中科院随机过程第5-6讲
- 格式:pdf
- 大小:278.97 KB
- 文档页数:20
第三节 常用随机变量的数学期望和方差数学期望和方差的定义及计算公式 (一)离散型随机变量的数学期望和方差}{iiix X P x EX ==∑,}{)()]([iiix X P x g X g E ==∑,}{)(2iiix X P EX x DX =-=∑,222)()(EX EX EX X E DX -=-=,},{),()],([jiijjiy Y x X P y x g Y X g E ===∑∑,(二) 连续型随机变量的数学期望和方差⎰+∞∞-=dx x xf EX )(,⎰+∞∞-=dx x f x g X g E )()()]([,⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([, ⎰+∞∞-=dx x xf EX X)(⎰⎰+∞∞-+∞∞-=dxdy y x xf ),(, ⎰+∞∞-=dy y yf EY Y)(⎰⎰+∞∞-+∞∞-=dxdy y x yf ),(222)()(EX EX EX X E DX -=-=,⎰+∞∞--=dx x f EX x DX )()(2,nnnR ndxdx dx x x x f x x x g X X X g E n⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⎰21212121),,,(),,,()],,,([ .(三) 数学期望和方差的性质 b EX k b X k E ini iini i+=+∑∑==11)(,若X 与Y 相互独立,则EY EX XY E ⋅=)(,DY b DX a c bY aX D 22)(+=++,若nX X X ,,,21⋅⋅⋅相互独立,则nnEX EX EX X X X E ⋅⋅⋅⋅=⋅⋅⋅2121)(,ini iin i iDX k b X k D ∑∑===+121)( ,例1 设X 服从(0—1)分布:求EX ,DX .解 p p p EX =-⨯+⨯=)1(01,p p p EX =-⨯+⨯=)1(01222, )1()(222p p p p EX EX DX -=-=-=.例2 设X 服从二项分布),(p n B , 即 kn kknp p C k X P --==)1(}{ ,n k ,,1,0⋅⋅⋅= 求EX ,DX .解 (由于直接比较繁杂,采用分解的方法)若nX X X ,,,21⋅⋅⋅相互独立, 同服从(0—1)分布,p X P p X P ii-====1}0{,}1{, n i ,,1⋅⋅⋅=,则 ),(~1p n B X X ni i∑==,p EX i=, )1(p p DX i -=.np p X E X E EX ni in i n i i====∑∑∑===111)(,∑∑====ni in i i DX X D DX 11)()1()1(1p np p p ni -=-=∑= .例 3 设X 服从泊分布)(λ∏,即!}{k e k X P kλλ-== ,⋅⋅⋅=,2,1,0k求EX ,DX .解 ∑∑∞+=∞+=----=⋅=011)!1(!k k k kk ek e k EX λλλλλλλλλ=⋅=-e e ,∑∑∞+=∞+=---=⋅=0122)!1(!k k kkk ke k e k EX λλλλ∑+∞=--+-=1)!1(]1)1[(k kk k e λλ222)!2(λλλ∑∞+=---=k k k e λλλ∑∞+=---+11)!1(k k k eλλλλλλλλ+=⋅+⋅=--22e e e e , 于是λλλλ=-+=-=2222)()(EX EX DX 。
随机过程_课件---第五章第五章离散参数Markov 链5.1 Markov 链的基本概念1、Markov 链和转移概率矩阵定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,n X n = 。
把过程所取可能值得全体称为它的状态空间,记之为E ,通常假设{}0,1,2,E= 。
若n X i =就说“过程在时刻n 处于状态i ”,假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ij p ,即对任意时刻n1(|)n n ij P X j X i p +===若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链。
称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ??=是一步转移概率矩阵,简称为转移矩阵。
由ij p 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链。
且具有,0ij p ≥ , 01ij j p ∞==∑2、例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =。
