高一数学必修第一二章测试题及答案
- 格式:docx
- 大小:105.44 KB
- 文档页数:4
高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
2019-2020学年高中数学新教材必修一第二章《等式与不等式》测试试卷(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a >1>b >-1,则下列不等式中恒成立的是( ) A.1a <1b B.1a >1b C .a >b 2D .a 2>2bC [取a =2,b =-12,满足a >1>b >-1,但1a >1b ,故A 错;取a =2,b =13,满足a >1>b >-1,但1a <1b ,故B 错;取a =54,b =56,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.]2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >ab 2 B.a b 2>a b >a C.a b >ab 2>aD.a b >a >a b 2C [∵a <0,b <-1,∴a b >0,b 2>1,∴1b 2<1. 又∵a <0,∴0>a b 2>a ,∴a b >ab 2>a . 故选C.]3.不等式-x 2-x +2≥0的解集为( ) A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1}D .∅C [不等式-x 2-x +2≥0可化为x 2+x -2≤0,即(x +2)(x -1)≤0,所以-2≤x ≤1,即解集为{x |-2≤x ≤1}.]4.已知集合M ={x |0≤x <2},N ={x |x 2-2x -3<0},则M ∩N =( ) A .{x |0≤x <1}B .{x |0≤x <2}C .{x |0≤x ≤1}D .{x |0≤x ≤2}B [由于N ={x |x 2-2x -3<0}={x |-1<x <3},又因为M ={x |0≤x <2},所以M ∩N ={x |0≤x <2}.]5.下列方程,适合用因式分解法解的是( ) A .x 2-42x +1=0 B .2x 2=x -3 C .(x -2)2=3x -6D .x 2-10x -9=0C [C 中方程化简后可以用因式分解法求解.]6.求方程组⎩⎨⎧11x +3z =9,3x +2y +z =8,2x -6y +4z =5的解集时,最简便的方法是( )A .先消x 得⎩⎨⎧22y +2z =61,66y -38z =-37B .先消z 得⎩⎨⎧ 2x -6y =-15,38x +18y =21C .先消y 得⎩⎨⎧11x +7z =29,11x +3z =9D .得8x -2y +4z =11,再解C [第一个方程中没有y ,所以消去y 最简便.]7.若不等式4x 2+(m -1)x +1>0的解集为R ,则实数m 的取值范围是( ) A .m >5或m <-3 B .m ≥5或m ≤-3 C .-3≤m ≤5D .-3<m <5D [依题意有(m -1)2-16<0,所以m 2-2m -15<0,解得-3<m <5.] 8.已知关于x 的方程x 2-6x +k =0的两根分别是x 1,x 2,且满足1x 1+1x 2=3,则k 的值是( )A .1B .2C .3D .4B [∵x 2-6x +k =0的两根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,∴1x 1+1x 2=x 1+x 2x 1x 2=6k =3,解得k =2.经检验,k =2满足题意.]9.某种产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本时的最低产量是( )A .200台B .150台C .100台D .50台B [要使生产者不亏本,则应满足25x ≥3 000+20x -0.1x 2,整理得x 2+50x -30 000≥0,解得x ≥150或x ≤-200(舍去),故最低产量是150台.]10.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D .a <b <a +b2<abB [因为0<a <b ,所以由均值不等式可得ab <a +b 2,且a +b 2<b +b2=b ,又a =a ·a <a ·b ,所以a <ab <a +b2<b .]11.若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A .a 2+b 2+c 2≥2 B .a +b +c ≤ 3 C.1a +1b +1c ≤2 3D .(a +b +c )2≥3D [由均值不等式知a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,于是a 2+b 2+c 2≥ab +bc +ca =1,故A 错;而(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca )=3,故D 项正确,B 项错误;令a =b =c =33,则ab +bc +ca =1,但1a +1b +1c =33>23,故C 项错误.]12.若x >1,则4x +1+1x -1的最小值等于( ) A .6 B .9 C .4 D .1B [由x >1,得x -1>0,于是4x +1+1x -1=4(x -1)+1x -1+5≥24+5=9,当且仅当4(x -1)=1x -1,即x =32时,等号成立.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若{(x ,y )|(2,1)}是关于x ,y 的方程组⎩⎨⎧ax +by =2,bx +ay =7的解集,则(a +b )(a-b )=________.-15 [∵{(x ,y )|(2,1)}是关于x ,y 的方程组⎩⎨⎧ax +by =2,bx +ay =7的解集,∴⎩⎨⎧ 2a +b =2,2b +a =7,解得⎩⎨⎧a =-1,b =4,∴(a +b )(a -b )=(-1+4)×(-1-4)=-15.]14.若关于x 的不等式ax 2-6x +a 2<0的解集为(-∞,m )∪(1,+∞),则m =________.-3 [由已知可得a <0且1和m 是方程ax 2-6x +a 2=0的两根,于是a -6+a 2=0,解得a =-3,代入得-3x 2-6x +9=0,所以方程另一根为-3,即m =-3.]15.若关于x 的不等式组⎩⎨⎧x -1>a 2,x -4<2a的解集不是空集,则实数a 的取值范围是________.(-1,3) [依题意有⎩⎨⎧x >a 2+1,x <2a +4,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.]16.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. [9,+∞) [∵ab =a +b +3≥2ab +3, ∴ab -2ab -3≥0,即(ab -3)(ab +1)≥0, ∴ab -3≥0,即ab ≥3,∴ab ≥9.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或。
第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∈a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∈c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∈c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.6解析:选D.∈z=xy,x∈A,y∈B,∈z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∈集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C=____________.解析:∈C={(x,y)|x∈A,y∈B},∈满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∈M B .a ∈M C .{a }∈M D .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个. 解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________. 解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根, ∈a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围. 解:∈a =0时,原方程为-3x +2=0,x =23,符合题意.∈a ≠0时,方程ax 2-3x +2=0为一元二次方程. 由Δ=9-8a ≤0,得a ≥98.∈当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合∈∈,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊 C .2010年考入清华大学的全体学生 D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ∈π∈R ;∈3∈Q ;∈0∈N *;∈|-4|∈N *. A .1 B .2 C .3 D .4 解析:选B.∈∈正确,∈∈错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∈AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()∈教2011届高一的年轻教师;∈你所在班中身高超过1.70米的同学;∈2010年广州亚运会的比赛项目;∈1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以∈不能构成集合;由于∈∈∈中的对象具备确定性、互异性,所以∈∈∈能构成集合.4.若集合M={a,b,c},M中元素是∈ABC的三边长,则∈ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()∈M={(3,2)},N={(2,3)};∈M={3,2},N={2,3};∈M={(1,2)},N={1,2}.A.∈ B.∈C.∈ D.以上都不对解析:选B.∈中M中表示点(3,2),N中表示点(2,3),∈中由元素的无序性知是相等集合,∈中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∈MC .x ∈M ,y ∈MD .x ∈M ,y ∈M 解析:选B.∈x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∈M .7.已知∈5∈R ;∈13∈Q ;∈0={0};∈0∈N ;∈π∈Q ;∈-3∈Z .其中正确的个数为________.解析:∈错误,0是元素,{0}是一个集合;∈0∈N ;∈π∈Q ,∈∈∈正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∈A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∈-3∈A ,∈-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∈12-3=2+3=2+3×1,而2,1∈Z ,∈2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b2b =2a, 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )∈{a ,b }={b ,a };∈{a ,b }∈{b ,a };∈∈={∈};∈{0}=∈;∈∈{0};∈0∈{0}.A .6个B .5个C .4个D .3个及3个以下 解析:选C.∈∈∈∈正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∈B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∈B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∈Δ=9-4(2-a2)=1+4a2>0,∈M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0∈A B.{0}∈AC.∈∈A D.{0}∈A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A∈B解析:选C.利用数轴(图略)可看出x∈B∈x∈A,但x∈A∈x∈B不成立.3.定义A-B={x|x∈A且x∈B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∈,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ∈B },则A 与B 的关系是( ) A .A ∈B B .B ∈A C .A ∈B D .B ∈A解析:选D.∈B 的子集为{1},{2},{1,2},∈, ∈A ={x |x ∈B }={{1},{2},{1,2},∈},∈B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∈B ,故B A .