2019-2020学年八年级数学竞赛讲座 第一讲 分解方法的延拓 人教新课标版
- 格式:doc
- 大小:384.50 KB
- 文档页数:4
初二数学竞赛辅导资料(共12讲)目录本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容本次培训具体计划如下以供参考第一讲实数一第二讲实数二第三讲平面直角坐标系函数第四讲一次函数一第五讲一次函数二第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷未装订在内另发第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试未装订在内另发第十四讲试卷讲评第1讲实数一知识梳理一非负数正数和零统称为非负数1几种常见的非负数1实数的绝对值是非负数即a≥0在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则绝对值的性质①绝对值最小的实数是0②若a与b互为相反数则a=ba=ba=b③对任意实数a则a≥a a≥-a④a·b=ab b≠0⑤a-b≤a±b≤a+b2实数的偶次幂是非负数如果a为任意实数则≥0n为自然数当n=1≥03算术平方根是非负数即≥0其中a≥0算术平方根的性质 a≥0 =2非负数的性质1有限个非负数的和积商除数不为零是非负数2若干个非负数的和等于零则每个加数都为零3若非负数不大于零则此非负数必为零3对于形如的式子被开方数必须为非负数4推广到的化简5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方例题精讲◆专题一利用非负数的性质解题例1已知实数xyz满足求x+y+z的平方根巩固1已知则的值为______________2若的值拓展设abc是实数若求abc的值◆专题二对于的应用例2已知xy是实数且例3已知适合关系式求的值巩固1已知b=且的算术平方根是的立方根是试求的平方根和立方根2已知则拓展在实数范围内设=求的个位数字◆专题三的化简及应用常用方法利用配方法将被开方数配成完全平方式或者立方式例4化简例5若实数x满足方程那么巩固1若且则2已知实数a满足a+=03设1求y的最小值2求使6<y<7的x的取值范围拓展若求的值课后练习1如果a 0 那么2已知和是数的平方根则求的值3设abc是△ABC的三边的长则=4已知xy是实数且则=5若0 a 1 且则为6代数式的最小值是7已知实数满足=则=8已知△ABC的三边长为和满足求的取值范围9已知求的值10实数满足求的值第2讲实数二知识梳理一实数的性质1设x为有理数y为无理数则x+yx-y都为无理数当x≠0时xy都是无理数当x=0xy 就是有理数了2若xy都是有理数是无理数则要使=0x=y=03xymn都是有理数都是无理数则要使成立须使x=ym=n常用方法直接法利用数轴比较平方法同次根式下比较被开方数法作差法作商法三证明一个数是有理数的方法证明这个数是一个有限小数或无限循环小数或可表示成几个有理数的和差积商的形式例题精讲◆例1比较下列两数的大小1 2 34 5 6巩固设◆例2若的小数部分为的小数部分为则的值为巩固1已知为的整数部分是9的平方根且求的值2设的整数部分为小数部分为试求的值拓展已知的整数部分为m小数部分为n的整数部分为a小数部分为b试计算的值◆例3已知是有理数且求的值巩固1已知ab是有理数且求ab的值2已知是有理数并且满足求的值◆例4设试用的代数式表示巩固已知试用的代数式表示◆例5求证是有理数◆例6a与b是两个不相等的有理数试判断实数是有理数还是无理数并说明理由拓展证明是无理数◆例5若ab满足的取值范围巩固已知求x和y的取值范围课后练习1比较大小2设ab是正有理数且满足求ab的值3设的整数部分为小数部分为试求的值4已知与的小数部分分别是ab求ab-3a+4b+8的值5已知ab为有理数xy分别表示的整数部分和小数部分且求a+b的值6证明是无理数第3讲平面直角坐标系函数知识梳理1平面直角坐标系是在数轴的基础上为了实际问题的需要而建立起来的是学习函数的基础数形结合是本节最显著的特点2坐标平面内任意一点P都有唯一的一对有序实数xy和它对应反过来对于任何一对有序实数xy在平面内都有唯一的点P和它对应与点P相对应的有序实数对xy叫做点P的坐标3平面直角坐标系内的点的特征1若点Pxy在第一象限内2若点Pxy在第二象限内3若点Pxy在第三象限内 4若点Pxy在第四象限内5若点Pxy在x轴上 6若点Pxy在y轴上4对称点的坐标特征1点Pxy关于x轴对称或成轴反射的点的坐标为Px-y2点Pxy关于y轴对称或成轴反射的点的坐标为P-xy3点Pxy关于原点对称的点的坐标为P-x-y5函数的有关定义1函数的定义在一个变化过程中如果有两个变量x与y并且对于每一个x确定的值y都有唯一确定的值与其对应则x是自变量y是的函数2函数关系式用来表示函数关系的等式叫函数关系式也称函数解析式6函数自变量的取值范围自变量的取值范围必须使含自变量的代数式都有意义所以1使分母不为零2开平方时被开方数为非负数3为整式时其自变量的范围是全体实数另外当函数关系表示实际问题时自变量的取值必须使实际问题有意义例题精讲◆例1若点M1+a2b-1在第二象限则点N a-11-2b 在第象限巩固1点Q3-a5-a在第二象限则=2若点P2a+43-a关于y的对称点在第三象限求a的取值范围为◆例2方程组的解在平面直角坐标系中对应的点在第一象限内求m的取值范围巩固已知点Mab在第四象限且ab是二元一次方程组的解求点M关于坐标原点的对称点的坐标◆例3在直角坐标系中已知A11在轴上确定点P使△AOP为等腰三角形则符合条件的点P共有个A1 B2 C3 D4拓展在平面直角坐标系中有一个正方形ABCD它的4个顶点为A100B 010C -100D 0-10 则该正方形内及边界上共有_______个整点即横纵坐标都是整数的点◆例4求下列函数中自变量的取值范围◆例5如图在靠墙墙长为18m的地方围建一个矩形的养鸡场另三边用竹篱笆围成如果竹篱笆总长为35m求鸡场的一边长y m与另一边长x m的函数关系式并求自变量的取值范围巩固1求下列函数中自变量的取值范围①②③2周长为10cm的等腰三角形腰长y cm 与底边长x cm 之间的函数关系式是______________自变量x的取值范围为_________________.拓展若函数y=的自变量x的取值范围为一切实数求c的取值范围◆例6已知函数的图像如图所示求点AB的坐标巩固若点P在函数的图象上那么点P应在平面直角坐标系中的A.第一象限 B.第二象限 C.第三象限 D.第四象限升又知单开进水管20分钟可把空水池注满若同时打开进出水管20分钟可把满水池的水放完现已知水池内有水升先打开进水管分钟再打开出水管两管同时开放直至把水池中的水放完则能确定反映这一过程中水池的水量升随时间分钟变化的函数图象是巩固如图小亮在操场上玩一段时间内沿的路径匀速散步能近似刻画小亮到出发点的距离与时间之间关系的函数图象是课后练习1汽车由北京驶往相距120千米的天津它的平均速度是30千米时•则汽车距天津的路程S千米与行驶时间t时的函数关系及自变量的取值范围是 • AS=120-30t0≤t≤4 BS=30t0≤t≤4CS=120-30tt 0 DS=30tt=42图1是韩老师早晨出门散步时离家的距离与时间之间的函数图象.