第二章第3节 光电探测器
- 格式:ppt
- 大小:721.00 KB
- 文档页数:81
光电探测器的原理光电探测器是一种能够将光信号转换为电信号的器件,它在光通信、光电测量、光谱分析等领域有着广泛的应用。
光电探测器的原理主要基于光电效应和半导体材料的特性,下面将详细介绍光电探测器的原理。
首先,光电探测器的基本原理是光电效应。
光电效应是指当光线照射在金属或半导体表面时,光子能量被吸收,激发出电子从固体表面逸出的现象。
这些逸出的电子就构成了光电流,通过测量光电流的大小可以间接测量光的强度。
在光电探测器中,光电效应是将光信号转换为电信号的关键过程。
其次,光电探测器的原理还与半导体材料的特性密切相关。
常见的光电探测器主要有光电二极管(Photodiode)、光电导(Phototransistor)、光电二极管阵列(Photodiode Array)等。
这些光电探测器主要利用半导体材料的光电特性来实现光信号的转换。
当光线照射在半导体材料上时,会产生电子-空穴对,并在外加电场的作用下产生电流。
不同类型的光电探测器采用不同的半导体材料和工作原理,但它们都是利用半导体材料的光电特性来实现光信号的探测和转换。
除此之外,光电探测器的原理还涉及到光信号的增强和处理。
在实际应用中,光信号往往非常微弱,需要经过光电探测器的增强和处理才能得到有效的电信号。
因此,光电探测器通常会与放大器、滤波器、模数转换器等电路相结合,以实现对光信号的放大、滤波和数字化处理,最终得到精确的电信号输出。
总的来说,光电探测器的原理主要包括光电效应、半导体材料的光电特性以及光信号的增强和处理。
通过光电效应将光信号转换为电信号,利用半导体材料的特性实现光信号的探测和转换,再通过电路的增强和处理得到最终的电信号输出。
光电探测器在光通信、光电测量、光谱分析等领域有着广泛的应用,其原理的深入理解对于光电器件的设计和应用具有重要意义。
光电探测器原理光电探测器原理及应用光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器。
现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件。
光电效应分两类,内光电效应和外光电效应。
他们的区别在于,内光电效应的入射光子并不直接将光电子从光电材料内部轰击出来,而只是将光电材料内部的光电子从低能态激发到高能态。
于是在低能态留下一个空位——空穴,而高能态产生一个自由移动的电子,如图二所示。
硅光电探测器是利用内光电效应的。
由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化。
无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关:E=hν(1)式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。
光强只反映了光子数量的多少,并不反映每个光子的能量大小。
目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。
半导体光电探测器是很好的固体元件,主要有光导型,热电型和P—N结型。
但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。
而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件。
一、耗尽层光电二极管在半导体中,电子并不处于单个的分裂能级中,而是处于能带中,一个能带有许多个能级。
如图三所示。
能带与能带间的能量间隙称为禁带,禁带中没有电子,电子从下往上填,被电子全部填满的能带称为满带,最高的满带称为价带,紧靠在价带上面的能带称为导带,导带只有部分被电子填充,或是全部空着。
一`光电探测器第一节 光辐射探测器的主要指标光信号的探测是光谱测量中的重要一环,在不同的场合和针对不同的目的所采用的探测器也不同,最重要的考虑是探测器的应用波长范围、探测灵敏度以及响应时间。
光探测器是将光辐射能转变为另一种便于测量的物理量的器件,它的门类繁多,一般来说可以按照在探测器上所产生的物理效应,分成光热探测器、光电探测器和光压探测器,光压探测器使用得很少。
本章将着重介绍光谱学测量中常用的探测器。
光热探测器是探测元件吸收光辐射后引起温度的变化,例如光能被固体晶格振动吸收引起固体的温度升高,因此对光能的测量可以转变为对温度变化的测量。
这种探测器的主要特点是:具有较宽的光波长响应范围,但时间响应较慢,测量灵敏度相对也低一些,经常用于光功率或光能量的测量。
光电探测器是将光辐射能转变为电流或电压信号进行测量,是最常使用的光信号探测器。
它的主要特点是:探测灵敏度高,时间响应快,可以对光辐射功率的瞬时变化进行测量,但它具有明显的光波长选择特性。
光电探测器又分内光电效应器件和外光电效应器件,内光电效应是通过光与探测器靶面固体材料的相互作用,引起材料内电子运动状态的变化,进而引起材料电学性质的变化。
例如半导体材料吸收光辐射产生光生载流子,引起半导体的电导率发生变化,这种现象称为光电导效应,所对应的器件称为光导器件;又如半导体PN 结在光辐照下,产生光生电动势,称为光生伏特效应,利用这种效应制成的器件称为光伏效应器件。
外光电效应器件是依据爱因斯坦的光电效应定律,探测器材料吸收辐射光能使材料内的束縛电子克服逸出功成为自由电子发射出来。
P k E h E -=ν ---------------------------------- (2.1-1)上式中 νh 是入射光子的能量,E p 是探测器材料的功函数,即光电子的逸出功,E k 是光电子离开探测器表面的动能。