答案:BA8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ∈B ,则a 的值为________. 解析:A ∈B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:∈若⎩⎪⎨⎪⎧a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性, 故a ≠0,c 2-2c +1=0,即c =1; 当c =1时,集合B 中的三个元素也相同, ∈c =1舍去,即此时无解.∈若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∈a ≠0,∈2c 2-c -1=0,即(c -1)(2c +1)=0. 又∈c ≠1,∈c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ∈A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ∈A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∈BA ,∈mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时, 由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时, 由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ∈N B .N ∈M C .M ∩N ={2,3} D .M ∈N ={1,4}解析:选C.∈M={1,2,3},N={2,3,4}.∈选项A、B显然不对.M∈N={1,2,3,4},∈选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)} B.{0,1}C.{y|y≥0} D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∈M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∈B=A,则实数m的取值范围是________.解析:A∈B=A,即B∈A,∈m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∈N=N;Q∈R=R∈Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:选C.只有Z∈N=N是错误的,应是Z∈N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∈A={3,5,6,8},B={4,5,7,8},∈A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∈B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∈a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∈P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3} B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}解析:选A.∈A={x|1≤x≤3},B={x|x>2},∈A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∈T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∈T =R ,∈⎩⎪⎨⎪⎧a +8>5,a <-1.∈-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∈A ∩B ={2,3},∈3∈B ,∈m =3. 答案:38.满足条件{1,3}∈M ={1,3,5}的集合M 的个数是________. 解析:∈{1,3}∈M ={1,3,5},∈M 中必须含有5, ∈M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∈; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∈B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∈A ∩B ={3},∈由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∈B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:∈当a -3≤5,即a ≤8时,A ∈B ={x |x <a -3或x >5}. ∈当a -3>5,即a >8时,A ∈B ={x |x >5}∈{x |x <a -3}={x |x ∈R }=R . 综上可知当a ≤8时,A ∈B ={x |x <a -3或x >5}; 当a >8时,A ∈B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∈,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∈,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∈U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∈U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∈R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∈B ={x |x <1},∈∈R B ={x |x ≥1}, ∈A ∩∈R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∈U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∈U A={x|2≤x≤5},则a=________.解析:∈A∈∈U A=U,∈A={x|1≤x<2}.∈a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∈U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∈U B={3,4,5},∈A∩(∈U B)={3,4}.2.已知全集U={0,1,2},且∈U A={2},则A=()A.{0} B.{1}C.∈ D.{0,1}解析:选D.∈∈U A={2},∈2∈A,又U={0,1,2},∈A={0,1}.3.(2009年高考全国卷∈)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∈B,则集合∈U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∈B={3,4,5,7,8,9},A∩B={4,7,9},∈∈U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∈N=UC.(∈U N)∈M=U D.(∈U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∈U N)∈M ={3,4,5,7},(∈U M)∩N={2,6},M∈N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∈U(A∈B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∈A={1,2},∈B={2,4},∈A∈B={1,2,4},∈∈U(A∈B)={3,5}.6.已知全集U =A ∈B 中有m 个元素,(∈U A )∈(∈U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∈B 中有m 个元素,∈(∈U A )∈(∈U B )=∈U (A ∩B )中有n 个元素, ∈A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∈B )∩(∈U C )=________. 解析:∈A ∈B ={2,3,4,5},∈U C ={1,2,5}, ∈(A ∈B )∩(∈U C )={2,3,4,5}∩{1,2,5}={2,5}. 答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∈U A ={1},则实数a 的值是________. 解析:∈U ={2,3,a 2-a -1},A ={2,3},∈U A ={1}, ∈a 2-a -1=1,即a 2-a -2=0, 解得a =-1或a =2. 答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∈U A )∩B =∈,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∈∈U A ={x |x <-m },∈B ={x |-2<x <4},(∈U A )∩B =∈, ∈-m ≤-2,即m ≥2, ∈m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∈U B )∈P ,(A ∩B )∩(∈U P ).解:将集合A 、B 、P 表示在数轴上,如图.∈A ={x |-4≤x <2},B ={x |-1<x ≤3},∈A ∩B ={x |-1<x <2}. ∈∈U B ={x |x ≤-1或x >3}, ∈(∈U B )∈P ={x |x ≤0或x ≥52},(A ∩B )∩(∈U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∈U A )={2},A ∩(∈U B )={4},U =R ,求实数a ,b 的值.解:∈B ∩(∈U A )={2}, ∈2∈B ,但2∈A .∈A ∩(∈U B )={4},∈4∈A ,但4∈B .∈⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∈a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∈R B ,求实数a 的取值范围.解:∈R B ={x |x ≤1或x ≥2}≠∈, ∈A∈R B ,∈分A =∈和A ≠∈两种情况讨论. ∈若A =∈,此时有2a -2≥a , ∈a ≥2.∈若A ≠∈,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2.∈a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∈ B .∈或{1} C .{1} D .∈或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∈或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =x +103-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∈(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2, 故函数值域为{-1,-2,2}. 答案:{-1,-2,2} 10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值. 解:(1)∈f (x )=11+x ,∈f (2)=11+2=13, 又∈g (x )=x 2+2, ∈g (2)=22+2=6. (2)由(1)知g (2)=6, ∈f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数). ∈ax +1≥0,a <0,∈x ≤-1a ,即函数的定义域为(-∞,-1a ].∈函数在区间(-∞,1]上有意义, ∈(-∞,1]∈(-∞,-1a ],∈-1a ≥1,而a <0,∈-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x=1x1+1x(x ≠0), ∈f (t )=t1+t (t ≠0且t ≠-1),∈f (x )=x1+x(x ≠0且x ≠-1). 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∈2f (2)-3f (1)=5,2f (0)-f (-1)=1,∈⎩⎪⎨⎪⎧ k -b =5k +b =1,∈⎩⎪⎨⎪⎧k =3b =-2,∈f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________. 解析:令2x =t ,则x =t 2,∈f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x2-1. 答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x非负数非正数y1 -1B.x 奇数 0 偶数 y1-1C.x 有理数 无理数 y1-1D.x 自然数 整数 有理数 y1-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∈f (t )=4t -12-1,∈f (12)=16-1=15. 