若用黑点表示韩老师家的位置则韩老师散步行走的路线可能是3函数自变量的取值范围为___________________4如图水以恒速即单位时间内注入水的体积相同注入下图的四种底面积相同的容器中下面那种方案能准确体现各容器所对应的水高度和时间的函数关系图象A.1~甲2~乙3~丁4~丙 B.1~乙2~甲3~丁4~丙C.1~乙2~甲3~丙4~丁 D.1~丁2~甲3~乙4~丙5平面直角坐标系内点An1-n一定不在A第一象限 B第二象限 C第三象限 D第四象限6若P a+b-5 与Q 13a-b 关于原点对称则a+b a-b 的值为6已知点P3p-153-p在第三象限如果其坐标为整数点求点M的坐标第4讲一次函数一姓名知识梳理一一次函数和正比例函数的概念若两个变量xy间的关系式可以表示成y=kx+bkb为常数k≠0的形式则称y是x的一次函数x为自变量特别地当b=0时称y是x的正比例函数二一次函数的图象由于一次函数y=kx+bkb为常数k≠0的图象是一条直线所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线因此在今后作一次函数图象时只要描出适合关系式的两点再连成直线即可一般选取两个特殊点直线与y轴的交点0b直线与x轴的交点-0但也不必一定选取这两个特殊点画正比例函数y=kx的图象时只要描出点001k即可三一次函数y=kx+bkb为常数k≠0的性质1k的正负决定直线的倾斜方向①k>0时y的值随x值的增大而增大②k<O时y的值随x值的增大而减小.2k大小决定直线的倾斜程度即k越大直线与x轴相交的锐角度数越大直线陡k越小直线与x轴相交的锐角度数越小直线缓3b的正负决定直线与y轴交点的位置①当b>0时直线与y轴交于正半轴上②当b<0时直线与y轴交于负半轴上③当b=0时直线经过原点是正比例函数.4由于kb的符号不同直线所经过的象限也不同①如图11-181所示当k>0b>0时直线经过第一二三象限直线不经过第四象限②如图11-182所示当k>0b>O时直线经过第一三四象限直线不经过第二象限③如图11-183所示当k<Ob>0时直线经过第一二四象限直线不经过第三象限④如图11-184所示当k<Ob<O时直线经过第二三四象限直线不经过第一象限.5由于k决定直线与x轴相交的锐角的大小k相同说明这两个锐角的大小相等且它们是同位角因此它们是平行的.另外从平移的角度也可以分析例如直线y =x+1可以看作是正比例函数y=x向上平移一个单位得到的.四正比例函数y=kxk≠0的性质1正比例函数y=kx的图象必经过原点2当k>0时图象经过第一三象限y随x的增大而增大3当k<0时图象经过第二四象限y随x的增大而减小.五用函数的观点看方程与不等式1方程2x+20=0与函数y=2x+20观察思考二者之间有什么联系从数上看方程2x+20=0的解是函数y=2x+20的值为0时对应自变量的值从形上看函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解关系由于任何一元一次方程都可转化为kx+b=0kb为常数k≠0的形式.所以解一元一次方程可以转化为当一次函数值为0时求相应的自变量的值从图象上看这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.2解关于xy的方程组从数的角度看•相当于考虑当自变量为何值时两个函数的值相等以及这个函数值是多少从形的角度看相当于确定两条直线y=kx+b与y=mx+n的交点坐标两条直线的交点坐标•就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解3解一元一次不等式可以看作是当一次函数值大于或小于0时求自变量相应的取值范围.解关于x的不等式kx+b mx+n可以转化为当自变量x取何值时直线y=k-mx+b-n上的点在x轴的上方或2求当x 取何值时直线y=kx+b上的点在直线y=mx+n上相应的点的上方.不等号为时是同样的道理例题精讲◆例1已知一次函数则这样的一次函数的图象必经过第象限巩固1一次函数的图象如图则下面结论正确的是A BC D2若直线经过点Am-1B1m其中则这条直线不经过第象限拓展已知≠并且那么一定经过A第一二象限 B第二三象限 C第三四象限 D第一四象限◆例2若直线y=kx+6与两坐标轴所围成的三角形面积是24求常数k的值是多少巩固过点P3作直线使它与两坐标轴围成的三角形面积为5这样的直线可以作几条拓展设直线是正整数与两坐标轴所围成的图形的面积为则◆例3如图所示直线y=x+2与x轴交于点A直线y=-2x+6与x轴交于点B且两条直线的交点为P试求出△PAB的面积巩固1如图在直角坐标系中长方形OABC的顶点B的坐标为 156 直线恰好将长方形OABC分成面积相等的两部分那么2如图所示已知直线y=x+3的图象与x轴y轴交于AB两点直线l经过原点与线段AB交于点C把△AOB的面积分为21的两部分求直线l的解析式.拓展若直线和直线k是正整数及x轴围成的三角形面积为则值为___________◆例4一次函数与一次函数在同一平面直角坐标系中的图象如图所示则下列结论①k1>0b<0②k2>0③关于x的不等式的解集是④关于xy的二元一次方程组的解为其中正确的结论有____________巩固1已知关于x的不等式kx-2 0k≠0的解集是x -3则直线y=-kx+2与x 轴的交点是_______.2如右图直线与直线在同一平面直角坐标系中的图象如图所示则关于的不等式的解集为◆例5一个一次函数的图像与直线平行与轴轴的交点分别为AB并且过点-1-25则线段AB上包括端点AB横坐标纵坐标都是整数的点有几个巩固如图一次函数的图象经过点和则的值为◆例6如图直线的解析式为且与轴交于点D直线经过点AB直线交于点C1求直线的解析式2求△ADC的面积3在直线上存在异于点C的另一点P使得△ADP与△ADC的面积相等请直接写出点P的坐标课后练习1点A为直线上的一点点A到两坐标轴的距离相等则点A的坐标为________ 2直线经过一二四象限那么直线经过象限3一次函数是常数的图象如图所示则不等式的解集是A.B.C.D.4如图一直线L经过不同三点AabB ba C那么直线L经过A.第二四象限 B.第一三象限 C.第二三四象限 D.第一三四象限5设直线为自然数与两坐标轴围成的三角形面积为=1232000 则1+2+3++2000的值为A B C D6如图直线与轴轴分别交于AB两点以线段AB为直角边在第一象限内作等腰直角△ABC∠BAC=90°如果在第二象限内有一点P且△ABP的面积与△ABC的面积相等求a的值第5讲一次函数二知识梳理一次函数的应用就是从给定的材料中抽象出函数关系构建一次函数模型再利用一次函数的性质求出问题的解例题精讲◆例1我市一种商品的需求量y1万件供应量y2万件与价格x元/件分别近似满足下列函数关系式y1=x+60y2=2x36需求量为时即停止供应当y1 = y2 1求该商品的稳定价格与稳定需求量2价格在什么范围该商品的需求量低于供应量3当需求量高于供应量时政府常通过对供应方提供价格补贴来提高供货价格以提高供应量现若要使稳定需求量增加4万件政府应对每件商品提供多少元补贴才能使供应量等于需求量巩固图11-30表示甲乙两名选手在一次自行车越野赛中路程y千米随时间x分变化的图象全程根据图象回答下列问题.1当比赛开始多少分时两人第一次相遇2这次比赛全程是多少千米3当比赛开始多少分时两人第二次相遇◆例2在购买某场足球赛门票时设购买门票数为张总费用为元.现有两种购买方案方案一若单位赞助广告费10000元则该单位所购门票的价格为每张60元总费用=广告赞助费+门票费方案二购买门票方式如图所示.解答下列问题1方案一中与的函数关系式为方案二中当时与的函数关系式为当时与的函数关系式为2如果购买本场足球赛超过100张你将选择哪一种方案使总费用最省请说明理由3甲乙两单位分别采用方案一方案二购买本场足球赛门票共700张花去总费用计58000元求甲乙两单位各购买门票多少张.元一月用水超过10吨的用户10吨水仍按每吨元收费超过10吨的部分按每吨元收费设一户居民月用水吨应收水费元与之间的函数关系如图13所示1求的值某户居民上月用水8吨应收水费多少元2求的值并写出当时与之间的函数关系式3已知居民甲上月比居民乙多用水4吨两家共收水费46元求他们上月分别用水多少吨◆例3抗震救灾中某县粮食局为了保证库存粮食的安全决定将甲乙两个仓库的粮食全部转移到具有较强抗震功能的AB两仓库已知甲库有粮食100吨乙库有粮食80吨而A库的容量为70吨B库的容量为110吨从甲乙两库到AB两库的路程和运费如下表表中元吨·千米表示每吨粮食运送1千米所需人民币1若甲库运往A库粮食吨请写出将粮食运往AB两库的总运费元与吨的函数关系式2当甲乙两库各运往AB两库多少吨粮食时总运费最省最省的总运费是多少巩固我市某乡两村盛产柑桔村有柑桔200吨村有柑桔300吨.