电化学工作站锂离子电池的循环伏安测试
- 格式:docx
- 大小:70.92 KB
- 文档页数:1
锂离子电池电极材料电化学性能测试方法
锂离子电池电极材料电化学性能测试方法是检测材料在锂离子电
池充放电过程中形成电池机械和电化学性能参数的重要方法。
电池性
能测试由电池机械性能测试、放电性测试、充电性测试和循环伏安特
性测试等组成。
电池机械性能测试是指测量电池的几何尺寸参数,如长度、宽度、厚度,重量,表面粗糙度,断口分析等,以了解材料的绝对性能和可
几性。
放电性能测试是指测量电池在放电过程中的能量储量参数,通过
设置不同的放电电流,测量带放电条件下电池动力学行为参数,如放
电容量,放电能量,内阻,最大放电容量,放电持续时间等,进一步
了解材料自身的耐久性。
充电性能测试是指测量电池在充电过程中的充电特性参数,充放
电速率,等电位量,电压高低极限等,进一步检测充放电过程中材料
的电化学特性,如充放电效率,内阻,初充电量,最大充放电容量等。
循环伏安特性测试是充电循环次数测试的一种,它是模拟电池的长期使用情况,通过设定不同的循环次数,测量电池充电特性参数,研究充放电循环对电池性能参数影响,如电池容量,自放电率,放电能力,评估材料的耐循环寿命。
以上是锂离子电池电极材料电化学性能测试方法,包括电池机械性能测试、放电性能测试、充电性能测试和循环伏安特性测试,用于研究材料的相关参数,以验证材料的电化学性能,进而可以提高材料的安全性和可靠性。
College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou UniversityCyclic Voltammetry准备工作:1.电极:工作电极(玻碳电极),参比电极(饱和甘汞电极),辅助电极(铂丝电极)。
2.内标(二茂铁),电解质(四正丁基六氟磷酸铵),无水无氧溶剂(DCM, THF or MeCN)。
3.电解池,小磁子,药匙,称量纸,卫生纸,手套,吹风机,量具(注射器或量筒等),带盖废液瓶,垃圾桶。
固体样品和电解质可提前称量于PE管内,溶液则需要现配现用。
测试流程:1.网上预约:电化学工作站(配备晶体微天平)。
可提前连接仪器、开机。
2.打开电脑,打开RST电化学工作站,打开RST-3000软件。
3.打磨电极(重要!自行查询玻碳电极打磨方法),连接至工作站。
4.【设置测试方法(图标T)】线性扫描循环伏安法。
【设定参数(图标P)】静止时间:3s;电位范围:Fc为0~1000mV,样品可根据需要调整(DCM最大测试范围为-2000mV~2000mV,电位过大会造成溶剂击穿。
若需要增大测试范围,可换用THF或MeCN);扫描速度:常用50mV/s或100mV/s(扫描速度影响峰型和强度,同系列样品一般不要改动);曲线段数:2;采样间隔:1mV。
5.【外标】称取0.8~1.5mg 二茂铁,400mg电解质,10mL溶剂,搅拌均匀静置测试。
若可逆氧化电势差在90mV以内,则表明电极工作良好,可以进行测试。
若差值很大,则需要重新打磨电极。
6.【样品测试】电解质0.1M(约40mg/mL),样品0.5μM(约几毫克),加入无水无氧溶剂,搅拌均匀静置测试(不可时间过长、测试次数过多,以避免氧气峰和样品电损耗)。
电化学工作站是一种用于研究化学反应中电子转移过程的仪器。
在电化学研究中,循环伏安曲线是一种重要的电化学实验手段,可以通过循环伏安曲线来研究材料的电化学性质和催化剂的活性。
循环伏安曲线可以提供关于材料电化学性质的丰富信息,例如电荷转移过程、电阻和电容等参数的变化。
本文将从计算循环伏安曲线中的电阻入手,介绍电化学工作站的原理和应用。
1. 电化学工作站的原理电化学工作站是由电化学电极、控制系统和数据采集系统组成的实验室设备。
它可以通过外加电压来促进化学反应,并通过电化学电极上的电荷传递来监测反应过程。
电化学工作站可以通过控制电极之间的电压和测量电极上的电流来实现对化学反应过程的精确控制。
2. 循环伏安曲线的概念循环伏安曲线是一种通过在电极上施加周期性的电压脉冲来测量电流响应的实验方法。
在循环伏安曲线实验中,将电化学电极浸入电解液中,随着外加电压的变化,电化学电极表面将发生一系列化学反应,产生对应的电流响应。
通过测量这些电流响应并绘制成曲线,可以得到循环伏安曲线,从而研究电化学反应的动力学过程。
3. 循环伏安曲线中的电阻计算在进行循环伏安曲线实验时,通常会出现电化学电极与电解液之间的电阻。
这种电阻会影响循环伏安曲线的形状和参数。
为了准确地分析电化学反应的动力学过程,需要对循环伏安曲线中的电阻进行计算和修正。
3.1 电化学电极的电阻电化学电极的电阻可以通过电极电位随时间变化的幅度和速率来计算。
当在循环伏安曲线实验中施加交变电压脉冲时,电化学电极表面的电阻会对电极电位的变化速率产生影响,从而在循环伏安曲线上产生波动和畸变。
3.2 电解液的电阻电解液的电阻是另一个影响循环伏安曲线的参数。
在循环伏安曲线实验中,电解液的电阻会导致电压信号在电化学电极表面的波动衰减,从而影响电流响应的测量和分析。