法二:令1-2x =12,得x =14,∈f (12)=16-1=15. 3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∈g (x +2)=2x +3=2(x +2)-1, ∈g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∈f (0)=(0-1)2+c =0, ∈c =-1,∈f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( ) A .y =12x (x >0) B .y =24x (x >0)C .y =28x (x >0) D .y =216x (x >0) 解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x . 7.已知f (x )=2x +3,且f (m )=6,则m 等于________. 解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1, ∈f [1f 3]=f (1)=2. 答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1. 再令-b =x ,即得f (x )=x 2+x +1. 11.已知f (x +1x )=x 2+1x 2+1x ,求f (x ).解:∈x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∈f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x )+1.∈f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∈f (2+x )=f (2-x ),∈f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∈f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∈ax 2-4ax +3=0的两实根的平方和为10, ∈10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a , ∈a =1.∈f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .16解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 20≤x ≤3x 2+6x-2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集. 4.已知f (x )=⎩⎪⎨⎪⎧x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∈f (x )=x 2=3,x =±3,而-1<x <2,∈x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∈⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∈⎝⎛⎭⎫-12,1D.⎝⎛⎭⎫-12,12∈(1,+∞) 解析:选C.f (a )>1∈⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧-1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1∈⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12∈a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∈⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f x -2, x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0. 答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R. 由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∈260÷52=5(小时),260÷65=4(小时),∈s =⎩⎪⎨⎪⎧52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ∈BC ,DH ∈BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ∈当点F 在BG 上时, 即x ∈[0,2]时,y =12x 2;∈当点F 在GH 上时, 即x ∈(2,5]时,y =x +x -22×2=2x -2; ∈当点F 在HC 上时,即x ∈(5,7]时, y =S 五边形ABFED =S 梯形ABCD -S Rt∈CEF=12(7+3)×2-12(7-x )2 =-12(x -7)2+10.综合∈∈∈,得函数解析式为y =⎩⎪⎨⎪⎧12x 2x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8. 2.函数f (x )在R 上是增函数,若a +b ≤0,则有( ) A .f (a )+f (b )≤-f (a )-f (b ) B .f (a )+f (b )≥-f (a )-f (b ) C .f (a )+f (b )≤f (-a )+f (-b ) D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断. ∈a +b ≤0,∈a ≤-b ,b ≤-a . 又∈函数f (x )在R 上是增函数, ∈f (a )≤f (-b ),f (b )≤f (-a ). ∈f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:∈y =x x -1;∈y =x 2+x ;∈y =-(x +1)2;∈y =x1-x +2.其中在(-∞,0)上为减函数的是( )A .∈B .∈C .∈∈D .∈∈∈解析:选A.∈y =x x -1=x -1+1x -1=1+1x -1.其减区间为(-∞,1),(1,+∞).∈y =x 2+x =(x +12)2-14,减区间为(-∞,-12).∈y =-(x +1)2,其减区间为(-1,+∞), ∈与∈相比,可知为增函数.4.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 解析:对称轴x =k 8,则k 8≤5,或k8≥8,得k ≤40,或k ≥64,即对称轴不能处于区间内.答案:(-∞,40]∈[64,+∞)1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞) 解析:选A.根据y =-x 2的图象可得.2.若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( )A .单调递增B .单调递减C .先减后增D .无法判断解析:选D.函数单调性强调x 1,x 2∈[-1,3],且x 1,x 2具有任意性,虽然f (0)<f (1),但不能保证其他值也能满足这样的不等关系.3.已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上解析:选C.由题意知f (x )在A 上是增函数.若y =f (x )与x 轴有交点,则有且只有一个交点,故方程f (x )=0至多有一个根.4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 解析:选D.∈a 2+1-a =(a -12)2+34>0,∈a 2+1>a ,∈f (a 2+1)<f (a ),故选D.5.下列四个函数在(-∞,0)上为增函数的是( ) ∈y =|x |;∈y =|x |x ;∈y =-x 2|x |;∈y =x +x|x |.A .∈∈B .∈∈C .∈∈D .∈∈解析:选C.∈y =|x |=-x (x <0)在(-∞,0)上为减函数; ∈y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;∈y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;∈y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有( )∈若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ∈函数y =x 2在R 上是增函数; ∈函数y =-1x在定义域上是增函数;∈y =1x 的单调递减区间是(-∞,0)∈(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而∈不对;∈y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;∈y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);∈y =1x 的单调递减区间不是(-∞,0)∈(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知 f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∈0<x 1<x 2,∈x 1-x 2<0,x 1x 2>0. ∈b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34 )的大小关系为________.解析:∈a 2-a +1=(a -12)2+34≥34,∈f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________. 解析: y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x x >0x 2-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数. 解:(1)∈f (1)=0,f (3)=0,∈⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∈f (x )=x 2-4x +3, ∈设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3) =(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4), ∈x 1-x 2<0,x 1>2,x 2>2, ∈x 1+x 2-4>0.∈f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∈函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解:由题意可得⎩⎪⎨⎪⎧-1≤x -1≤1-1≤1-3x ≤1,x -1<1-3x即⎩⎪⎨⎪⎧0≤x ≤20≤x ≤23,x <12∈0≤x <12.12.设函数y =f (x )=ax +1x +2在区间(-2,+∞)上单调递增,求a 的取值范围.解:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, ∈f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2 =ax 1+1x 2+2-ax 2+1x 1+2x 1+2x 2+2=x 1-x 22a -1x 1+2x 2+2.∈f (x )在(-2,+∞)上单调递增, ∈f (x 1)-f (x 2)<0. ∈x 1-x 22a -1x 1+2x 2+2<0,∈x 1-x 2<0,x 1+2>0,x 2+2>0, ∈2a -1>0,∈a >12.1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-aD .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 2.函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞)D .[0,+∞)解析:选B.y =x +1-x -1,∈⎩⎪⎨⎪⎧x +1≥0x -1≥0,∈x ≥1.∈y =2x +1+x -1为[1,+∞)上的减函数,∈f (x )max =f (1)=2且y >0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________.解析:y 4=1-x 3,∈0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知, f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.。
高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