现将这些柑桔运到两个冷藏仓库已知仓库可储存240吨仓库可储存260吨从村运往两处的费用分别为每吨20元和25元从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨两村运往两仓库的柑桔运输费用分别为元和元.1请填写下表并求出与之间的函数关系式总计吨200吨300吨总计240吨260吨500吨2试讨论两村中哪个村的运费较少3考虑到村的经济承受能力村的柑桔运费不得超过4830元.在这种情况下请问怎样调运才能使两村运费之和最小求出这个最小值.◆例4我国铁路第六次大提速在甲乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示OA是第一列动车组列车离开甲城的路程s 单位在km 与运行时间t 单位h 的函数图象BC 是一列从乙城开往甲城的普通快车距甲城的路程s 单位km 与运行时间t 单位h 的函数图象.请根据图中信息解答下列问题1点B的横坐标05的意义是普通快车发车时间比第一列动车组列车发车时间_________h点B的纵坐标300的意义是_______________________ 2请你在原图中直接画出第二列动车组列车离开甲城的路程s与时间t的函数图象3若普通快车的速度为100 kmh①求BC的解析式并写出自变量t的取值范围②求第二列动车组列车出发后多长时间与普通列车相遇③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.巩固某物流公司的快递车和货车每天往返于AB两地快递车比货车多往返一趟图中表示快递车距离A地的路程y 单位千米与所用时间x 单位时的函数图象.已知货车比快递车早1小时出发到达B地后用2小时装卸货物然后按原路原速返回结果比快递车最后一次返回A地晚1小时.1请在图中画出货车距离A地的路程y 千米与所用时间x 时的函数图象2求两车在途中相遇的次数直接写出答案3求两车最后一次相遇时距离A地的路程和货车从A地出发了几小时课后练习1某车站客流量大旅客往往需长时间排队等候购票.经调查统计发现每天开始售票时约有300名旅客排队等候购票同时有新的旅客不断进入售票厅排队等候购票新增购票人数人与售票时间分的函数关系如图所示每个售票窗口票数人与售票时间分的函数关系如图所示.某天售票厅排队等候购票的人数人与售票时间分的函数关系如图所示已知售票的前分钟开放了两个售票窗口.1求的值2求售票到第60分钟时售票厅排队等候购票的旅客人数3该车站在学习实践科学发展观的活动中本着以人为本方便旅客的宗旨决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票以便后来到站的旅客能随到随购请你帮助计算至少需同时开放几个售票窗口2如图工地上有AB两个土墩洼地E和河滨F两个土墩的土方数分别是781方1584方洼地E填上1025方河滨F可填上1390方要求挖掉两个土墩把这些土先填平洼地E余下的图填入河滨F填入F实际只有1340方如何安排运土方案才能使劳力最省提示把土方米作为运土花费劳力的单位第6讲全等三角形知识梳理1全等三角形全等三角形能够完全重合的两个三角形2全等三角形的判定方法有SASASAAASSSSHL3 全等三角形的性质1全等三角形的对应角相等对应线段边高中线角平分线相等2全等三角形的周长面积相等4全等三角形常见辅助线的作法有以下几种遇到等腰三角形可作底边上的高利用三线合一的性质解题思维模式是全等变换中的对折.遇到三角形的中线倍长中线使延长线段与原中线长相等构造全等三角形利用的思维模式是全等变换中的旋转.遇到角平分线可以自角平分线上的某一点向角的两边作垂线利用的思维模式是三角形全等变换中的对折所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线构造全等三角形利用的思维模式是全等变换中的平移或翻转折叠截长法与补短法具体做法是在某条线段上截取一条线段与特定线段相等或是将某条线段延长是之与特定线段相等再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和差倍分等类的题目.特殊方法在求有关三角形的定值一类的问题时常把某点到原三角形各顶点的线段连接起来利用三角形面积的知识解答.例题精讲◆例1已知如图△ABC中AB=5AC=3则中线AD的取值范围是_________巩固如图所示已知在△ABC中AD是BC边上的中线E是AD上一点且BE=AC 延长BE交AC于F求证 AF=EF◆例2已知等腰直角三角形ABC中AC=BCBD平分∠ABC求证AB=BC+CD巩固1已知△ABC中AD平分∠BACAB>AC求证AB-AC=BD-DC2如图所示已知四边形ABCD中AB=AD∠BAD=60°∠BCD=120°求证 BC+DC=AC◆例3如图已知在△ABC中∠B=60°△ABC的角平分线ADCE相交于点O求证OE=OD◆例4如图在△ABC中∠BAC的平分线与BC的垂直平分线PQ的垂直平分线PQ相交于点P过点P分别作PN⊥AB于NPM ⊥AC于点M求证BN=CM◆例5AD为△ABC的角平分线直线MN⊥AD于AE为MN上一点△ABC周长记为△EBC周长记为求证>拓展正方形ABCD中E为BC上的一点F为CD上的一点BE+DF=EF求∠EAF 的度数课后练习1如图∠BAC=60°∠C=40°AP平分∠BAC交BC于PBQ平分∠ABC交AC于Q求证AB+BP=BQ+AQ2如图△ABC中EF分别在ABAC上DE⊥DFD是中点试比较BE+CF与EF的大小3如图△ABC中AD平分∠BACDG⊥BC且平分BCDE⊥AB于EDF⊥AC于F1说明BE=CF的理由2如果AB=AC=求AEBE的长第7讲直角三角形与勾股定理知识梳理一直角三角形的判定1有两个角互余的三角形是直角三角形2勾股定理逆定理二直角三角形的性质1直角三角形两锐角互余.2直角三角形中30°所对的直角边等于斜边的一半.。
人教版八年级数学上因式分解讲座一、学习目标1.了解因式分解的意义及其与整式乘法的区别与联系,养成逆向思维的能力.2.理解因式分解的常用方法,能灵活地应用因式分解的常用方法进行因式分解.3.能用因式分解的知识解决相关的数学及实际问题.二、基础知识 基本技能1.因式分解(1)因式分解的定义:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式.(2)因式分解的注意事项①因式分解的实质是多项式的恒等变形,与整式乘法的过程恰好相反,整式乘法是“积化和差”,而因式分解是“和差化积”,利用这种关系可以检验因式分解结果是否正确.②分解因式的对象必须是多项式,如把5a 2bc 分解成5a ·abc 就不是分解因式,因为5a 2bc 不是多项式;再如把1x 2-1分解为⎝ ⎛⎭⎪⎫1x +1⎝ ⎛⎭⎪⎫1x -1也不是分解因式,因为1x2-1不是整式. ③分解因式的结果必须是积的形式,如x 2+x -1=x (x +1)-1就不是分解因式,因为结果x (x +1)-1不是积的形式.④分解因式结果中每个因式都必须是整式,如x 2-x =x 2⎝⎛⎭⎪⎫1-1x 就不是分解因式,因为x 2⎝⎛⎭⎪⎫1-1x 不是整式的乘积形式. ⑤分解因式的结果中各因式中的各项系数的最大公约数是 1.如4x 2-6x =x (4x -6).结果中的因式4x -6中4和6的公约数不为1,正确的分解结果应是4x 2-6x =2x (2x -3).【例1-1】在下列四个式子中,从等号左边到右边的变形是因式分解的是( ).A .x 2y +x =x 2⎝⎛⎭⎫y +1x B .x 2-4-3x =(x +2)(x -2)-3xC .ab 2-2ab =ab (b -2)D .