于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+??==-其他当12p q ==时,称为简单对称随机游动。
例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务。
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p et g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,kk k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 kn k k n q p C k X P -==)( np EX = n p qDX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 22)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21exp{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
第一章 概率论基础知识1. 事件、概率和概率空间1.1 随机事件的运算和概率1.2 σ代数(域)和Borel 集设全集为, 为一些的子集构成的集类,若满足 ΩF ΩF 1)F ∈Ω2) 对任意F ∈A ,F ∈A3)对任意有限或至多可数的{}F ⊂n A ,F ∈n nA U则称为一个F σ代数(域)给定一个集合Ω,就可以构造一个包含它的一个σ代数。
推广:给定一个集类,可以构造一个的一个C F C ⊂σ代数。
包含C 的最小的F σ代数,称为由C 生成的σ代数,记作()C σ。
例如设R =Ω,{}R b a a b b a R A A ∈∞−∞==,),,(),(),[:任意或或或C为R 上的一个集类,()C σ中的集合称为Borel 集,()C σ称为直线上的Borel 域,记为。
)(R B1.3 Kolmogorov 概率公理化定义给定全集和其子集构成的一个Ωσ代数,若定义在上的函数满足F F )(⋅P 1) 任意,F ∈A 1)(0≤≤A P ;2) ; 1)(=ΩP 3)对任意两两不交的至多可数集{}F ⊂n A ,∑=⎟⎠⎞⎜⎝⎛nn n n A P A P )(U 称为上的概率测度,)(⋅P F ),,(P F Ω称为概率空间。
1.4 随机变量的概念定义:设为一概率空间,(P ,,F Ω))(w X X =为Ω上的一个实值函数,若对任意实数x ,,则称()F ∈−∞−),(1x X X 为()P ,,F Ω上的一个(实)随机变量。
称()()()),()),(()(1x X P x X P x X P x F −∞=−∞∈=<=−为随机变量X 的分布函数。
随机变量实质上是到()F ,Ω())(,R R B 上的一个可测映射(函数)。
记{}F B ⊂∈=−)()()(1R B B X X σ,称)(X σ为随机变量X 所生成的σ域。
推广到多维情形,随机向量是T n X X X X ),,(21L =()F ,Ω到())(,n n R R B 上的一个可测映射。
第一章 概率论基础1.从传统的长度概念说起1.1 区间(a,b )、[a,b]等都有长度,用字母L 表示,而且知道L (a,b)=b-a我们进而认为(*)L 是一种(函数)运算,自变量*为一维数轴上的区间,显然,(*)L 应满足:(1) L(*)0≥非负性;(2)有限可加性;(3)甚至要求满足可列可加性∑∞=∞==11)()(n n n n I L I L我们提出问题1:区间I 作为R 的子集,具有长度,那么R 的一般子集E 也有长度吗?答案是否定的。
因为传统长度是集合的右端点与左端点之差值,而只有区间这种集合才有端点。
问题2:是否可以推广L 为某*L 作为一般点集E 的长度呢?当然可以适当推广L 成为某种运算*L ,用以作为更广泛的一类集合(包含全体区间)的“长度”。
但是,事实表明,无论怎样改进*L ,都无法适应R 的全体子集。
1.2长度L 向某*L 推广的直接动力是,人们发现了Riemann积分的缺陷并希望加以改进。
Riemann 积分的缺陷1:()ba f x dx ⎰也可写成[,]()ab f x dx ⎰,积分符号的右下角就是积分区间,也就是积分范围,此范围不可以是一般的实数点集,只能是区间。
缺陷2:按照黎曼积分的定义(工科高数教材):(1)分割区间[,]a b 成为若干小区间1[,]k k xx -,1,2,,k n = (2)任意取小区间1[,]k k x x -的点k ξ,求值()k f ξ,进而得到第k 个小矩形的面积()k k x f ξ∆(3)做和1()n k k k x f ξ=∆∑,也即全体小矩形面积之和(4)01lim ()n k k k x f λξ→=∆∑,这一步是对前三步工作的无穷细化。
这种方法的核心思想是微小范围内以直代曲,例如,第k 个小矩形的面积应是()k x f x dx ∆⎰,但这里却以()k k x f ξ∆加以代替,依据是在很小区间1[,]k k x x -上,函数()f x 的变化不大,可以近似看成常数()kf ξ。