必修一第二章姓名:___________班级:___________考号:___________一、单选题1.已知13log 4a =,2log 3b =,0.32c -=,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>2.已知函数()112x f x b -⎛⎫=+ ⎪⎝⎭,且函数图像不经过第一象限,则b 的取值范围是( ) A .(),1-∞-B .(],1-∞-C .(],2-∞-D .(),2-∞-3.下列各式正确的是( )A 3=-B a =C .32=-D 2=40)a >可化为( )A .25aB .52aC .25a-D .-52a5.函数2x y -= 的单调递增区间是( ) A .(-∞,+∞) B .(-∞,0] C .[0,+∞)D .(0,+∞)6.已知函数()lg 030x x x f x x >⎧=⎨≤⎩,则1100f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .-2B .9C .19D .lg 27.已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()()31f x log x a =++,则()8f -等于( ) A .3a --B .3a +C .2-D .28.函数x y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图像只可能是( )A .B .C .D .9.若函数()y f x =是函数3x y =的反函数,则12f ⎛⎫⎪⎝⎭的值为( ) A .2log 3-B .3log 2-C .19D10.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 ( )A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭11.函数3()log (1)f x x =+的定义域为( ) A .[1,1]-B .[1,1)-C .(]1,1-D .(1,1)-12.当1a >时,x y a -=的图象与log ay x =的图象是( )A .B .C .D .二、填空题13.函数231(0x y a a -=⋅+>且1)a ≠的图象必经过点______. 14.已知log 2,log 3a a m n ==,则2m n a -=__________.15.函数y =log a (x −2)+3(a >0且a ≠1)恒过定点为 _________16.函数()212log 32y x x =-+的单调递增区间为__________. 三、解答题 17.(1(2)已知13x x -+=,求22x x -+的值.18.计算:(1)2lg 2lg3111lg 0.36lg823+++;(2)19.(1)已知53a =,54b =,用a ,b 表示25log 36. (2)求值)7112log 422116log 744π⎛⎫-++ ⎪⎝⎭.20.(121032128log 16()25e π-++-++; (2)若3log 14a >(0a >且1a ≠),求a 的取值范围.21.已知幂函数()()2157m f x m m x-=-+为偶函数.(1)求()f x 的解析式;(2)若()()3g x f x ax =--在[]1,3上不是单调函数,求实数a 的取值范围.22.已知幂函数()f x 的图象经过点13,3⎛⎫⎪⎝⎭.(1)求函数()f x 的解析式;(2)设函数()()()2g x x f x =-⋅,试判断函数()g x 在区间1,12⎡⎤⎢⎥⎣⎦上的单调性,并求函数()g x 在区间1,12⎡⎤⎢⎥⎣⎦上的值域.参考答案1.D 【解析】 【分析】先由对数函数,以及指数函数的性质,确定a ,b ,c 的范围,进而可得出结果. 【详解】 因为1133log 4log 10a =<=,22log 321log b =>=,0.300221c -<=<=, 所以b c a >>. 故选:D. 【点睛】本题主要考查比较指数幂,以及对数的大小,熟记对数函数以及指数函数的性质即可,属于基础题型. 2.C 【解析】 【分析】利用指数函数的图像即可求解。
高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (13)一、选择题(本大题共8小题,共40.0分) 1. 定义运算:∣∣∣ab cd ∣∣∣=ad −bc.若不等式∣∣∣2k kx +3−1x 2∣∣∣<0的解集是空集,则实数k 的取值范围是( )A. {0}∪[24,+∞)B. [0,24]C. (0,24]D. (−∞,0]∪[24,+∞)2. 已知三个互不相等的负数a ,b ,c 满足2b =a +c ,设M =1a +1c ,N =2b ,则( )A. M >NB. M ≥NC. M <ND. M ≤N3. 已知函数f(x)={x +1(x <0)−x −1(x ≥0),则不等式(x +1)⋅f(x −1)≤3−x 的解集是( )A. [−3,+∞)B. [1,+∞)C. [−3,1]D. (−∞,−3]∪[1,+∞)4. 若函数f(x)=x 2+x +ax 在(12,+∞)上是增函数,则a 的取值范围( )A. (−∞,12)B. (12,+∞)C. [12,+∞)D. (−∞,12]5. 若函数f(x)=(k −3)x 2+2kx +1在(−∞,0]上为增函数,则k 的取值范围是( )A. [0,3)B. [0,3]C. (0,3]D. [3,+∞) 6. 已知a =log 52,b =log 0.50.2,c =ln(ln2),则a ,b ,c 的大小关系是( )A. a <b <cB. a <c <bC. b <a <cD. c <a <b7. 已知p :函数f(x)=x 2+mx +1有两个零点,q :∀x ∈R ,4x 2+4(m −2)x +1>0.若p ∨q 为真,p ∧q 为假,则实数m 的取值范围为( ) A. (−∞,−2)∪[3,+∞) B. (−∞,−2)∪(1,2]∪[3,+∞) C. (1,2]∪[3,+∞) D. (−∞,−2)∪(1,2] 8. 若a <0,则关于x 的不等式x 2−4ax −5a 2>0的解是( )A. x >5a 或x <−aB. x >−a 或x <5aC. 5a <x <−aD. −a <x <5a 二、填空题(本大题共8小题,共40.0分) 9. 不等式−x 2−x +6≥0的解集为______. 10. 函数y =−x 2的单调递增区间为______.11. 若函数f(x)={1x ,x >03x ,x ≤0,则不等式f(x)≥13的解集为______.12. 若函数f(x)=log a x(a >0,a ≠1)在区间[14,2]上的最大值为1,最小值为m ,且函数g(x)=(m +1)x 2在区间[0,+∞)上是增函数,则a =______.13. 若不等式ax 2+2ax −1<0解集为R ,则a 的范围是______.14. 对于0≤m ≤4的m ,不等式x 2+mx >4x +m −3恒成立,则x 的取值范围是______. 15. 不等式3x 2−7x ≤10的解集为______. 16. 函数y =√6−x −x 2的定义域是______. 三、解答题(本大题共4小题,共48.0分)17.解关于x的不等式:x2+2x−3−x2+x+6<0.18.已知f(x)=x2+6x+9x+1(x>−1).(1)解不等式f(x)≥9;(2)求f(x)的最小值.19.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)对任意实数x,都有f(x)≥x,且当x∈[1,3)时,有f(x)≤18(x+2)2成立.(1)证明:f(2)=2;(2)若f(−2)=0,求f(x)的表达式;(3)在题(2)的条件下设g(x)=f(x)−mx2,x∈[0,+∞),若g(x)图象上的点都位于直线y=14的上方,求实数m的取值范围.20.已知不等式ax2−3x+6>4的解集为{x|x<1或x>b}.(1)求a,b的值;(2)已知m∈R,解关于x的不等式(x−m)(ax−b)<0.-------- 答案与解析 --------1.答案:B解析:解:根据题意得,不等式2kx 2+kx +3<0的解集为空集, ①k =0时,3<0,满足题意;②k ≠0时,{k >0△=k 2−24k ≤0,解得0<k ≤24, ∴综上得,实数k 的取值范围是[0,24]. 故选:B .根据题意即可得出不等式2kx 2+kx +3<0的解集是空集,从而讨论k :k =0时,显然满足题意;k ≠0时,{k >0△=k 2−24k ≤0,从而可得出k 的取值范围.本题考查了分类讨论的思想,一元二次不等式解的情况,考查了计算能力,属于基础题. 2.答案:A解析:解:由三个互不相等的负数a ,b ,c 满足2b =a +c , 且M =1a +1c =c+a ac=2bac =2ac b,N =2b , 所以ac b −b =ac−b 2b=ac−(a+c 2)2b=−(a−c)24b<0,即ac b <b <0, 所以2ac b>2b ,即M >N . 故选:A . 化简M =2ac b,利用作差法比较acb <b ,从而得出M 与N 的大小.本题考查了不等式大小比较问题,也考查了转化思想,是基础题. 3.答案:A解析:解:∵函数f(x)={x +1(x <0)−x −1(x ≥0),则对于不等式(x +1)⋅f(x −1)≤3−x ,当x −1<0即x <1时,f(x −1)=x −1+1=x ,则(x +1)⋅x ≤3−x ,解得−3≤x ≤1,∴−3≤x <1.当x −1≥0时,即x ≥1,f(x −1)=1−x −1=−x ,则(x +1)(−x)≤3−x ,即x 2≥−3,∴x ≥1. ∴原不等式的解集为{x|−3≤x <1,或x ≥1}={x|x ≥−3}, 故选:A .分别考虑x −1<0即x <1时;x −1≥0时,即x ≥1时,原不等式的解集,最后求并集. 本题考查分段函数的应用,考查分段函数值应考虑自变量对应的情况,属于中档题. 4.答案:D解析:解:根据题意,函数f(x)=x 2+x +ax ,其导数f′(x)=2x +1−a x 2=2x 3+x 2−ax 2,若函数f(x)=x 2+x +ax 在(12,+∞)上是增函数,则f′(x)=2x3+x 2−ax 2≥0在(12,+∞)上恒成立,设g(x)=2x 3+x 2−a ,则有g(x)=2x 3+x 2−a ≥0在(12,+∞)上恒成立,而g′(x)=6x 2+2x ,在(12,+∞)上,有g′(x)>0恒成立,即函数g(x)在(12,+∞)上为增函数, 若g(x)=2x 3+x 2−a ≥0在(12,+∞)上恒成立,必有g(12)≥0,即2×(12)3+(12)2−a =12−a ≥0恒成立,则a ≤12,即a 的取值范围为(−∞,12]; 故选:D .根据题意,求出函数f(x)的导数,由函数的导数与函数单调性的关系分析可得:若函数f(x)在(12,+∞)上是增函数,必有f′(x)=2x 3+x 2−ax 2≥0在(12,+∞)上恒成立,进而设g(x)=2x 3+x 2−a ,求出g(x)的导数,分析可得g(x)在(12,+∞)上为增函数,据此可得g(12)≥0,即2×(12)3+(12)2−a =12−a ≥0恒成立,解可得a 的取值范围,即可得答案.本题考查利用导数分析函数单调性的判断,注意函数的导数与函数单调性的关系,属于基础题. 5.答案:B解析:解:若函数f(x)=(k −3)x 2+2kx +1在(−∞,0]上为增函数, ①当k =3时,f(x)=6x +1,显然f(x)在(−∞,0]上为增函数,②当k ≠3时,由f(x)在(−∞,0]上为增函数,有{k −3<0−2k 2(k−3)≥0,∴{k <30≤k <3,∴0≤k <3,∴k 的取值范围为[0,3]. 故选:B .利用函数图象与单调性的关系,结合二次函数的图象分析开口方向即可. 本题考查函数的图象与性质的应用,一元二次函数单调性问题一定要结合图象,考虑图象开口方向,体现数形结合和分类讨论的思想. 6.答案:D解析:解:∵0=log 51<log 52<log 55=1,log 0.50.2>log 0.50.5=1,0<ln2<1,ln(ln2)<0, ∴c <a <b . 故选:D .可以得出0<log 52<1,log 0.50.2>1,ln(ln2)<0,从而可得出a ,b ,c 的大小关系.本题考查了对数的运算,对数函数的单调性,增函数和减函数的定义,考查了计算能力,属于基础题.7.答案:B解析:解:∵p ∨q 为真,p ∧q 为假 ∴p ,q 中一个真命题一个假命题,由p :函数f(x)=x 2+mx +1有两个零点, 得△=m 2−4>0,解得m >2或m <−2. 由q :∀x ∈R ,4x 2+4(m −2)x +1>0 得△=16(m −2)2−16<0, 解得1<m <3, 当p 真q 假时,有{m >2或m <−2m ≥3或m ≤1即m ≥3或m <−2 当p 假q 真,有{−2≤m ≤21<m <3即1<m ≤2∴实数m 的取值范围为(−∞,−2)∪(1,2]∪[3,+∞). 故选:B .由p ∨q 为真,p ∧q 为假,知p ,q 有一个真命题一个假命题,由p 得△=m 2−4>0,解得m >2或m <−2.由q ,得△=16(m −2)2−16<0,解得1<m <3,分两种情况求出实数m 的取值范围. 本题考查命题的真假判断和应用,解题时要认真审题,注意根的判别式的合理运用. 8.答案:B解析:解:∵x 2−4ax −5a 2>0 ∴(x +a)(x −5a)>0,等价于{x +a >0x −5a >0或{x +a <0x −5a <0又∵a <0∴x <5a 或x >−a 故选:B .写出等价不等式组,根据a <0,解不等式组即可本题考查一元二次不等式的解法,注意等价关系.属简单题 9.答案:[−3,2]解析:解:不等式−x 2−x +6≥0可化为x 2+x −6≤0, 即(x +3)(x −2)≤0,解得−3≤x ≤2, 所以不等式的解集为[−3,2]. 故答案为:[−3,2].把不等式化为一般形式,再求解即可.本题考查了一元二次不等式的解法,是基础题. 10.