(x -3)(x +3)=x 2-9解析:选项A 右边的其中一个因式不是整式,不符合;选项B 的结果不是整式的乘积,只分解了一部分;选项D 是整式乘法;选项C 符合因式分解的意义,故选C .解题技巧:分解因式与整式乘法是两种相反方向的变形过程,即它们互为逆过程,互为逆关系,例如:n(a+b+c)na+nb+nc,因式分解是把多项式化为积的形式,注意一要是整式,二要是多项式.【例1-2】下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)12a2b=3a·4ab;(2)(x+3)(x-3)=x2-9;(3)4x2-8x-1=4x(x-2)-1;(4)2ax-2ay=2a(x-y);(5)a2-4ab+b2=(a-2b)2.解:(1)不是分解因式.因为等号左边必须是一个多项式,而12a2b是单项式.(2)不是分解因式.因为等号左边(x+3)(x-3)是积的形式,右边x2-9是一个多项式,不符合分解因式的定义.(3)不是分解因式.因为等号左边虽然是一个多项式,但是等号右边的4x(x -2)-1不是整式积的形式.(4)是分解因式.因为等号左边2ax-2ay是一个多项式,且等号右边2a(x -y)是整式积的形式.(5)不是分解因式.因为分解因式是多项式的恒等变形,左右两边必须相等,而此题左边=a2-4ab+b2;右边=(a-2b)2=a2-4ab+4b2.因为左、右两边不相等,即不是恒等变形,当然不是分解因式.:判断一个式子由左到右的变形是不是分解因式,关键看它是不是把多项式变形为几个整式积的形式,也就是说,变形后第一必须是整式;第二必须是乘积的形式.2.因式分解的基本方法——提公因式法(1)公因式的意义多项式中的每一项都含有一个相同因式,这个相同因式叫做这个多项式各项的公因式.如多项式ab+ac+ad中,各项都含有因式a,故a是这个多项式的公因式.(2)公因式的确定准确地确定公因式,是运用提公因式法因式分解的关键.确定一个多项式各项的公因式,其方法如下:①确定公因式系数,即数字因数.当各项系数都是整数时,取各项的最大公约数作为公因式的系数;当各项系数中有分数时,则公因式的系数为分数,分母取各项系数分母的最小公倍数,分子取各项系数分子的最大公约数.②确定公因式的字母及字母指数.公因式的字母应是多项式各项都含有的字母,其指数取最低的.如:多项式4x4+6x2+12x3y中,系数的最大公约数是2,相同字母为x,它的最低指数是2,所以这个多项式的公因式应为2x2.③注意:公因式可能是单项式,也可能是多项式.当公因式是多项式时,要把这个多项式看作一个整体,这时要注意符号的变化,经常用的变形有:(b+a)n=(a+b)n(n为正整数),(b-a)n=(a-b)n(n为偶数),(b-a)n=-(a-b)n(n为奇数).【例2-1】指出下列各多项式中各项的公因式:(1)4x2y3z+12x3y4;(2)47(x+1)2y3-12(x+1)3y4;(3)12x n y2n+16x n-1y n+1(n为大于1的整数).(3)提公因式法①如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而把多项式化成两个整式乘积的形式,这种分解因式的方法叫提公因式法.我们在学习乘法分配律时知道,m(a+b+c)=ma+mb+mc,现在把它反过来就有ma+mb+mc=m(a+b+c),这正是提公因式法,可见提公因式法在实质上是逆用乘法分配律.②提公因式法的步骤运用提公因式法分解因式一般分为三步:第一步,确定公因式;方法:系数取最大公约数,相同因式取最低次幂。
——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】 分解因式:10)3)(4(2424+++-+x x x x = .( “五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z)(上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b);(2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组:(2)按次数分组;(3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多巧式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学力训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= . 2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= . (重庆市中考题)4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.将多项式3224--x x 分解因式,结果正确的是( ).A .)1)(3(22-+x xB .)3)(1(22-+x xC .)1)(1)(3(2+-+x x xD .)3)(3)(1(2+-+x x x (北京中考题)6.下列5个多项式:①12222---b a b a ;②322327279a xa ax x -+-;③b d c c b d y d c b x 222)()(-+-----+;④)(6)(3m n n n m m -+- ;⑤x x 4)2(2+-其中在有理数范围内可以进行因式分解的有( ).A .①、②、③B .②、③ 、④C .①③ 、④、⑤D .①、②、④7.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (“希望杯”邀请赛试题)8.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 (大连市“育英杯”竞赛题) 9.分解因式(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2;(2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001;(4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++;(6)613622-++-+y x y xy x . (“希望杯”邀请赛试题)10.分解因式:12)5)(3)(1(2+++-x x x = . 11.分解因式:22635y y x xy x ++++= .12.分解因式:333)()2()2(y x y x -----= .( “五羊杯”竞赛题)13.在1~100之间若存在整数n ,使n x x -+2能分解为两个整系数一次式的乘积,过样的n 有 个. (北京市竞赛题)14.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x15.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定(第 “希望杯”邀请赛试题)16.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++;(2)91)72)(9)(52(2---+a a a ; (湖北省黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长). 求证:b c a 2=+ (天津市竞赛题)。
