配方法第3课时用配方法解二次项系数不为1的一元二次方程
- 格式:ppt
- 大小:1.99 MB
- 文档页数:5
用配方法求解二次项系数不为1的一元二次方程示例文章篇一:《用配方法求解二次项系数不为1的一元二次方程》嗨,小伙伴们!今天咱们来一起研究一个超级有趣的数学问题——用配方法求解二次项系数不为1的一元二次方程。
这就像是一场奇妙的数学冒险呢!我先给大家举个例子吧,比如说方程2x² - 5x + 3 = 0。
这可不像我们之前学的那些简单的方程哦。
那怎么来解这个方程呢?我们第一步要做的,就像是给这个方程来个“大变身”。
我们先把二次项系数2提出来,方程就变成了2(x² - 5/2x) + 3 = 0。
这时候呀,括号里的式子就像是一个小宝贝,我们要把它打扮得漂漂亮亮的。
我们要在括号里加上一个数,又要减去这个数,这样方程才不会变哦。
这个数怎么找呢?对于x² - 5/2x来说,我们看一次项系数- 5/2,把它除以2再平方,那就是(- 5/2÷2)²=( - 5/4)² = 25/16。
这时候方程就变成了2(x² - 5/2x + 25/16 - 25/16)+3 = 0。
这就好比我们给小宝贝穿上了一件漂亮的衣服,又脱了一点东西,但是整体还是一样的。
我们把括号里的式子变形一下,变成2[(x - 5/4)² - 25/16]+3 = 0。
然后展开括号,就是2(x - 5/4)² - 25/8+3 = 0。
接着计算,2(x - 5/4)² - 25/8+24/8 = 0,也就是2(x - 5/4)² - 1/8 = 0。
这时候我们把- 1/8移到等号右边,得到2(x - 5/4)² = 1/8。
再两边同时除以2,(x - 5/4)² = 1/16。
最后求x,x - 5/4 = ±1/4。
如果x - 5/4 = 1/4,那x = 6/4 = 3/2;如果x - 5/4 = - 1/4,那x = 4/4 = 1。
第3课时 用配方法解二次项系数不为1的一元二次方程要点感知 对于二次项系数不是1的一元二次方程,先要在方程 ,将它转化为二次项系数化为 的一元二次方程,再用上一节课所介绍的配方法求解.预习练习1-1 配方法解一元二次方程2x 2-3x+1=0,先应把二次项的系数化为 ,因此需要两边同除以 ,方程可化为 .然后用上节课所学的配方法去解.1-2 将方程3x 2-12x-1=0进行配方,配方正确的是( )A.3(x-2)2=5B.(3x-2)2=13C.(x-2)2=5D.(x-2)2=133知识点 用配方法解二次项系数不为1的一元二次方程1.把方程3x 2-6x+2=0两边同除以3得:x 2-2x+23=0,然后应把方程左边加上 ,再减去 . 2.用配方法解方程3x 2-6x+1=0,则方程可变形为( )A.(x-3)2=13B.3(x-1)2=13C.(3x-1)2=1D.(x-1)2=233.用配方法解方程2x 2-3=-6x ,正确的解法是(A)A.(x+32)2=154,x=-32B.(x-32)2=154,x=32C.(x+32)2=-154,原方程无解 D.(x+32)2=74,x=-32±72 4.用配方法解下列方程:(1)2x 2-8x+1=0; (2)2x 2-7x+6=0;(3)3x 2+8x-3=0; (4)2x 2+1=3x ;(5)3x 2-2x-4=0; (6)6x+9=2x 2.5.用配方法解下列方程时,配方有错误的是( )A.2t 2-7t-4=0化为(t-74)2=8116B.3x 2-4x-2=0化为(x-23)2=109C.x 2-2x-99=0化为(x-1)2=100D.x 2+8x+9=0化为(x+4)2=256.将方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A.(x-32)2=16 B.2(x-34)2=116 C.(x-34)2=116D.以上都不对 7.用配方法解方程13x 2-x-4=0时,配方后得(C) A.(x-32)2=394 B.(x-32)2=-394 C.(x-32)2=574 D.以上答案都不对 8.把方程2x 2+4x-1=0配方后得(x+m)2=k ,则m= ,k= .9.用配方法解下列方程:(1)2t 2-6t+3=0; (2)6x 2-x-12=0;(3)2y 2-4y=4; (4)(2013·太原)(2x-1)2=x(3x+2)-7.10.已知y=2x 2-3x-10,当x 为何值时,y=4?当x 为何值时,y=-5?挑战自我11.用配方法说明:不论x 取何值,代数式2x 2+5x-1的值,总比代数式x 2+7x-4的值大,并求出当x 为何值时,两代数式的差最小.参考答案课前预习要点感知 同时除以二次项系数 1预习练习1-1 1 2 x 2-32x+12=0 1-2 D当堂训练1.112.D3.A4.(1)x 1=2,x 2=2. (2)x 1=2,x 2=32. (3)x 1=13,x 2=-3. (4)x 1=1,x 2=12.(5)x 1=3,x 2=3.(6)x 1=2,x 2=2. 课后作业 5.D 6.C 7.C 8. 1329.(1)t 1,t 2. (2)x 1=32,x 2=-43.(3)y1y2(4)(2x-1)2=x(3x+2)-7,4x2-4x+1=3x2+2x-7,x2-6x=-8,(x-3)2=1,x-3=±1,∴x1=2,x2=4.10.当x=72或-2时,y=4;当x=-1或52时,y=-5.11.(2x2+5x-1)-(x2+7x-4)=x2-2x+3=(x-1)2+2>0,∴不论x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大.∵(x-1)2≥0,∴当x=1时,(x-1)2取最小值为0,即(x-1)2+2的最小值为2. ∴当x=1时,两代数式的差最小.。