答案:(−∞,0]解析:解:画出函数函数y =−x 2的草图;如图所示; 易知,函数y =−x 2的单调递增区间为(−∞,0], 故答案为(−∞,0]画出函数y =−x 2的图象,由图象容易得到解答. 本题考查了一元二次函数的图象和性质. 11.答案:{x|−1≤x ≤3}解析:解:函数f(x)={1x,x >03x,x ≤0,则不等式f(x)≥13,即{x >01x ≥13①,或 {x ≤03x ≥13②,解①求得0<x ≤3;解②求得−1≤x ≤0,故原不等式的解集为{x|−1≤x ≤3}, 故答案为:{x|−1≤x ≤3}.由题意原不等式即{x >01x ≥13①,或 {x ≤03x ≥13②,分别求出①②的解集,再取并集,即得所求.本题主要考查分段函数的应用,指数不等式、分式不等式的应用,属于基础题.12.答案:14解析:解:∵函数g(x)=(m +1)x 2在区间[0,+∞)上是增函数,∴m +1>0,解得m >−1.①当a >1时,函数f(x)=log a x(a >0,a ≠1)在区间[14,2]上单调递增,由已知可得{log a 2=1log a 14=m,解得{a =2m =−2,与m >−1矛盾,故应舍去;②当0<a <1时,函数f(x)=log a x(a >0,a ≠1)在区间[14,2]上单调递减,由已知可得{log a 14=1log a 2=m,解得{a =14m =−12,满足m >−1,故a =14.故答案为14.利用二次函数的单调性、对数函数的单调性、分类讨论即可得出.熟练掌握二次函数的单调性、对数函数的单调性、分类讨论的方法是解题的关键. 13.答案:−1<a ≤0解析:解:a =0时,不等式ax 2+2ax −1<0化为−1<0,解集为R ; a ≠0时,不等式ax 2+2ax −1<0解集为R 时, 应满足{a <0△=4a 2−4a ×(−1)<0,解得−1<a <0;所以实数a 的取值范围是−1<a ≤0. 故答案为:−1<a ≤0.讨论a =0和a ≠0时,求出不等式ax 2+2ax −1<0解集为R 时a 的取值范围. 本题考查了不等式恒成立问题,也考查了分类讨论思想,是基础题. 14.答案:x >3或x <−1解析:解:若不等式x 2+mx >4x +m −3恒成立 则m(x −1)+x 2−4x +3>0在0≤m ≤4时恒成立.令f(m)=m(x −1)+x 2−4x +3.则{f(0)>0f(4)>0⇒{x 2−4x +3>0x 2−1>0⇒{x <1或x >3x <−1或x >1.∴x <−1或x >3.故答案为:x >3或x <−1由对于0≤m ≤4的m ,不等式x 2+mx >4x +m −3恒成立,可变形为m(x −1)+x 2−4x +3>0在0≤m ≤4时恒成立.由于该函数为关于m 的一次函数估可转化为{f(0)>0f(4)>0,即{x 2−4x +3>0x 2−1>0,解不等式组,即可得到结论.解不等式恒成立问题,通常借助于函数思想或方程思想转化为求函数的最值或利用函数的图象或判别式的方法求解.15.答案:[−1,103]解析:解:不等式3x 2−7x ≤10可化为3x 2−7x −10≤0, 即(x +1)(3x −10)≤0,解得−1≤x ≤103;所以不等式的解集为[−1,103]. 故答案为:[−1,103].不等式化为3x 2−7x −10≤0,求出不等式的解集即可. 本题考查了一元二次不等式的解法,是基础题. 16.答案:(−3,2)解析:解:∵函数y =√6−x −x 2, ∴6−x −x 2≥0, 即x 2+x −6≤0; ∴(x +3)(x −2)≤0, 解得−3≤x ≤2,∴函数y 的定义域是(−3,2). 故答案为:(−3,2).根据函数的解析式,二次根式的被开方数大于或等于0,列出不等式,求出解集即可.本题考查了求函数定义域的问题,解题时应化为求一元二次不等式的解集的问题,是基础题.17.答案:解;不等式x 2+2x−3−x 2+x+6<0可化为x 2+2x−3x 2−x−6>0,即(x+3)(x−1)(x+2)(x−3)>0,各因式对应的一次方程的实数根为−3,−2,1和3,如图,由图可知,该不等式的解集为(−∞,−3)∪(−2,1)∪(3,+∞).解析:把不等式化为几个一次因式的积(或商)的形式,求出各因式对应方程的实数根,然后利用数轴标根法求出不等式的解集.本题考查了不等式的解法与应用问题,是基础题.18.答案:解:(1)由x>−1可得x+1>0,故x2+6x+9x+1≥9可得,x2+6x+9≥9x+9,解可得,−1<x≤0或x≥3,故原不等式的解集(−1,0]∪[3,+∞),(2)由x>−1可得x+1>0,由基本不等式可得,f(x)=x2+6x+9x+1=(x+3)2x+1=[(x+1)+2]2x+1=x+1+4x+1+4,≥2√(x+1)⋅4x+1+4=8,当且仅当x+1=4x+1集集x=1时取等号,因此函数f(x)取得最小值8.解析:(1)由已知把分式不等式可转化为二次不等式,即可进行求解;(2)由f(x)=x2+6x+9x+1=(x+3)2x+1=[(x+1)+2]2x+1=x+1+4x+1+4然后结合基本不等式即可求解.本题主要考查了不等式的求解及利用基本不等式求解最值,属于基础试题.19.答案:解:(1)证明:由题意可得f(2)≥2,且f(2)≤18(2+2)2=2,即有f(2)=2;(2)由f(−2)=0,可得4a−2b+c=0,f(2)=2,即为4a+2b+c=2,两式相减可得,b=12,4a+c=1即c=1−4a,f(x)=ax2+12x+1−4a,对任意实数x,都有f(x)≥x,即为ax2−12x+1−4a≥0恒成立,即有a>0,△=14−4a(1−4a)≤0,即有(8a−1)2≤0,即有a=18,c=12,则f(x)=18x2+12x+12;(3)g(x)=f(x)−mx2=18(x+2)2−mx2,当x=0时,g(0)=12>14成立;当x>0时,18(x+2)2−mx2>14,即有4m<x2+4x+2x =x+2x+4,由x +2x ≥2√x ⋅2x =2√2,当且仅当x =√2时,取得最小值.即有4m <2√2+4, 解得m <1+√22.综上可得,m 的范围是(−∞,1+√22).解析:(1)令x =2,求得f(2)≥2,且f(2)≤2,即可得证;(2)由f(−2)=0,f(2)=2,求得b =12,4a +c =1即c =1−4a ,再由二次不等式恒成立的条件为a >0,判别式非正,即可得到a ,c ,进而得到解析式; (3)g(x)=f(x)−mx 2=18(x +2)2−mx 2,讨论x =0,x >0,不等式恒成立,注意运用参数分离和基本不等式求得最小值,即可得到m 的范围.本题考查二次函数的解析式的求法,注意运用二次不等式恒成立的条件,同时考查不等式恒成立的解法,注意运用参数分离和基本不等式,属于中档题.20.答案:解:(1)由不等式ax 2−3x +6>4的解集为{x|x <1或x >b}知, 1和b 是方程ax 2−3x +6=4的两个实数根,且a >0,b >1, 又方程可化为ax 2−3x +2=0,所以由根与系的关系得{1+b =3a1×b =2a ,解得a =1,b =2;(2)由(1),知a =1且b =2,则不等式(x −m)(ax −b)<0可化为(x −m)(x −2)<0; ①当m >2时,不等式(x −m)(x −2)<0的解集为{x|2<x <m}; ②当m <2时,不等式(x −m)(x −2)<0的解集为{x|m <x <2}; ③当m =2时,不等式(x −m)(x −2)<0的解集为⌀.解析:(1)由不等式ax 2−3x +6>4的解集得出对应方程的根,再由根与系数的关系求出a 、b 的值; (2)将a =1且b =2代入不等式(x −m)(ax −b)<0中,可得(x −m)(x −2)<0,然后讨论m 的取值,求出对应不等式的解集.本题考查了一元二次不等式的解法,也考查了运算与转化能力,是基础题.。
新版高一数学必修第一册第二章全部配套练习题(含答案和解析)2.1 等式性质与不等式性质基 础 练巩固新知 夯实基础1.若1a <1b <0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |2.已知a >b >0,则下列不等式一定成立的是( ) A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a3.下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若1a >1b,则a <bC .若b >c ,则|a |b ≥|a |cD .若a >b ,c >d ,则a -c >b -d 4.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化 5.一辆汽车原来每天行驶x km ,如果这辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写成不等式为________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.6.已知三个不等式①ab >0;①c a >db ;①bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.7.若x ①R ,则x 1+x2与12的大小关系为________. 8.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.9.已知a >b ,1a <1b ,求证:ab >0.10.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围.(1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养11.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |12.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <013.实数a ,b ,c ,d 满足下列三个条件:①d >c ;①a +b =c +d ;①a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知|a |<1,则11+a 与1-a 的大小关系为________.15.已知a ,b ①R ,a +b >0,试比较a 3+b 3与ab 2+a 2b 的大小.16.已知0<a <b 且a +b =1,试比较: (1)a 2+b 2与b 的大小; (2)2ab 与12的大小.17.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.18.建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件就越好,试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.【参考答案】1. D 解析: ①1a <1b <0,①b <a <0,①b 2>a 2,ab <b 2,a +b <0,①A 、B 、C 均正确,①b <a <0,①|a |+|b |=|a +b |,故D 错误.2. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.3. C 解析 A 项:a ,b ,c ,d 的符号不确定,故无法判断;B 项:不知道ab 的符号,无法确定a ,b 的大小;C 项:|a |≥0,所以|a |b ≥|a |c 成立;D 项:同向不等式不能相减.4. C 解析y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.5. 8(x +19)>2 200 8x >9(x -12) 解析:①原来每天行驶x km ,现在每天行驶(x +19)km.则不等关系“在8天内的行程超过2 200 km”,写成不等式为8(x +19)>2 200.①若每天行驶(x -12)km ,则不等关系“原来行驶8天的路程现在花9天多时间”, 写成不等式为8x >9(x -12). 6. 3 解析:①①①①,①①①①.(证明略)由①得bc -ad ab >0,又由①得bc -ad >0.所以ab >0①①.所以可以组成3个正确命题.7. x 1+x 2≤12 解析:①x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,①x 1+x 2≤12. 8. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:①1<α<3,①12<12α<32,又-4<β<2,①-2<-β<4.①-32<12α-β<112,即-32<z <112. 9.证明:①1a <1b ,①1a -1b <0,即b -a ab<0,而a >b ,①b -a <0,①ab >0. 10. 解:(1)|a |①[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,①由1≤b <2得-6<-3b ≤-3,①由①+①得,-10<2a -3b ≤3. 11. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .12. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又①b >c ,①0<c <b 或c <b <0. 13. a <c <d <b 解析:由①得a =c +d -b 代入①得c +d -b +d <b +c ,①c <d <b .由①得b =c +d -a 代入①得a +d <c +d -a +c ,①a <c .①a <c <d <b . 14.11+a≥1-a 解析:由|a |<1,得-1<a <1. ①1+a >0,1-a >0.