2019-2020 年八年级数学竞赛试题含答案_学校姓名成一、 (每小 8 分,共 64 分 )以下每个的四个中,有一个是正确的,将正确答案的英文字母填在后的括号内.1.用 11 到 2006 些自然数依次成下列算式:1112 + 1314, 1516 + 1718 ,1920 + 2122, 2324 + 2526,⋯⋯ 20032004 + 20052006.其中,能被 4整除的算式有() (A)0 个(B) 125 个( C)250 个(D)499 个2.中的五角星是用螺栓将两端打有孔的 5 根木条接而构成的,它的形状不定.如果用在中木条交叉点打孔加装螺栓的法来达到使其形状定的目的,且所加螺栓尽可能少,那么需要要添加螺栓()(A)1 个(B)2 个(C)3 个(D)4 个3.把度 4 的段分成四小段.若要以四小段构成一个四形,其中每一小段的度足的条件是()11(A) 不大于 1(B) 大于2且小于 1(C) 小于 2(D) 大于4!未定。
且小于 24.如,有一个均匀的片,两面上分写有1、 2,有—个均匀的三棱旋器和一个均匀的四棱旋器,它的面上分写有1、2、3 和 1、2、3、 4.在桌面上同旋三件器物,停下来后,面向桌面的三个数字的奇数的概率是()1111(A) 2(B)3(C)6(D)85.同价格的某种商品在三个商都行了两次提价.甲商第一次提价的百分率a,第二次提价的百分率b;乙商两次提价的百分率都a + b2;丙商第一次提价的百分率 b,第二次提价的百分率a.若 a > b > 0 ,提价最多的商是()(A) 甲(B) 乙(C)丙(D) 不能确定的6.一本册内有24 份卷,共有 426道,每份卷中有25 或 20或 16 .那么本册中有25 的卷的份数()(A) 1(B) 2( C)3(D)47.把一个正方体切成两个方体,如果两者表面乏比l: 2,那么两者体之比()(A)1:2(B) 1 :3( C)1: 5(D) 1:68.有七个大小相同的正方体,每个正方体的六个面上分写有1 到 6 六个整数,并且任意两个相面上的两数之和7.把些正方体如所示一个挨—个地接起来,使相的两个面上的两数之和 8,“※”所在面上的数是()(A)4(B)3( C)2(D)1二、填空 (每小8 分,共 96 分)9. 算:19972 –19982 +19992 –20002 +⋯ +20052 –20062 =.10.把 (1) 的正方体表面展开成 4 条棱都没有被剪开, 个面是正方形表示 ).(2) ,有—个面的(用字母次是 11.如 ,一个六 形的每个内角都是2. 7、3、 5、 2, 六 形的周 是120 °, 四 的 依.12.小王 置的某种四位密 ,每个密 的各位数字只能是0、 1、 2 或 3,且 0 不能出 在1、 2、3 的后面, 共可以 置 个不同的密 .13.有 度分 1、2、3、4、5、6、7、 8、 9 ( 位: cm)的 木棒各1 根,利用它 (允 接加 但不允 折断)能 成的周 不同的等 三角形共有种.14.在一个 周上均匀地写了任意四个整数. 定算法是:把每相 两数之和放在 两 数之 , 然后把原来的四个数抹去, 就算一次操作. 当开始 在 周上所写的四个整数不全是偶数 ,最多只要次操作,就一定能使 周上所得的四个数都 成偶数.15.《 代数学学 》 志2007 年 3 月将改版 《 代学 ·数学周刊》,其徽 是我国古代“弦 ”的 形 ( 示意 ). 可由直角三角形 ABC 点 O 同向 旋 三次 (每次旋90°)而得.因此有“数学 ”的 感.假 中 小正方形的面 1,整个徽(含中 小正方形 )的面 92, AD = 2 , 徽 的外 周.16.如 ,四 形 ABCD 中, E 、 F 、G 、 H 依次是各 中点,O 是形内一点.若 S四边形AEOH = 3, S四边形BFOE = 4,S四边形CGOF = 5,S 四边形 DHOG =.17. 徒加工某零件,加工1 个零件, 傅比徒弟少用 2. 5 小 ;加工 10 小 , 傅比徒弟多做 9 个零件. 徒合做3 个零件,需要小 .x 215x 4 –3x 2 + 518.如果 x 4 + x 2 + 1 =4 ,那么3x 2 =.19.如 ,∠ CAD 和∠ CBD 的平分 相交于点 P . ∠ CAD 、∠CBD 、∠ C 、∠ D 的度数依次 a 、 b 、 c 、 d ,用 含其中 2 个字母的代数式来表示∠P 的度数:.20.如 ,在每个小正方形1 的网格中取出12 个格点,以 些格点 点的等腰直角三角形的腰 可以是,能得到位置不同的等腰直角三角形 共有个.2008 年从化二中八年级数学竞赛试题参考答案与评分标准一、选择题:(每题 8 分,共 64 分 )题号12345678答案AACCBBCB二、填空题: (每题 8分,共 96 分)-9.–2001510.EFGH (CDHG )11. 20.712. 12113. 1114. 4c + d15. 4816. 4 17.218. 419.220. 1,2, 2 , 5 ;45.说明:第 10 题写出一个正确结果就给8 分,第 20题第一空共有 4 个值,每填 1 个值得1 分,填错 1 个扣 1 分,第二空 4 分.。
第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。
第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种根本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:〔1〕综合法〔由因导果〕,从条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;〔2〕分析法〔执果索因〕从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到事实为止;〔3〕两头凑法:将分析与综合法合并使用,比拟起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后到达证明目的。
3、掌握构造根本图形的方法:复杂的图形都是由根本图形组成的,因此要善于将复杂图形分解成根本图形。
在更多时候需要构造根本图形,在构造根本图形时往往需要添加辅助线,以到达集中条件、转化问题的目的。
【例题精讲】【专题一】证明线段相等或角相等两条线段或两个角相等是平面几何证明中最根本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
【例1】:如下图,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DF 【稳固】如下图,∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。
求证:EC =ED【例2】:如下图,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠F【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
人教版八年级数学比赛专题复习因式分解的常用方法(无答案)因式分解的常用方法把一个多项式化成几个整式的积的形式,这类变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结以下:一、提公因式法.如多项式am bm cm m(a b c),此中m叫做这个多项式各项的公因式,m既能够是一个单项式,也能够是一个多项式.32【例1】分解因式x 2x x二、运用公式法.运用公式法,即用a2b2(ab)(ab),写出结果.a22ab b2(a2,b)a3b3(ab)(a2ab b2)【例2】分解因式a24ab4b22解:原式a2b三、分组分解法.(一)分组后能直接提公因式【例3】分解因式:aman bmbn剖析:从“整体”看,这个多项式的各项既没有公因式可提,也不可以运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,所以能够考虑将前两项分为一组,后两项分为一组先分解,而后再考虑两组之间的联系。
