可以由数列中任意两项m a 与n a 通过公式m na a d m n-=-求出.例2 在等差数列{}n a 中,23101136a a a a +++=,求58a a +和67a a +.变式:在等差数列{}n a 中,已知234534a a a a +++=,且2552a a = ,求公差d .小结:在等差数列中,若m +n =p +q ,则 m n p qa a a a +=+,可以使得计算简化. ※ 动手试试练1. 在等差数列{}n a 中,14739a a a ++=,25833a a a ++=,求369a a a ++的值.练2. 已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个相同项?三、总结提升 ※ 学习小结1. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.2. 在等差数列中,公差m na a d m n-=-.※ 知识拓展判别一个数列是否等差数列的三种方法,即: (1)1n n a a d +-=; (2)(0)n a pn q p =+≠; (3)2n S an bn =+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一个等差数列中,1533a =,2566a =,则35a =( ).A. 99B. 49.5C. 48D. 492. 等差数列{}n a 中7916a a +=,41a =,则12a 的值为( ). A . 15 B. 30 C. 31 D. 643. 等差数列{}n a 中,3a ,10a 是方程2350x x --=,则56a a +=( ). A. 3 B. 5 C. -3 D. -54. 等差数列{}n a 中,25a =-,611a =,则公差d = .5. 若48,a ,b ,c ,-12是等差数列中连续五项,则a = ,b = ,c = .课后作业1. 若 12530a a a +++= , 671080a a a +++= , 求111215a a a +++ .2. 成等差数列的三个数和为9,三数的平方和为35,求这三个数.§2.3 等差数列的前n 项和(1)学习目标1. 掌握等差数列前n 项和公式及其获取思路;2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.学习过程一、课前准备(预习教材P 42 ~ P 44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?二、新课导学 ※ 学习探究探究:等差数列的前n 项和公式 问题:1. 计算1+2+…+100=?2. 如何求1+2+…+n =?新知:数列{}n a 的前n 项的和:一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S反思:① 如何求首项为1a ,第n 项为n a 的等差数列{}n a 的前n 项的和?② 如何求首项为1a ,公差为d 的等差数列{}n a 的前n 项的和?试试:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S . ⑴184188a a n =-=-=,,;⑵114.50.715a d n ===,,.小结:1. 用1()2n n n a a S +=,必须具备三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .※ 典型例题例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》. 某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元. 为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元. 那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?小结:解实际问题的注意:① 从问题中提取有用的信息,构建等差数列模型;② 写这个等差数列的首项和公差,并根据首项和公差选择前n 项和公式进行求解. 例2 已知一个等差数列{}n a 前10项的和是310,前20项的和是1220. 由这些条件能确定这个等差数列的前n 项和的公式吗?变式:等差数列{}n a 中,已知1030a =,2050a =,242n S =,求n .小结:等差数列前n 项和公式就是一个关于11n a a n a n d 、、或者、、的方程,已知几个量,通过解方程,得出其余的未知量.三、总结提升 ※ 学习小结1. 等差数列前n 项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在等差数列{}n a 中,10120S =,那么110a a +=( ).A. 12B. 24C. 36D. 482. 在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663. 已知等差数列的前4项和为21,末4项和为67,前n 项和为286,则项数n 为( ) A. 24 B. 26 C. 27 D. 284. 在等差数列{}n a 中,12a =,1d =-,则8S = .5. 在等差数列{}n a 中,125a =,533a =,则6S = .课后作业1. 数列{n a }是等差数列,公差为3,n a =11,前n 和n S =14,求n 和3a .§2.3 等差数列的前n 项和(2)学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习过程一、课前准备(预习教材P 45 ~ P 46,找出疑惑之处)复习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .复习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课导学 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 典型例题例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法. (1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值;当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 动手试试练1. 已知232n S n n =+,求数列的通项n a .三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法.