即11+a 1-a =11-a 2①0<1-a 2≤1,①11-a 2≥1,①11+a≥1-a . 15.解:因为a +b >0,(a -b )2≥0,所以a 3+b 3-ab 2-a 2b =a 3-a 2b +b 3-ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )(a -b )(a +b )=(a -b )2(a +b )≥0,所以a 3+b 3≥ab 2+a 2b .16.解:(1)因为0<a <b 且a +b =1,所以0<a <12<b ,则a 2+b 2-b =a 2+b (b -1)=a 2-ab =a (a -b )<0,所以a 2+b 2<b .(2)因为2ab -12=2a (1-a )-12=-2a 2+2a -12=-2⎝⎛⎭⎫a 2-a +14=-2⎝⎛⎭⎫a -122<0,所以2ab <12.17.解:令4a -2b =m (a -b )+n (a +b ),①⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又①1≤a -b ≤2,①3≤3(a -b )≤6,又①2≤a +b ≤4,①5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.18.解:设住宅窗户面积、地板面积分别为a ,b ,同时增加的面积为m ,根据问题的要求a <b ,且ab ≥10%.由于a +mb +m -a b =m (b -a )b (b +m )>0,于是a +m b +m >a b .又a b ≥10%,因此a +m b +m >ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.2.2 第1课时 基本不等式的证明基 础 练巩固新知 夯实基础1.已知a ,b ①R ,且ab >0,则下列结论恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2 2.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =03.对x ①R 且x ≠0都成立的不等式是( )A .x +1x ≥2B .x +1x ≤-2C.|x |x 2+1≥12D.⎪⎪⎪⎪x +1x ≥2 4.已知x >0,y >0,x ≠y ,则下列四个式子中值最小的是( )A.1x +yB.14⎝⎛⎭⎫1x +1yC. 12(x 2+y 2)D.12xy5.给出下列不等式:①x +1x ≥2; ①⎪⎪⎪⎪x +1x ≥2; ①x 2+y 2xy ≥2; ①x 2+y 22>xy ; ①|x +y |2≥|xy |.其中正确的是________(写出序号即可).6.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1; ①a +b ≤2; ①a 2+b 2≥2; ①a 3+b 3≥3; ①1a +1b≥2.7.设a ,b ,c 都是正数,求证:bc a +ac b +abc≥a +b +c .能 力 练综合应用 核心素养8.若0<a <b ,a +b =1,则a ,12,2ab 中最大的数为( )A .aB .2ab C.12D .无法确定9.已知a >0,b >0,则a +b2,ab ,a 2+b 22,2aba +b中最小的是( ) A.a +b 2B.abC.a 2+b 22D.2aba +b10.设a >0,b >0,则下列不等式中不一定成立的是( )A .a +b +1ab≥22 B.2ab a +b ≥abC.a 2+b 2ab ≥a +b D .(a +b )⎝⎛⎭⎫1a +1b ≥4 11.已知a ,b ①(0,+∞),且a +b =1,则下列各式恒成立的是( )A.1ab≥8 B.1a +1b≥4C.ab ≥12D.1a 2+b2≤12 12.若a <1,则a +1a -1与-1的大小关系是________.13.给出下列结论:①若a >0,则a 2+1>a .①若a >0,b >0,则⎝⎛⎭⎫1a +a ⎝⎛⎭⎫b +1b ≥4. ①若a >0,b >0,则(a +b )⎝⎛⎭⎫1a +1b ≥4. ①若a ①R 且a ≠0,则9a +a ≥6.其中恒成立的是________.14.已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.15.已知a >0,b >0,a +b =1,求证⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.【参考答案】1. D 解析:选D.对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,虽然ab >0,只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误;对于D ,因为ab >0,所以b a >0,a b >0,所以b a +ab ≥2b a ·a b ,即b a +a b≥2成立.2. B [解析] a 2+1-2a =(a -1)2≥0,①a =1时,等号成立.3. D [解析] 因为x ①R 且x ≠0,所以当x >0时,x +1x ≥2;当x <0时,-x >0,所以x +1x =-⎝⎛⎭⎫-x +1-x ≤-2,所以A 、B 都错误;又因为x 2+1≥2|x |,所以|x |x 2+1≤12,所以C 错误,故选D. 4. C [解析] 解法一:①x +y >2xy ,①1x +y <12xy,排除D ;①14⎝⎛⎭⎫1x +1y =x +y 4xy =14xy x +y >1(x +y )2x +y =1x +y ,①排除B ;①(x +y )2=x 2+y 2+2xy <2(x 2+y 2),①1x +y>12(x 2+y 2),排除A.解法二:取x =1,y =2.则1x +y =13;14⎝⎛⎭⎫1x +1y =38;12(x 2+y 2)=110;12xy =122=18.其中110最小. 5. ① 解析:当x >0时,x +1x ≥2;当x <0时,x +1x≤-2,①不正确;因为x 与1x 同号,所以⎪⎪⎪⎪x +1x =|x |+1|x |≥2,①正确; 当x ,y 异号时,①不正确; 当x =y 时,x 2+y 22=xy ,①不正确;当x =1,y =-1时,①不正确.6. ①①① [解析] 令a =b =1,排除①①;由2=a +b ≥2ab ①ab ≤1,①正确;a 2+b 2=(a +b )2-2ab =4-2ab ≥2,①正确;1a +1b =a +b ab =2ab≥2,①正确.7.[证明] 因为a ,b ,c 都是正数,所以bc a ,ac b ,ab c 也都是正数.所以bc a +ac b ≥2c ,ac b +ab c ≥2a ,bc a +abc≥2b ,三式相加得2⎝⎛⎭⎫bc a +ac b +ab c ≥2(a +b +c ),即bc a +ac b +abc ≥a +b +c ,当且仅当a =b =c 时取等号. 8. C 解析:选C.因为0<a <b ,a +b =1,所以a <12,因为ab <⎝⎛⎭⎫a +b 22=14,所以2ab <12,则a ,12,2ab 中最大的数为12,故选C.9. D [解析] 因为a >0,b >0,所以2ab a +b ≤2ab2ab =ab ,a +b 2≥ab ,a 2+b 22=2(a 2+b 2)4≥(a +b )24=a +b2(当且仅当a =b >0时,等号成立).所以a +b2,ab ,a 2+b 22,2ab a +b 中最小的是2aba +b,故选D. 10. B 解析:选B.因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22,当且仅当a =b 且2ab =1ab即a =b =22时取等号,故A 一定成立.因为a +b ≥2ab >0,所以2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时取等号,所以2ab a +b ≥ab 不一定成立,故B 不成立.因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b ≥2ab -ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,所以a 2+b 2ab≥a +b ,故C 一定成立.因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥4,当且仅当a =b 时取等号,故D 一定成立,故选B. 11. B [解析] ①当a ,b ①(0,+∞)时,a +b ≥2ab ,又a +b =1,①2ab ≤1,即ab ≤12.①ab ≤14.①1ab ≥4.故选项A 不正确,选项C 也不正确.对于选项D ,①a 2+b 2=(a +b )2-2ab =1-2ab ,当a ,b ①(0,+∞)时,由ab ≤14可得a 2+b 2=1-2ab ≥12.所以1a 2+b 2≤2,故选项D 不正确.对于选项B ,①a >0,b >0,a +b =1,①1a +1b =⎝⎛⎭⎫1a +1b (a +b )=1+b a +ab+1≥4,当且仅当a =b 时,等号成立.故选B.12. a +1a -1≤-1 解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a≥2(1-a )·11-a=2.即a +1a -1≤-1.13.①①① [解析] 因为(a 2+1)-a =⎝⎛⎭⎫a -122+34>0,所以a 2+1>a ,故①恒成立. 因为a >0,所以a +1a ≥2,因为b >0,所以b +1b ≥2,所以当a >0,b >0时,⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,故①恒成立. 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ,又因为a ,b ①(0,+∞),所以b a +ab ≥2,所以(a +b )⎝⎛⎭⎫1a +1b ≥4,故①恒成立. 因为a ①R 且a ≠0,不符合基本不等式的条件,故9a+a ≥6是错误的.14.证明:因为x >0,y >0,z >0,所以y x +z x ≥2yz x >0,x y +z y ≥2xz y >0,x z +y z ≥2xyz >0,所以⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8yz ·xz ·xyxyz=8,当且仅当x =y =z 时等号成立. 15.[证明] 证法一:因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a ,同理1+1b =2+a b,故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时取等号).证法二:因为a ,b 为正数,a +b =1.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2ab , ab ≤⎝⎛⎭⎫a +b 22=14,于是1ab ≥4,2ab ≥8,因此⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥1+8=9⎝⎛⎭⎫当且仅当a =b =12时等号成立.2.2 第2课时 基本不等式的综合应用基 础 练巩固新知 夯实基础1.(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.3222.设x >0,则y =3-3x -1x的最大值是( )A .3B .3-22C .3-2 3D .-1 3.若0<x <12,则函数y =x 1-4x 2的最大值为( )A .1 B.12 C.14D.184.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件5.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .56.已知y =4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.7.已知y =x +1x.(1)已知x >0,求y 的最小值;(2)已知x <0,求y 的最大值.8.已知a >0,b >0,且2a +b =ab .(1)求ab 的最小值; (2)求a +2b 的最小值.能 力 练综合应用 核心素养9.已知a <b ,则b -a +1b -a+b -a 的最小值为( )A .3B .2C .4D .110.已知实数x ,y 满足x >0,y >0,且2x +1y=1,则x +2y 的最小值为( )A .2B .4C .6D .811.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B.12C .1D.3212.已知x ≥52,则y =x 2-4x +52x -4有( )A .最大值54B .最小值54za C .最大值1D .最小值113.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .814.已知x >0,y >0,2x +3y =6,则xy 的最大值为________.15.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.16.设a>b>c,且1a-b+1b-c≥ma-c恒成立,求m的取值范围.17.(1)若x<3,求y=2x+1+1x-3的最大值;(2)已知x>0,求y=2xx2+1的最大值.【参考答案】1. B 解析:选B.因为-6≤a ≤3,所以3-a ≥0,a +6≥0,所以(3-a )(a +6)≤(3-a )+(a +6)2=92.