解:原式=(am an)(bm bn)=a(m n)b(m n)每组之间还有公因式!=(m n)(a b)1/14思虑:本题还能够如何分组?此种类分组的重点:分组后,每组内能够提公因式,且各组分解后,组与组之间又有公因式能够提。
【例4】分解因式:2ax10ay 5by bx解法一:第一、二项为一组解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=(2ax 10ay)(5bybx)原式=(2axbx)(10ay5by)=2a(x5y)b(x5y)=x(2a b)5y(2a b)=(x 5y)(2a b)=(2ab)(x5y)练习1:分解因式m25n mn5m解:原式m25mmn5n mm5 nm5mn m5(二)分组后能直接运用公式【例5】分解因式:x2y2ax ay剖析:若将第一、三项分为一组,第二、四项分为一组,固然能够提公因式,但提完后就能持续分解,所以只好此外分组。
多项式的因式分解是代数式恒等变形的基本形式之一,它被宽泛地应用于初等数学之中,是我们解决很多半学识题的有力工具.因式分解方法灵巧,技巧性强,学习这些方法与技巧,不单是掌握因式分解内容所必需的,并且对于培育学生的解题技术,发展学生的思想能力,都有着十分独到的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我学若干个乘法公式,将其反向使用,即因式分解中常用的公式,比如:(1)a 2-b 2=(a+b)(a-b);(2)a 2± 2ab+b2=(a ± b) 2;(3)a 3+b3=(a+b)(a 2-ab+b 2) ;(4)a 3-b 3=(a-b)(a2+ab+b2).下边再充几个常用的公式:2222(5)a +b+c +2ab+2bc+2ca=(a+b+c) ;(6)a 3+b3+c3-3abc=(a+b+c)(a2+b2+c 2-ab-bc-ca);n n=(a-b)(a n-1n-2n-3 2n-2n-1此中 n 正整数;(7)a -b+a b+a b+⋯ +ab+b )(8)a n-b n=(a+b)(a n-1-a n-2 b+a n-3 b2- ⋯ +ab n-2-b n-1 ) ,此中 n 偶数;(9)a n+b n=(a+b)(a n-1-a n-2 b+a n-3 b2- ⋯ -ab n-2+b n-1 ) ,此中 n 奇数.运用公式法分解因式,要依据多式的特色,依据字母、系数、指数、符号等正确恰当地公式.例 1分解因式:(1)-2x5n-1 y n+4x3n-1 y n+2-2x n-1 y n+4;(2)x 333-8y-z -6xyz ;(3)a 2+b2+c2-2bc+2ca-2ab ;(4)a 752257 -a b +a b -b.解 (1) 原式 =-2x n-1 y n(x 4n-2x 2ny2+y4)=-2x n-1 y n[(x 2n) 2-2x 2ny2+(y 2) 2]=-2x n-1 y n(x 2n-y 2) 2=-2x n-1 y n(x n-y) 2(x n+y) 2.333(2) 原式 =x +(-2y) +(-z) -3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3) 原式 =(a 2-2ab+b 2)+(-2bc+2ca)+c2=(a-b) 2+2c(a-b)+c 2=(a-b+c) 2.本小题能够略加变形,直接使用公式(5) ,解法以下:原式 =a2+(-b) 2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4) 原式 =(a 7-a 5b2)+(a 2b5-b 7)522522=a (a -b )+b (a -b )=(a 2-b 2)(a 5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2- ab3+b4)例 2 分解因式: a3+b3+c3-3abc .本题实质上就是用因式分解的方法证明前面给出的公式(6) .剖析我们已经知道公式2019-2020 年初中数学比赛专题培训第一讲:因式分解一的正确性,现将此公式变形为333.a +b =(a+b)-3ab(a+b)这个式也是一个常用的公式,本题就借助于它来推导.解原式 =(a+b) 3-3ab(a+b)+c 3-3abc= [ (a+b)3+c 3] -3ab(a+b+c)=(a+b+c) [ (a+b) 2 -c(a+b)+c 2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它能够推出好多实用的结论,比如:我们将公式 (6) 变形为a3+b3+c3-3abc然,当 a+b+c=0 , a3+b3+c3=3abc;当 a+b+c> 0 , a3+b3+c3- 3abc≥ 0,即 a3+b3+c3≥3abc,并且,当且当 a=b=c ,等号建立.假如令x=a3≥ 0, y=b3≥ 0, z=c3≥ 0,有等号建立的充要条件是x=y=z .也是一个常用的.例 3 分解因式: x15 +x14+x13+⋯+x2+x+1.剖析个多式的特色是:有16 ,从最高次x15开始, x 的次数次减至0,由此想到用公式a n -b n来分解.解因x16-1=(x-1)(x15+x14+x13+⋯x2+x+1),所以明在本的分解程中,用到先乘以(x-1) ,再除以 (x-1)的技巧,一技巧在等式形中很常用.2.拆、添法因式分解是多式乘法的逆运算.在多式乘法运算,整理、化常将几个同归并一,或将两个符号相反的同互相抵消零.在某些多式分解因式,需要恢复那些被归并或互相抵消的,即把多式中的某一拆成两或多,或许在多式中添上两个切合相反的,前者称拆,后者称添.拆、添的目的是使多式能用分分解法行因式分解.3例 4 分解因式: x -9x+8 .剖析本解法好多,里只介运用拆、添法分解的几种解法,注意一下拆、添的目的与技巧.解法 1 将常数8 拆成 -1+9 .原式 =x3-9x-1+9=(x 3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)2=(x-1)(x +x-8) .解法 2 将一次项 -9x 拆成 -x-8x .原式 =x3-x-8x+8=(x 3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).333解法 3 将三次项x 拆成 9x -8x .33原式 =9x -8x -9x+8=(9x 3-9x)+(-8x3+8)2=9x(x+1)(x-1)-8(x-1)(x+x+1)=(x-1)(x2+x-8).解法 4 增添两项 -x 2+x2.原式 =x3-9x+8=x3-x 2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由本题能够看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无必定之规,主要的是要依赖对题目特色的察看,灵巧变换,所以拆项、添项法是因式分解诸方法中技巧性最强的一种.例 5 分解因式:(1)x 9+x6+x3-3 ;(2)(m 2- 1)(n 2-1)+4mn ;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a 3b-ab 3+a2+b2+1.解 (1) 将 -3 拆成 -1-1-1 .原式 =x9+x6+x3-1-1-1=(x 9-1)+( x6-1)+(x3-1)=(x 363333 -1)(x+x +1)+(x-1)(x+1)+(x-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x 6+2x3+3) .