※ 知识拓展等差数列奇数项与偶数项的性质如下: 1°若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=; 2°若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列数列是等差数列的是( ). A. 2n a n = B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ).A. 3B. 4C. 6D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 140 D. 1704. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?§2.4等比数列(1)学习目标1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系.学习过程一、课前准备(预习教材P 48 ~ P 51,找出疑惑之处) 复习1:等差数列的定义?复习2:等差数列的通项公式n a = , 等差数列的性质有:二、新课导学 ※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n aa -= (q ≠0)2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ; 24311()a a q a q q a === ; … …∴ 11n n a a q a -==⋅ 等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:※ 典型例题例1 (1) 一个等比数列的第9项是49,公比是-13,求它的第1项; (2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.小结:关于等比数列的问题首先应想到它的通项公式11n n a a q -=.例2 已知数列{n a }中,lg 35n a n =+ ,试用定义证明数列{n a }是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n ,1n na a +是一个不为0的常数就行了.※ 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?三、总结提升 ※ 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项n a 与m a 的关系.※ 知识拓展在等比数列{}n a 中,⑴ 当10a >,q >1时,数列{}n a 是递增数列; ⑵ 当10a <,01q <<,数列{}n a 是递增数列; ⑶ 当10a >,01q <<时,数列{}n a 是递减数列; ⑷ 当10a <,q >1时,数列{}n a 是递减数列; ⑸ 当0q <时,数列{}n a 是摆动数列; ⑹ 当1q =时,数列{}n a 是常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列,112a =,224a =,则3a =( ).A. 36B. 48C. 60D. 722. 等比数列的首项为98,末项为13,公比为23,这个数列的项数n =( ).A. 3B. 4C. 5D. 63. 已知数列a ,a (1-a ),2(1)a a -,…是等比数列,则实数a 的取值范围是( ). A. a ≠1 B. a ≠0且a ≠1 C. a ≠0 D. a ≠0或a ≠14. 设1a ,2a ,3a ,4a 成等比数列,公比为2,则123422a a a a ++= .5. 在等比数列{}n a 中,4652a a a =-,则公比q = .课后作业在等比数列{}n a 中, ⑴ 427a =,q =-3,求7a ;⑵ 218a =,48a =,求1a 和q ;⑶ 44a =,76a =,求9a ;⑷ 514215,6a a a a -=-=,求3a .§2.4等比数列(2)学习目标1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.学习过程一、课前准备(预习教材P 51 ~ P 54,找出疑惑之处)复习1:等比数列的通项公式n a = = . 公比q 满足的条件是复习2:等差数列有何性质?二、新课导学 ※ 学习探究问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G bG ab G a G=⇒=⇒=新知1:等比中项定义如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,b 同号).试试:数4和6的等比中项是 .问题2:1.在等比数列{n a }中,2537a a a =是否成立呢?2.211(1)n n n a a a n -+=>是否成立?你据此能得到什么结论?3.2(0)n n k n k a a a n k -+=>>是否成立?你又能得到什么结论?新知2:等比数列的性质在等比数列中,若m +n =p +q ,则m n p k a a a a =.试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a = .※ 典型例题例1已知{},{}n n a b 是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例 自选1 自选2 n a 23()3n ⨯n b152n --⨯n n a b 1410()3n --⨯{}n n a b 是否等比 是变式:项数相同等比数列{n a }与{n b },数列{nna b }也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列{n a }中,已知47512a a =- ,且38124a a +=,公比为整数,求10a .变式:在等比数列{n a }中,已知7125a a = ,则891011a a a a = .※ 动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5B. 三边之比为1:3:3C. 较小锐角的正弦为512-D. 较大锐角的正弦为512-练2. 在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56成等差数列,求a +b +c +d 的值.三、总结提升 ※ 学习小结1. 等比中项定义;2. 等比数列的性质.※ 知识拓展公比为q 的等比数列{}n a 具有如下基本性质:1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则{}n n a b,{}n n ab 也等比. 2. 若*m N ∈,则n m n m a a q -= . 当m =1时,便得到等比数列的通项公式. 3. 若m n k l +=+,*,,,m n k l N ∈,则m n k l a a a a = .4. 若{}n a 各项为正,c >0,则{l o g }c n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ).A. ±4B. 4C. 2D. 82. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ).A .8B .-8C .±8D .983. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列{}n a 中,569a a = ,则log 31a + log 32a +…+ log 310a = .课后作业1. 在{}n a 为等比数列中,1964a a = ,3720a a +=,求11a 的值.2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求1392410a a a a a a ++++.§2.5等比数列的前n 项和(1)学习目标1. 掌握等比数列的前n 项和公式;2. 能用等比数列的前n 项和公式解决实际问题.学习过程一、课前准备(预习教材P 55 ~ P 56,找出疑惑之处)复习1:什么是数列前n 项和?等差数列的数列前n 项和公式是什么?复习2:已知等比数列中,33a =,681a =,求910,a a .二、新课导学 ※ 学习探究探究任务: 等比数列的前n 项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n 项和公式设等比数列123,,,n a a a a 它的前n 项和是n S =123n a a a a +++ ,公比为q ≠0,公式的推导方法一:则22111111n n n nS a a q a q a q a q qS --⎧=++++⎪⎨=⎪⎩(1)n q S ∴-= 当1q ≠时,n S = ①或n S = ②当q =1时,n S =公式的推导方法二:由等比数列的定义,32121n n a a a q a a a -==== , 有231121n n n n na a a S a q a a a S a -+++-==+++- ,即1n n nS a q S a -=-.∴ 1(1)n n q S a a q -=-(结论同上)公式的推导方法三:n S =123n a a a a +++=11231()n a q a a a a -++++ =11n a qS -+=1()n n a q S a +-. ∴ 1(1)n n q S a a q -=-(结论同上)试试:求等比数列12,14,18,…的前8项的和.※ 典型例题 例1已知a 1=27,a 9=1243,q <0,求这个等比数列前5项的和.变式:13a =,548a =. 求此等比数列的前5项和.例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?※ 动手试试练1. 等比数列中,33139,.22a S a q ==,求及练2. 一个球从100m 高出处自由落下,每次着地后又弹回到原来高度的一半再落下,当它第10次着地时,共经过的路程是多少?(精确到1m )三、总结提升 ※ 学习小结1. 等比数列的前n 项和公式;2. 等比数列的前n 项和公式的推导方法;3. “知三求二”问题,即:已知等比数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若1q ≠-,*m N ∈,则232,,,m m m m m S S S S S --⋅⋅⋅构成新的等比数列,公比为m q .2. 若三个数成等比数列,且已知积时,可设这三个数为,,aa aq q. 若四个同符号的数成等比数列,可设这四个数为33,,,a aaq aq q q .3. 证明等比数列的方法有:(1)定义法:1n naq a +=;(2)中项法:212n n n a a a ++= .4. 数列的前n 项和构成一个新的数列,可用递推公式111(1)n n n S a S S a n -=⎧⎨=+>⎩表示.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 数列1,a ,2a ,3a ,…,1n a -,…的前n 项和为( ).A. 11n a a --B. 111n a a +--C. 211n a a+-- D. 以上都不对2. 等比数列中,已知1220a a +=,3440a a +=,则56a a +=( ).A. 30B. 60C. 80D. 1603. 设{}n a 是由正数组成的等比数列,公比为2,且30123302a a a a ⋅⋅⋅=,那么36930a a a a ⋅⋅⋅=( ).A. 102B. 202C. 1D. 6024. 等比数列的各项都是正数,若1581,16a a ==,则它的前5项和为 .5. 等比数列的前n 项和3n n S a =+,则a = .课后作业1. 等比数列中,已知1441,64,.a a q S =-=求及2. 在等比数列{}n a 中,162533,32a a a a +== ,求6S .§2.5等比数列的前n 项和(2)学习目标1. 进一步熟练掌握等比数列的通项公式和前n 项和公式;2. 会用公式解决有关等比数列的1,,,,n n S a a n q 中知道三个数求另外两个数的一些简单问题.学习过程一、课前准备(预习教材P 57 ~ P 62,找出疑惑之处) 复习1:等比数列的前n 项和公式.当1q ≠时,n S = = 当q =1时,n S =复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++ , 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.例2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S .练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n .三、总结提升 ※ 学习小结1. 等比数列的前n 项和与通项关系;2. 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,则数列n S ,2n n S S -,32n n S S -也成为等比数列.※ 知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列{}n a 中,33S =,69S =,则9S =( ).A. 21B. 12C. 18D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ).A. 11B. 10C. 12D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ).A. 922-B. 821-C. 822-D. 721-4. 在等比数列中,若332422S a S a +=+,则公比q = .5. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .课后作业1. 等比数列的前n 项和12nn s =-,求通项n a .2. 设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;。