即(3-a )(a +6)(-6≤a ≤3)的最大值为92.2. C 解析:y =3-3x -1x=3-⎝⎛⎭⎫3x +1x ≤3-2 3x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号. 3. C 解析:因为0<x <12,所以1-4x 2>0,所以x 1-4x 2=12×2x 1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x=1-4x 2,即x =24时等号成立,故选C. 4. B 解析:设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.5. C 解析:可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2ab =2ba时等号成立,所以9m ≤54,即m ≤6,故选C. 6. 36 解析:y =4x +ax≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时y 取得最小值4a . 又由已知x =3时,y 的最小值为4a ,所以a2=3,即a =36. 7. 解:(1)因为x >0,所以x +1x≥2x ·1x =2,当且仅当x =1x,即x =1时等号成立.所以y 的最小值为2. (2)因为x <0,所以-x >0.所以f (x )=-⎣⎡⎦⎤(-x )+1-x ≤-2(-x )·1-x =-2,当且仅当-x =1-x,即x =-1时等号成立.所以y 的最大值为-2. 8. 解:因为2a +b =ab ,所以1a +2b=1;(1)因为a >0,b >0, 所以1=1a +2b≥22ab ,当且仅当1a =2b =12,即a =2,b =4时取等号,所以ab ≥8,即ab 的最小值为8;(2)a +2b =(a +2b )⎝⎛⎭⎫1a +2b =5+2b a +2ab ≥5+22b a ·2ab=9, 当且仅当2b a =2ab ,即a =b =3时取等号,所以a +2b 的最小值为9.9. A 解析:因为a <b ,所以b -a >0,由基本不等式可得b -a +1b -a +b -a =1+1b -a+(b -a )≥1+21b -a·(b -a )=3, 当且仅当1b -a =b -a (b >a ),即当b -a =1时,等号成立,因此,b -a +1b -a +b -a 的最小值为3,故选A.10. D 解析:因为x >0,y >0,且2x +1y =1,所以x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +xy≥4+24y x ·xy=8, 当且仅当4y x =xy时等号成立.故选D.11. A 解析:选A.因为x >0,所以x +12>0,所以y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立,所以函数的最小值为0. 12. D 解析:y =x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎡⎦⎤(x -2)+1x -2,因为x ≥52,所以x -2>0,所以12⎣⎡⎦⎤(x -2)+1x -2≥12·2(x -2)·1x -2=1,当且仅当x -2=1x -2,即x =3时取等号.故y 的最小值为1.13. B 解析 (x +y )⎝⎛⎭⎫1x +a y =1+a +ax y +y x ≥1+a +2a =(a +1)2⎝⎛⎭⎫当且仅当y x =a 时取等号 .①(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,①(a +1)2≥9.①a ≥4.14. 32 解析:因为x >0,y >0,2x +3y =6,所以xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32.当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.15. 8 解析:因为点A (-2,-1)在直线mx +ny +1=0上,所以2m +n =1, 所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 16.解 由a >b >c ,知a -b >0,b -c >0,a -c >0.因此,原不等式等价于a -c a -b +a -c b -c≥m .要使原不等式恒成立,只需a -c a -b +a -cb -c的最小值不小于m 即可. 因为a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ×a -bb -c=4, 当且仅当b -c a -b =a -b b -c,即2b =a +c 时,等号成立.所以m ≤4,即m ①{m |m ≤4}.17.解:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x .因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1.2.3 第1课时 二次函数与一元二次方程、不等式基 础 练巩固新知 夯实基础1.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}2.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6.设集合A={x|(x-1)2<3x+7,x①R},则集合A∩Z中有________个元素.7.不等式-1<x2+2x-1≤2的解集是________.8.解关于x的不等式:x2+(1-a)x-a<0.9. 解不等式:x 2-3|x |+2≤0.能 力 练综合应用 核心素养10. 若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是( )A.⎩⎨⎧⎭⎬⎫x |1t <x <tB.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t11.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)①(3,+∞)B .(-3,1)①(2,+∞)C .(-1,1)①(3,+∞)D .(-∞,-3)①(1,3)12.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________.14.方程x 2+(m -3)x +m =0的两根都是负数,则m 的取值范围为________.15.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 16.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.17.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1. A 解析 ①M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3},①M ∩N ={x |-4≤x <-2或3<x ≤7}.2. D 解析 由题意知,-b a =1,ca =-2,①b =-a ,c =-2a ,又①a <0,①x 2-x -2≤0,①-1≤x ≤2.3. D 解析 由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又①a <0,①函数y =ax 2+bx +c 的图象是开口向下的抛物线,①不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析 由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析 因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. 6 解析 由(x -1)2<3x +7,解得-1<x <6,即A ={x |-1<x <6},则A ∩Z ={0,1,2,3,4,5},故A ∩Z 共有6个元素.7. {x |-3≤x <-2或0<x ≤1} 解析 ①⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,①-3≤x <-2或0<x ≤1.8. 解 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以(1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为①; (3)当a >-1时,原不等式解集为{x |-1<x <a }. 9. 解 原不等式等价于|x |2-3|x |+2≤0,即1≤|x |≤2.当x ≥0时,1≤x ≤2;当x <0时,-2≤x ≤-1. ①原不等式的解集为{x |-2≤x ≤-1或1≤x ≤2}.10. D 解析 ①0<t <1,①1t >1,①1t >t .①(t -x )(x -1t )>0①(x -t )(x -1t )<0①t <x <1t .11. A 解析 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0. 所以f (x )>f (1)的解集是(-3,1)①(3,+∞).12. B [解析] 易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.13. k ≤2或k ≥4 解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.14. {m |m ≥9} 解析 ①⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,①m ≥9.15. -3 -3 解析 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, ①⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 16.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,①⎩⎨⎧-13+2=-b a-13×2=c a,①b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.17.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.①当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2;①当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};①当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式x +5(x -1)2≥2的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -3≤x ≤12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x <1或1<x ≤3 D.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1 2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13 D.⎩⎨⎧⎭⎬⎫x | x <-123.不等式2-xx +1<1的解集是( )A .{x |x >1}B .{x |-1<x <2} C.⎩⎨⎧⎭⎬⎫x | x <-1或x >12 D.⎩⎨⎧⎭⎬⎫x | -1<x <124. 若集合A ={x |ax 2-ax +1<0}=①,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}5. 若关于x 的不等式x 2-4x -m ≥0对任意x ①(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .36.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .15≤x ≤30B .12≤x ≤25C .10≤x ≤30D .20≤x ≤307. 若关于x 的不等式x -a x +1>0的解集为(-∞,-1)①(4,+∞),则实数a =________.8.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.9.解下列分式不等式:(1)x +12x -3≤1; (2)2x +11-x <0.10. 当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养11. 不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .①D .{x |x <-2或x >2}12.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A.(-2,2) B.(-2,2]C.(-∞,-2)①[2,+∞) D.(-∞,2)13.对任意a①[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是() A.1<x<3 B.x<1或x>3C.1<x<2 D.x<1或x>214.在R上定义运算①:x①y=x(1-y).若不等式(x-a)①(x+a)<1对任意的实数x都成立,则a的取值范围是________.15.