(2) 将 4mn拆成 2mn+2mn.原式 =(m2-1)(n 2-1)+2mn+2mn2 222=mn -m -n +1+2mn+2mn=(m2n2+2mn+1)-(m 2-2mn+n2 )=(mn+1) 2-(m-n) 2=(mn+m-n+1)(mn-m+n+1) .(3)将(x 2-1) 2拆成2(x 2-1) 2-(x 2- 1)2.原式 =(x+1) 4+2(x 2-1) 2-(x 2- 1) 2+(x-1)4=[ (x+1)4+2(x+1)2(x-1)2+(x-1) 4]-(x 2-1) 2=[ (x+1)22222 +(x-1)] -(x-1)=(2x 2+2) 2- (x 2-1) 2=(3x 2+1)(x 2+3) .(4)增添两项 +ab-ab .原式 =a3b-ab 3+a2+b2+1+ab-ab=(a 3b-ab 3)+(a 2-ab)+(ab+b 2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b) [ b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a 2-ab+1)(b 2 +ab+1) .说明 (4) 是一道较难的题目,因为分解后的因式构造较复杂,所以不易想到增添+ab-ab ,并且增添项后分红的三项组又无公因式,而是先将前两组分解,再与第三组联合,找到公因式.这道题目使我们领会到拆项、添项法的极强技巧所在,同学们需多做练习,累积经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,进而使运算过程简洁清楚.例 6 分解因式: (x 2+x+1)(x 2+x+2)-12 .剖析将原式睁开,是对于x 的四次多项式,分解因式较困难.我们不如将x2+x 看作一个整体,并用字母y 来代替,于是原题转变为对于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式 =(y+1)(y+2)-12=y2+3y-1022=(y-2)(y+5)=(x+x-2)(x+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比方今x2+x+1=u,相同能够获得相同的结果,有兴趣的同学不如试一试.例 7 分解因式:(x 2+3x+2)(4x 2+8x+3)-90 .剖析先将两个括号内的多项式分解因式,而后再从头组合.解原式 =(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-9022.=(2x +5x+3)(2x+5x+2)-90令 y=2x2+5x+2,则原式 =y(y+1)-90=y 2+y-90=(y+10)(y-9)=(2x 2+5x+12)(2x2+5x-7)=(2x 2+5x+12)(2x+7)(x-1).(y) 的基础.说明对多项式适合的恒等变形是我们找到新元例 8 分解因式:(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.2解设 x +4x+8=y ,则原式 =y2+3xy+2x 2=(y+2x)(y+x)=(x 2+6x+8)(x 2 +5x+8)=(x+2)(x+4)(x2+5x+8) .说明由本题可知,用换元法分解因式时,不用将原式中的元都用新元朝换,依据题目需要,引入必需的新元,原式中的变元和新变元能够一同变形,换元法的实质是简化多项式.例 9 分解因式: 6x4+7x3-36x 2-7x+6 .解法 1原式 =6(x 4+1) + 7x(x 2-1)-36x 242222=6[(x -2x+1)+2x ] +7x(x-1)-36x=6[(x 2-1)2+2x2]+7x(x 2- 1)-36x2=6(x 2-1) 2+7x(x 2-1)-24x222=[2(x -1)-3x][ 3(x -1)+8x]=(2x 2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法其实是将 x2-1 看作一个整体,但并无建立新元来取代它,即娴熟使用换元法后,并不是每题都要设置新元来取代整体.解法 2原式 =x2[6(t2+2)+7t-36]=x2(6t 2+7t-24)=x2(2t-3)(3t+8)2=x [2(x-1/x)-3][3(x-1/x)+8]=(2x 2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例 10 分解因式: (x 2+xy+y 2)-4xy(x 2+y 2) .剖析本题含有两个字母,且当交换这两个字母的地点时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,常常令 u=x+y ,v=xy ,用换元法分解因式.解原式 =[(x+y) 2-xy] 2-4xy[(x+y) 2-2xy] .令 x+y=u, xy=v ,则原式=(u 2-v) 2-4v(u 2-2v)422=u -6u v+9v=(u 2-3v) 2222=(x +2xy+y -3xy)=(x 2-xy+y 2) 2.。
八年级数学竞赛教案教案标题:八年级数学竞赛教案教学目标:1. 熟悉八年级数学竞赛的题型和要求。
2. 提高学生解题的思维能力和数学应用能力。
3. 培养学生的合作与竞争意识。
教学内容:1. 数的性质与变化2. 代数表达式3. 方程与不等式4. 几何图形的性质与变化5. 数据分析与统计教学步骤:第一课:数的性质与变化1. 导入:通过一个有趣的数学谜题引起学生的兴趣。
2. 讲解:复习数的性质,如整数的分类、有理数的性质等。
3. 练习:提供一些数的性质相关的练习题,让学生巩固理解。
第二课:代数表达式1. 导入:通过实际生活中的例子引出代数表达式的概念。
2. 讲解:介绍代数表达式的基本概念和运算规则。
3. 练习:提供一些代数表达式的练习题,让学生练习转化和简化代数表达式。
第三课:方程与不等式1. 导入:通过一个实际问题引出方程与不等式的概念。
2. 讲解:介绍方程与不等式的基本概念和解题方法。
3. 练习:提供一些方程与不等式的练习题,让学生练习解方程和不等式。
第四课:几何图形的性质与变化1. 导入:通过几何图形的变换引起学生的兴趣。
2. 讲解:介绍几何图形的基本性质和变换规律。
3. 练习:提供一些几何图形的性质和变换的练习题,让学生巩固理解。
第五课:数据分析与统计1. 导入:通过一个实际数据的分析引出数据分析与统计的概念。
2. 讲解:介绍数据分析与统计的基本方法和技巧。
3. 练习:提供一些数据分析与统计的练习题,让学生练习应用统计方法解决问题。
教学评估:1. 在每节课结束时进行小测验,检查学生对所学内容的掌握情况。
2. 设计一套模拟数学竞赛试题,让学生在课后完成,以评估他们的竞赛水平。
教学资源:1. 数学竞赛教材和习题集。
2. 数学竞赛模拟试题。
3. 多媒体投影仪和电脑。
教学建议:1. 鼓励学生积极参与课堂讨论和练习,提高他们的数学思维能力。
2. 组织学生进行小组合作学习,培养他们的合作与竞争意识。
3. 鼓励学生参加校内外的数学竞赛,提高他们的数学应用能力和竞赛技巧。
目录本内容适合八年级学生竞赛拔高使用。
注重中考与竞赛的有机结合,重点落实在中考中难以上题、奥赛方面的基础知识和基本技能培训和提高。
本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。
另外在本次培训中,内容的编排大多大于120分钟的容量,因此在实际教学过程中可以根据学生的具体状况和层次,由任课教师适当的调整顺序和选择内容(如专题复习可以提前上)。