2.2 等差数列(一)[学习目标] 1.理解等差数列的定义,把握等差数列的通项公式.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简洁的问题.3.把握等差中项的概念,深化生疏并能运用.[学问链接]第一届现代奥运会于1896年在希腊雅典进行,此后每4年进行一次,奥运会如因故不能进行,届数照算.这样进行奥运会的年份数构成一个数列,这个数列有什么特征呢?这个数列叫什么数列呢? [预习导引] 1.等差数列的概念假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 2.等差中项的概念若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的等差中项,并且A =a +b2.3.等差数列的通项公式若等差数列的首项为a 1,公差为d ,则其通项a n =a 1+(n -1)d . 4.等差数列的单调性等差数列{a n }中,若公差d >0,则数列{a n }为递增数列;若公差d <0,则数列{a n }为递减数列.要点一 等差数列的概念例1 若数列{a n }的通项公式为a n =10+lg 2n ,试说明数列{a n }为等差数列.解 由于a n =10+lg 2n =10+n lg 2,所以a n +1-a n =[10+(n +1)lg 2]-(10+n lg 2)=lg 2(n ∈N *). 所以数列{a n }为等差数列.规律方法 推断一个数列是不是等差数列,就是推断a n +1-a n (n >1)是不是一个与n 无关的常数. 跟踪演练1 数列{a n }的通项公式a n =2n +5,则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2,∴{a n }是公差为2的等差数列.要点二 等差中项及其应用例2 (1)在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.(2)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1、x 4、x 5成等差数列.求:p ,q 的值.解 ∵-1,a ,b ,c,7成等差数列,∴b 是-1与7的等差中项.∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7. (2)由x 1=3,得2p +q =3,①又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4, 得3+25p +5q =25p +8q ,即q =1,② 将②代入①,得p =1.故p =1,q =1.规律方法 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项.跟踪演练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得m +n =6. ∴m 和n 的等差中项为m +n2=3.要点三 等差数列的通项公式及应用例3 (1)若{a n }是等差数列,a 15=8,a 60=20,求a 75.(2)已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并推断-34是该数列的项吗?解 (1)设{a n }的公差为d .由题意知⎩⎪⎨⎪⎧a 15=a 1+14d =8,a 60=a 1+59d =20,解得⎩⎨⎧a 1=6415,d =415.所以a 75=a 1+74d =6415+74×415=24.(2)依题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=18,a 1·a 2·a 3=66,∴⎩⎪⎨⎪⎧ 3a 1+3d =18,a 1·(a 1+d )·(a 1+2d )=66,解得⎩⎪⎨⎪⎧a 1=11,d =-5,或⎩⎪⎨⎪⎧a 1=1,d =5.∵数列{a n }是递减等差数列,∴d <0.故取a 1=11,d =-5.∴a n =11+(n -1)·(-5)=-5n +16. 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的第10项.规律方法 在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,假如条件与结论间的联系不明显,则均可化成有关a 1,d 的关系列方程组求解,但是要留意公式的变形及整体计算,以削减计算量.跟踪演练3 已知{a n }为等差数列,分别依据下列条件写出它的通项公式: (1)a 3=5,a 7=13; (2)前三项为a,2a -1,3-a .解 (1) 设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧ a 3=a 1+2d =5,a 7=a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2. ∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由等差中项公式得2×(2a -1)=a +(3-a ),a =54,∴首项为a =54,公差为2a -1-a =a -1=54-1=14,∴a n =54+(n -1)×14=n 4+1.1.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( ) A .2 B .3 C .-2 D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2. 2.△ABC 中,三内角A 、B 、C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120°答案 B解析 由于A 、B 、C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B ,又因A +B +C =180°,所以3B =180°,从而B =60°.3.下列数列是等差数列的有________. (1)9, 7, 5, 3, …,-2n +11, …; (2)-1, 11, 23, 35, …, 12n -13, …; (3)1, 2, 1, 2, …; (4)1, 2, 4, 6, 8, 10, …; (5)a ,a ,a ,a ,…,a …. 答案 (1)(2)(5)解析 由等差数列的定义,得(1),(2),(5)为等差数列,(3),(4)不是等差数列. 4.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值.解 ∵a 2+a 5=(a 1+d )+(a 1+4d )=2a 1+5d =4, ∴d =23.