课题:用配方法解二次项系数不为1的一元二次方程【学习目标】1.运用配方法解二次项系数不为1的一元二次方程,并能熟练掌握其基本步骤.2.通过利用配方法将一元二次方程变形的过程,体会“转化”的数学思想方法.3.培养学生主动探究的精神,提高学生积极参与的意识.【学习重点】用配方法解二次项系数不为1的一元二次方程.【学习难点】通过利用配方法将一元二次方程变形的过程,体会“转化”的数学思想.一、情景导入 生成问题回顾:1.根据完全平方公式填空:(1)x 2+6x +9=(x +3)2; (2)x 2-8x +16=(x -4)2;(3)x 2+10x +(5)2=(x +5)2; (4)x 2-3x +⎝⎛⎭⎫322=⎝⎛⎭⎫x -322. 2.解一元二次方程:x 2-4x +3=0.解:x 2-4x =-3,∴x 2-4x +4=-3+4,∴(x -2)2=1,∴x -2=±1,∴x 1=3,x 2=1.二、自学互研 生成能力知识模块一 用配方法解二次项系数不为1的一元二次方程阅读教材P 34~P 35,完成下面的填空:解方程2x 2-4x -1=0.解:将方程两边同时除以2,得x 2-2x -12=0. 把方程的左边配方,得x 2-2x +1-1-12=0, 即(x -1)2-32=0. (以下步骤请继续完成)x -1=±62,∴x 1=2+62,x 2=2-62. 师生合作探究、共同归纳出用配方法解“ax 2+bx +c =0(a ≠0)”的步骤.归纳:当方程的二次项系数不为1时,先根据等式的性质方程两边同时除以二次项系数,化二次项系数为1,再配方求方程的解.【例1】 用配方法解方程:(1)2y 2-4y -126=0; (2)3x(x +3)=94. 解:原方程可化为 解:原方程可化为y 2-2y -63=0. x 2+3x -34=0.∴y 2-2y +12-12-63=0, ∴x 2+3x +⎝⎛⎭⎫322=34+⎝⎛⎭⎫322,即(y -1)2=64. 即⎝⎛⎭⎫x +322=3. ∴y -1=±8. ∴x +32=±3. 解得y 1=9,y 2=-7. ∴x 1=-3+232,x 2=-3-232. 教师点拨:用配方法解二次项系数不为1的一元二次方程的一般步骤:①把方程写成ax 2+bx +c =0(a ≠0)形式;②把二次项系数化为1;知识模块二 利用配方法求代数式的最值【例2】 用配方法求代数式-2x 2+4x +3的最大值.解:原式=-2(x 2-2x +1-1)+3=-2(x -1)2+5.∵-2(x -1)2≤0,∴代数式-2x 2+4x +3最大值为5.教师点拨:将代数式配方时应注意:①由于是代数式,配方时只能提二次项系数,而不能除以二次项系数;②只需提二次项和一次项的系数,保留常数项;③注意变形须是恒等变形.求代数式最值的一般步骤:①先考虑一元二次方程二次项系数需满足的条件;②将二次项系数配方;③说明不论k 为何值,二次项系数均不为0.【变例】 试证:不论k 取何实数,关于x 的方程(k 2-6k +12)x 2=3-(k 2-9)x 必是一元二次方程.证明:k 2-6k +12=(k -3)2+3,∵(k -3)2≥0,∴k 2-6k +12≥3.∴不论k 取何实数,关于x 的方程(k 2-6k +12)x 2=3-(k 2-9)x 必是一元二次方程.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 用配方法解二次项系数不为1的一元二次方程知识模块二 利用配方法求代数式的最值四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
一元二次方程的解法配方法第3课时用配方法解二次项系数不为1的一元二次方程教学目标1、理解用配方法解一元二次方程的根本步骤。
2、会用配方法解二次项系数为1的一元二次方程。
3、进一步体会化归的思想方法。
重点难点重点:会用配方法解一元二次方程.难点:使一元二次方程中含未知数的项在一个完全平方式里。
教学过程〔一〕复习引入1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做〞.2、用配方法解二次项系数为1的一元二次方程的根本步骤是什么?〔二〕创设情境现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?怎样解这类方程:2x2-4x-6=0〔三〕探究新知让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。
让学生进一步体会化归的思想。
〔四〕讲解例题1、展示课本P.14例8,按课本方式讲解。
2、引导学生完成课本P.14例9的填空。
3、归纳用配方法解一元二次方程的根本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。
〔五〕应用新知课本P.15,练习。
〔六〕课堂小结1、用配方法解一元二次方程的根本步骤是什么?2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。
3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。
4、按图1—l的框图小结前面所学解一元二次方程的算法。
〔七〕思考与拓展不解方程,只通过配方判定以下方程解的情况。
(1) 4x2+4x+1=0; (2) x2-2x-5=0;(3) –x2+2x-5=0;[解] 把各方程分别配方得(1) (x+ )2=0;(2) (x-1)2=6;(3) (x-1)2=-4由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。