这种探测器有一个截止频率和截止波长C ν和C λ: hp E c =ν , ()()nm eV E E hC p p C 1240==λ --------(2.1-2)频率低于C ν 或波长长于C λ 的光波不能被探测到,因为这样的光子能量不足以使电子克服材料的逸出功。
《光电探测技术》课程标准课程代码:学时:36 学分:2一、课程的地位与任务《光电探测技术》课程是光电制造与应用技术专业(五年一贯制)开设的一门2学分的专业拓展课程,针对光机电一体化设备中涉及的光检测和控制技术,讲述光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路。
通过本课程的学习,使学生掌握光机电一体化设备的测量与自动化技术及其应用等知识,开拓学生思维。
二、课程的主要内容和学时分配1.课程的主要内容光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路,基本光电元器件检测、识别、焊接、装配。
第1章光的度量1.1辐射度量1.2光度的基本物理量1.3光度量基本定律1.4照度计与亮度计第2章光电检测器件工作原理及特性2.1光电检测器件的物理基础2.2光电检测器件的特性参数2.3光电导探测器及应用3.1光电导探测器的工作原理3.2光敏电阻的结构及分类3.3光敏电阻的特性3.4光敏电阻的应用习题3.5结型光电探测器及应用1.1结型半导体光伏效应1.2光电池1.3光电二极管1.4光电三极管1.5光电开关与光电耦合器1.6光电位置探测器第5章光电成像器件及应用5.1ccd图像传感器5.2CmOS图像传感器第6章光纤传感检测技术及应用6.1光纤传感器的基础6.2光纤的光波调制技术6.3光纤传感器实例第7章光电信号检测电路6.1光电检测电路的设计要求6.2光电信号输入电路的静态计算6.3光电信号检测电路的动态计算6.4前置放大器7.5滤波器7.6光电信号主放大器8.学时分配1.本课程注重学生对光电检测器件的应用能力培养;2.采取理论教学和实验相结合的方式以增强课程学习的理实性;四、课程的实践环节安排实验一光敏电阻的应用实验二光电二极管的应用实验三光电位置探测器的应用实验四光纤传感器的应用实验五光电检测电路的单元电路设计五、推荐教材和主要参考书《光电探测技术与应用》作者:黄焰、肖彬、孙冬丽,华中科技大学出版社,出版时间:2016年六、考核方式及标准平时考核成绩占60%(出勤+作业+其它),期末考试(开卷)占40%。
光电探测器工作原理
光电探测器是一种能够将光信号转化为电信号的器件。
它的工作原理基于光电效应和半导体材料的特性。
光电效应是指当光照射到物质表面时,能量足够大的光子会导致表面材料中的电子从价带跃迁到导带。
这个现象可以在金属和半导体材料中观察到。
在光电探测器中,使用的是半导体材料。
半导体材料通常被分为N型和P型两种,其中N型材料富含自由电子,而P型材料富含空穴(缺少电子的位置)。
当将这两种材料结合在一起时,形成了一个PN结。
PN结中,N 型和P型材料的自由电子和空穴会发生扩散和结合的过程,形成一个电势差。
当光照射到PN结上时,光子的能量会被电子或空穴吸收,导致它们跃迁到相应的能级。
如果光子的能量足够大,电子或空穴可以跃迁到对方的区域,称为光生载流子。
这些光生载流子会造成电子和空穴浓度的增加,从而改变PN结中的电势差。
这个电势差变化会导致电流的产生。
为了增强光电探测器的灵敏度和响应速度,通常会在PN结周围加上反射层和透镜,以便更好地收集和聚焦光线。
此外,探测器还可以通过外部电压来控制电势差的大小,从而调节电流的输出。
总的来说,光电探测器的工作原理就是利用光电效应在半导体
材料中产生光生载流子,从而导致电势差的变化,进而产生电流信号。
这种原理可以应用于许多领域,包括光通信、光谱分析、太阳能电池等。
光电探测器的原理与应用1. 简介光电探测器是利用光电效应将光信号转化为电信号的装置。
它是现代光电技术中最常用的一种设备,广泛应用于光通信、光电测量、光谱分析等领域。
本文将介绍光电探测器的基本原理和常见的应用场景。
2. 光电效应的原理光电效应是指当光照射到某些物质表面时,会引起物质中的电子发生跃迁,从而产生电流或电势差。
光电效应的三个基本规律如下:2.1 光电发射当光照射到金属等物质表面时,会导致物质中的电子从原子或分子中脱离。
这种现象称为光电发射,也是光电探测器工作的基础。
光电发射的电子能量与光的波长有关,当光的波长小于一定值时,即使光强很大,也无法引起光电发射。
2.2 光电效应观察到的电流与光强的关系根据光电效应的实验观察,发现光电效应引起的电流与光强存在一定的关系。
当光强增大时,光电效应引起的电流也随之增大,但当光强超过一定值时,光电效应引起的电流不再随光强增大而增大。
2.3 光电效应时的电子动能与光强的关系光电效应时,光的波长与光电效应产生的电子动能有关。
对于金属等物质,存在一个最小的光波长,当光的波长小于这个最小值时,光电效应产生的电子动能与光波长成反比。
3. 光电探测器的基本结构光电探测器的基本结构包括光敏元件、放大电路和输出电路三部分。
其中,光敏元件是用于将光信号转化为电信号的核心部分,放大电路用于放大光电效应引起的微弱电流,输出电路将放大后的电信号输出。
4. 光电探测器的常见应用场景光电探测器由于其高灵敏度和快速响应的特点,被广泛应用于以下领域:4.1 光通信光电探测器在光通信中用于接收和检测光信号。
它可以将光信号转化为电信号并放大,从而实现光纤通信中的数据传输。
光电探测器的高速响应和低噪声特性使其在高速光通信系统中具有重要的作用。
4.2 光电测量光电探测器可以用于光强测量和光谱分析。
通过测量光电探测器输出的电信号,可以确定光的强度和波长等参数。
在科学研究和工业生产中,光电测量在材料分析、光学检测和光谱分析等领域都有广泛应用。