∴a n =a 1+(n -1)×23=23n -13.由a n =23n -13=33,解得n =50.1.推断一个数列是否是等差数列的常用方法有(1)a n+1-a n=d(d为常数,n∈N*)⇔{a n}是等差数列;(2)2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)a n=kn+b(k,b为常数,n∈N*)⇔{a n}是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n=a1+(n-1)d可以看出,只要知道首项a1和公差d,就可以求出通项公式,反过来,在a1、d、n、a n四个量中,只要知道其中任意三个量,就可以求出另一个量.一、基础达标1.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A .b -a B.b -a 2 C.b -a 3 D.b -a4答案 C解析 由等差数列的通项公式,得b =a +(4-1)d ,所以d =b -a3.2.已知数列{a n }满足a 1=2,a n +1-a n +1=0,则数列的通项a n 等于( ) A .n 2+1 B .n +1 C .1-n D .3-n答案 D解析 ∵a n +1-a n =-1,∴数列{a n }是等差数列,公差为-1,∴a n =a 1+(n -1)d =2+(n -1)×(-1)=3-n . 3.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项 答案 B解析 a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n ,∴a 7=2>0,a 8=-1<0. 4.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( ) A .26 B .29 C .39 D .52 答案 C解析 ∵5,x ,y ,z,21成等差数列,∴y 是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26. ∴x +y +z =39.5.等差数列的前三项依次是x -1,x +1,2x +3,则其通项公式为________. 答案 a n =2n -3解析 ∵x -1,x +1,2x +3是等差数列的前三项, ∴2(x +1)=x -1+2x +3,解得x =0. ∴a 1=x -1=-1,a 2=1,a 3=3,∴d =2,∴a n =-1+2(n -1)=2n -3.6.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.答案 4n -3解析 由已知a 2n +1-a 2n =4,∴{a 2n }是等差数列,且首项a 21=1,公差d =4,∴a 2n =1+(n -1)·4=4n -3. 又a n >0,∴a n =4n -3.7.若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R ,且m ≠n )的四个根组成首项为14的等差数列,求m+n 的值.解 设x 2-x +m =0,x 2-x +n =0的根分别为x 1,x 2,x 3,x 4,则x 1+x 2=x 3+x 4=1. 设数列的首项为x 1,则依据等差数列的性质,数列的第4项为x 2.由题意知x 1=14,∴x 2=34,数列的公差d =34-144-1=16,∴数列的中间两项分别为 14+16=512,512+16=712. ∴x 1·x 2=316.x 3·x 4=512×712=35144.∴m +n =316+35144=3172.8.甲虫是行动较快的昆虫之一,下表记录了某种类型的甲虫的爬行速度:时间t (s) 1 2 3 … ? … 60 距离s (cm)9.819.629.4…49…?(1)(2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?解 (1)由题目表中数据可知,该数列从第2项起,每一项与前一项的差都是常数9.8,所以是一个等差数列模型.由于a 1=9.8,d =9.8,所以甲虫的爬行距离s 与时间t 的关系是s =9.8t . (2)当t =1 min =60 s 时, s =9.8t =9.8×60=588 cm.当s =49 cm 时,t =s 9.8=499.8=5 s.二、力量提升9.设函数f (x )=(x -1)2+n (x ∈[-1,3],n ∈N *)的最小值为a n ,最大值为b n ,记c n =b 2n -a n ·b n ,则{c n}是( ) A .常数列 B .摇摆数列C .公差不为0的等差数列D .递减数列 答案 C解析 ∵f (x )=(x -1)2+n (x ∈[-1,3]), ∴a n =n ,b n =n +4,∴c n =b 2n -a n ·b n =b n (b n -a n )=4(n +4)=4n +16. 10.若数列{a n }满足3a n +1=3a n +1,则数列是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1, 即a n +1-a n =13.所以数列{a n }为公差为13的等差数列.11.首项为-24的等差数列,从第10项起开头为正数,则公差d 的取值范围是________. 答案 83<d ≤3解析 设a n =-24+(n -1)d ,由⎩⎪⎨⎪⎧a 9=-24+8d ≤0a 10=-24+9d >0,解不等式得:83<d ≤3.12.若等差数列{a n }的公差d ≠0且a 1,a 2是关于x 的方程x 2-a 3x +a 4=0的两根,求数列{a n }的通项公式.解 由题意知,⎩⎪⎨⎪⎧ a 1+a 2=a 3,a 1a 2=a 4,∴⎩⎪⎨⎪⎧2a 1+d =a 1+2d ,a 1(a 1+d )=a 1+3d .解得⎩⎪⎨⎪⎧a 1=2,d =2,∴a n =2+(n -1)×2=2n .故数列{a n }的通项公式为a n =2n . 三、探究与创新13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由.(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由. 解 a 1=3,d =4,a n =a 1+(n -1)d =4n -1. (1)令a n =4n -1=135,∴n =34, ∴135是数列{a n }中的第34项.令a n =4n -1=4m +19,则n =m +5∈N *. ∴4m +19是{a n }中的第m +5项. (2)∵a p ,a q 是{a n }中的项, ∴a p =4p -1,a q =4q -1. ∴2a p +3a q =2(4p -1)+3(4q -1) =8p +12q -5=4(2p +3q -1)-1∈N *,∴2a p +3a q 是{a n }中的第2p +3q -1项.。