注:有(*) 标注的为选做内容。
本次培训具体计划如下,以供参考:第一讲如何做几何证明题第二讲平行四边形(一)第三讲平行四边形(二)第四讲梯形第五讲中位线及其应用第六讲一元二次方程的解法第七讲一元二次方程的判别式第八讲一元二次方程的根与系数的关系第九讲一元二次方程的应用第十讲专题复习一:因式分解、二次根式、分式第十一讲专题复习二:代数式的恒等变形第十二讲专题复习三:相似三角形第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
2019-2020学年八年级数学竞赛讲座 第一讲 分解方法的延拓 人教
新课标版
因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.
一些复杂的因式分解问题.常用到换元法和主元法.
所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.
所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.
例题求解
【例1】 分解因式:10)3)(4(2424+++-+x x x x = .
( “五羊杯”竞赛题)
思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构. 【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).
A .(y -z)(x+y)(x -z)
B .(y -z)(x -y)(x +z)
C . (y+z)(x 一y)(x+z)
D .(y 十z)(x+y)(x 一z)
(上海市竞赛题)
思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.
【例3】把下列各式分解因式:
(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)
(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)
(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)
(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)
思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.
【例4】把下列各式分解因式:
(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b);
(2)x 2+xy -2y 2-x+7y -6.
思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.
【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.
x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.
(莫斯科奥林匹克八年级试题)
思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.
注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:
(1)按字母分组:
(2)按次数分组;
(3)按系数分组.
为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多巧式分解因式后的结果:
(1)))((2233b ab a b a b a +±=± ;
(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++
学力训练
1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .
2.分解因式:(x 2+x+1)(x 2+x+2)-12= .
3.分解因式:x 2-xy -2y 2-x -y= . (重庆市中考题)
4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .
5.将多项式3224--x x 分解因式,结果正确的是( ).
A .)1)(3(22-+x x
B .)3)(1(22-+x x
C .)1)(1)(3(2+-+x x x
D .)3)(3)(1(2+-+x x x (北京中考题)
6.下列5个多项式:
①12222---b a b a ;②322327279a xa ax x -+-;③b d c c b d y d c b x 222)()(-+-----+;④)(6)(3m n n n m m -+- ;⑤x x 4)2(2+-
其中在有理数范围内可以进行因式分解的有( ).
A .①、②、③
B .②、③ 、④
C .①③ 、④、⑤
D .①、②、④
7.下列各式分解因式后,可表示为一次因式乘积的是( ).
A .2727923-+-x x x
B .272723-+-x x x
C .272734-+-x x x
D .279323-+-x x x (“希望杯”邀请赛试题)
8.若51-=+b a ,13=+b a ,则5
3912322+++b ab a 的值为( ). A .92 B .32 C .5
4 D .0 (大连市“育英杯”竞赛题) 9.分解因式
(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2;
(2)(2x 2-3x+1)2一22x 2+33x -1;
(3)x 4+2001x 2+2000x+2001;
(4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2
;
(5)bc ac ab c b a 54332222+++++;
(6)613622-++-+y x y xy x . (“希望杯”邀请赛试题)
10.分解因式:12)5)(3)(1(2+++-x x x = .
11.分解因式:22635y y x xy x ++++= .
12.分解因式:333)()2()2(y x y x -----= .( “五羊杯”竞赛题)
13.在1~100之间若存在整数n ,使n x x -+2能分解为两个整系数一次式的乘积,过样的n 有 个. (北京市竞赛题)
14.613223+-+x x x 的因式是( )
A .12-x
B .2+x
C .3-x
D .12+x
E .12+x
15.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )
A .M<N
B .M> N
C .M =N
D .不能确定
(第 “希望杯”邀请赛试题)
16.把下列各式分解因式:
(1)22212)16)(1(a a a a a ++-++;
(2)91)72)(9)(52(2---+a a a ; (湖北省黄冈市竞赛题) (3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题) (4)4242410)13)(14(x x x x x ++++-;(“五羊杯”竞赛题)
(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)
17.已知乘法公式:
))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)
18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长). 求证:b c a 2=+ (天津市竞赛题)。