已知2≤x≤3时,不等式2x2-9x+a<0恒成立,则a的取值范围为________.16.方程x2+(m-3)x+m=0有两个正实根,则m的取值范围是________.17.已知关于x的一元二次方程x2+2mx+2m+1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.18.某地区上年度电价为0.8元/kW·h,年用电量为a kW·h,本年度计划将电价降低到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价).【参考答案】1. D 解析①原不等式等价于⎩⎪⎨⎪⎧ x +5≥2(x -1)2,x ≠1,①⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1,①⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,即⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1. 2. A 解析4x +23x -1>0①(4x +2)(3x -1)>0①x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.3. C 解析原不等式等价于2-x x +1-1<0①1-2x x +1<0①(x +1)·(1-2x )<0①(2x -1)(x +1)>0,解得x <-1或x >12.4. D 解析 a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.5. C 解析 由已知可得m ≤x 2-4x 对一切x ①(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,①f (x )min =f (1)=-3,①m ≤-3.6. C 解析 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,①y =40-x ,①xy ≥300,①x (40-x )≥300,①x 2-40x +300≤0,①10≤x ≤30. 7. 4 解析x -ax +1>0①(x +1)(x -a )>0 ①(x +1)(x -4)>0,①a =4. 8. -2<m <2 解析 由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.9. 解 (1)①x +12x -3≤1,①x +12x -3-1≤0,①-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, ①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1.10.解 ①当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.①当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 11. A 解析①x 2+x +1>0恒成立,①原不等式①x 2-2x -2<2x 2+2x +2①x 2+4x +4>0①(x +2)2>0,①x ≠-2. ①不等式的解集为{x |x ≠-2}.12. B 解析 ①mx 2+2mx -4<2x 2+4x , ①(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x ①R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x ①R . 综上所述,-2<m ≤2.13. B 解析 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ①[-1,1]①⎩⎪⎨⎪⎧ g1=x 2-3x +2>0g-1=x 2-5x +6>0①⎩⎪⎨⎪⎧x <1或x >2x <2或x >3①x <1或x >3. 14. -12 <a <32 解析 根据定义得(x -a )①(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )①(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.15. a <9 解析 ①当2≤x ≤3时,2x 2-9x +a <0恒成立,①当2≤x ≤3时,a <-2x 2+9x 恒成立.令y =-2x 2+9x .①2≤x ≤3,且对称轴方程为x =94,①y min =9,①a <9.①a 的取值范围为a <9.16. (0,1] 解析 由题意得⎩⎪⎨⎪⎧Δ=m -32-4m ≥0x 1+x 2=3-m >0x 1x 2=m >0, 解得0<m ≤1.17. 解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组⎩⎪⎨⎪⎧ f 0=2m +1<0f -1=2>0f 1=4m +2<0f 2=6m +5>0解得-56<m <-12. 18. 解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至k x -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a (x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2ax -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧ x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.①当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.。
人教A版高中数学必修1全册章节测试题目录必修一第1章第1节集合试题必修一第1章第2节函数及其表示试题必修一第1章第3节函数的基本性质试题必修一第2章基本初等函数综合试题必修一第2章第1节指数函数试题必修一第2章第2节对数函数试题必修一第2章第3节幂函数试题必修一第3章第1节方程的根与函数的零点试题必修一第3章第2节函数的应用试题必修一综合试题1必修一综合试题2集合试题一、选择题(每小题5分,计5×12=60分)1.下列集合中,结果是空集的为( D )(A)(B)(C)(D)2.设集合,,则(A )(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为(A )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为( A )(A)6 (B) 7 (C) 8 (D)95.若集合、、,满足,,则与之间的关系( C )(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是( C)(A)(B)(C)(D)7.设,,若,则实数的取值范围是( A )(A)(B)(C)(D)8.已知全集合,,,那么是( D )(A)(B)(C)(D)9.已知集合,则等于( D )(A)(B)(C)(D)10.已知集合,,那么( C )(A)(B)(C)(D)11.如图所示,,,是的三个子集,则阴影部分所表示的集合是( C )(A)(B)(C)(D)12.设全集,若,,,则下列结论正确的是( B )(A)且(B)且(C)且(D)且二、填空题(每小题4分,计4×4=16分)13.已知集合,,则集合_.14.用描述法表示平面内不在第一与第三象限的点的集合为_.15.设全集,,,则的值为2或8.16.若集合只有一个元素,则实数的值为三、解答题(共计74分)17.(本小题满分12分)若,求实数的值。
解:或或当时,,,,适合条件;当时,,,,适合条件从而,或18.(本小题满分12分)设全集合,,,求,,,解:,19.(本小题满分12分)设全集,集合与集合,且,求,解:,且,,,,20(本小题满分12分)已知集合,,且,求实数的取值范围。
第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。
第一.二章《三角函数》单元检测试卷
一、选择题:(本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.在平行四边形ABCD 中,BD CD AB +-等于()
A .
B .
C .
D .
2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值()
A .13
B .3
C .42
D .7
3.函数sin(2)3
y x π
=+图像的对称轴方程可能是()
A .6
x π
=-
B .12
x π=-
C .6
x π=
D .12
x π
=
5.点A(x,y)是300°角终边上异于原点的一点,则
x
y
值为() 33
3333函数)32sin(π
-=x y 的单调递增区间是()
A .⎥⎦
⎤
⎢⎣
⎡+
-
125,12
πππ
πk k Z k ∈ B .⎥⎦⎤
⎢⎣
⎡
+
-
1252,12
2πππ
πk k Z k ∈ C .⎥⎦
⎤
⎢⎣
⎡
+
-65,6
πππ
πk k Z k ∈ D .⎥⎦
⎤
⎢⎣
⎡
+
-
652,6
2πππ
πk k Z k ∈ 7.sin(-
3
10
π)的值等于() A .
21B .-2
1
C .23
D .-23
8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是() A .等腰三角形
B .直角三角形
C .等腰或直角三角形
D .等腰直角三角
9.函数x x y sin sin -=的值域是()
A .0
B .[]1,1-
C .[]1,0
D .[]0,2-
10.函数x x y sin sin -=的值域是()
A .[]1,1-
B .[]2,0
C .[]2,2-
D .[]0,2-
11.函数x x y tan sin +=的奇偶性是()
A .奇函数
B .偶函数
C .既奇又偶函数
D .非奇非偶函数 12.比较大小,正确的是() A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-
C .5sin )5sin(3sin <-<
D .5sin )5sin(3sin >->
二、填空题(每小题5分,共20分)
13.终边在坐标轴上的角的集合为_________.
14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P(-5,12),则sin α+2cos α的值为______.
16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:(本大题共6小题,共70分。
解答应写出文字说明及演算步骤.。
) 17.(8分)已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ; 18.(10分)已知3tan =α,计算
α
αα
αsin 3cos 5cos 2sin 4+-的值。
19.(12分)求函数
)
32tan(π
+=x y 的定义域和单调区间. 第一章《三角函数》单元检测试卷
(参考答案)
一、选择题(每小题5分,共60分)
1----6、BBDCBA7----12、CCDCAB 二、填空题(每小题5分,共20分)
13.{
α|}Z n n ∈=,2
π
α14.rad )2(-π 13
2
三、解答题(共70分) 17.(1
)
sin ,cos αα=
=(2)tan 2α=
18.解、∵3tan =α∴0cos ≠α
∴原式=
α
αααααcos 1
)sin 3cos 5(cos 1
)cos 2sin 4(⨯
+⨯
- =ααtan 352tan 4+- =335234⨯+-⨯ =7
5
19.解:函数自变量x 应满足π
π
πk x +≠+232,z k ∈,
即
π
π
k x 23
+≠
,z k ∈
所以函数的定义域是⎭⎬
⎫⎩
⎨⎧∈+≠z k k x x ,23ππ。
由
π
π
k +-
2
<32π+x <ππk +2,z k ∈,解得ππk 235+-<x <π
π
k 23+,z k ∈
所以,函数的单调递增区间是)23,235(ππ
ππk k ++-
,z k ∈。
20.
解:令t=cosx,则]1,1[t -∈
所以函数解析式可化为:4
5
3y 2
+
+-=t t =2)23(2+--t 因为]1,1[-∈t ,所以由二次函数的图像可知:
当23=
t 时,函数有最大值为2,此时Z k k x ∈++=k 6
11262,或π
πππ 当t=-1时,函数有最小值为34
1
-,此时Z k ∈+=k 2x ,ππ 21
解:32π函数的最小正周期为Θ,33
22===∴ωπ
ωπ即T
又2-函数的最小值为Θ,2=∴A 所以函数解析式可写为)3sin(2y ϕ+=x
又因为函数图像过点(9
5π
,0), 所以有:0)9
53(sin 2=+⨯ϕπ
解得35ππϕ-
=k 3
23,ππϕπϕ-=∴≤或Θ 所以,函数解析式为:)3
23sin(2y )3
3sin(2y π
π
-
=+
=x x 或 22.解:(Ⅰ)
8x π
=
是函数)(x f y =的图象的对称轴
(Ⅱ)由(Ⅰ)知
3
4
π
ϕ=-
,因此
3
sin(2)
4
y x
π
=-
由题意得
3
222,
242
k x k k Z πππ
ππ
-≤-≤+∈
所以函数
3
sin(2)
4
y x
π
=-
的单调递增区间为
(Ⅲ)由
3
sin(2)
4
y x
π
=-
可知
故函数
)
(x
f
y=在区间[]
0,π
上的图象是。