4. 循环伏安曲线中的电阻修正方法在计算循环伏安曲线中的电阻时,需要采取一些修正措施来减小电阻对实验结果的影响。
4.1 使用高频技术通过使用高频技术,可以降低电化学电极和电解液的电阻,在循环伏安曲线实验中获得更加精确的电流响应数据。
实验6 K 3Fe(CN)6溶液循环伏安曲线测定与分析一、 实验目的1. 仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理和测量技术。
2. 通过对[Fe(CN)6]3-/[Fe(CN)6]4-体系的循环伏安测量,了解如何根据峰电流、峰电势及峰电势差和扫描速度之间的函数关系来判断电极反应可逆性,以及求算有关的热力学参数和动力学参数。
二、 实验原理1. 循环伏安法简介循环伏安法(Cyclic V oltammetry ,简称CV )往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。
CV 测试比较简便,所获信息量大。
通过电化学工作站(或恒电势仪),使电极电势(φ或E)在一定范围内以恒定的变化速率扫描。
电势扫描讯号如图1a 所示的对称三角波。
电极电势从起始电势i ϕ变化至某一电势r ϕ,再按相同速率从r ϕ变化至i ϕ,如此循环变化,同时记录相应的响应电流。
有时也采用单向一次扫描讯号(从i ϕ到r ϕ)而得到单程扫描曲线称为线性扫描伏安法(Linear Scan V oltammetry ,简称LSV )。
图1循环伏安法输入信号(a),所测定的循环伏安曲线(b)若电极反应为O + e - → R ,反应前溶液中只含有反应粒子O 、且O 和R 在溶液均可溶,控制扫描起始电势从比体系标准平衡电势0平ϕ正得多的起始电势i ϕ处开始作正向电势扫描,电流响应曲线则如图1b 所示。
开始时电极上只有不大的非法拉第电流(双电层充电电流)通过。
当电极电势逐渐负移到0平ϕ附近时,O 开始在电极上还原,并有法拉第电流通过。
由于电势越来越负,电极表面反应物O 的浓度必然逐渐下降,因此向电极表面的流量和电流就增加。
当O 的表面浓度下降到近于零,其向表面的物质传递达到一个最大速度,电流也增加到最大值。
即在图中出现峰值电流I pc ,然后由于电极表面O 的扩散速度赶不上电荷转移速度使电流逐渐下降。
简述循环伏安法实验技术的应用循环伏安法实验技术是一种重要的化学实验技术,它在研究化学反应、电化学过程和材料性能等方面有着广泛的应用。
本文将简述循环伏安法实验技术的原理、实验步骤、实验结果和分析以及实验总结等方面,以帮助读者更好地了解该实验技术的应用。
循环伏安法实验技术的原理是基于电池原理的。
在电池中,电流通过电极和电解质,电子从阳极流向阴极,从而使得化学反应得以发生。
而循环伏安法实验技术则是将电池中的化学反应进行逆转,即通过外加电压的方式使得电子从阴极流向阳极,从而使得化学反应得以在电极表面反复进行。
这种方法可以用来研究反应的动力学过程、测定反应速率常数以及研究电极表面上的吸附过程等。
设定测量条件。
需要设定扫描速度、扫描范围、温度和电解质浓度等条件。
这些条件的设定需要根据实验的具体需求进行调整。
选择合适的测试方法。
循环伏安法常用的测试方法有线性扫描伏安法、循环伏安法、阶梯伏安法等。
选择合适的测试方法对于获得准确的实验结果非常重要。
进行测量数据采集。
在实验过程中,需要实时记录电流随电压变化的数据,并确保数据采集的准确性和稳定性。
处理和分析。
对采集到的数据进行处理和分析,包括绘制伏安曲线、计算反应速率常数、分析反应机理等。
通过循环伏安法实验技术,可以获得反应过程中的电流-电压曲线,即伏安曲线。
通过对曲线的分析,可以得出反应动力学参数、电极表面吸附性质等相关信息。
例如,如果曲线中出现明显的氧化还原峰,说明电极表面发生了相应的化学反应;如果峰电流随扫描速度的增加而增加,则说明反应是扩散控制的;如果峰电流随扫描速度的增加而减小,则说明反应是动力学控制的。
还可以通过计算得出反应速率常数,并与已知文献值进行比较,以评估实验结果的准确性。
循环伏安法实验技术在研究化学反应、电化学过程和材料性能等方面有着广泛的应用,是一种非常有效的化学实验技术。
通过对实验结果的分析,可以得出反应动力学参数、电极表面吸附性质等相关信息,为进一步的研究提供可靠的依据。
【⼲货】电化学基础测试知识系列(五):循环伏安法详解循环伏安法(Cyclic Voltammetry)是⼀种常⽤的电化学研究⽅法。
该法控制电极电势以不同的速率,随时间以三⾓波形⼀次或多次反复扫描,电势范围是使电极上能交替发⽣不同的还原和氧化反应,并记录电流-电势曲线。
根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常⽤来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发⽣哪些反应,及其性质如何。
对于⼀个新的电化学体系,⾸选的研究⽅法往往就是循环伏安法,可称之为“电化学的谱图”。
本法除了使⽤汞电极外,还可以⽤铂、⾦、玻璃碳、碳纤维微电极以及化学修饰电极等。
循环伏安技术因功能多样化⽽成为⼀种被电化学家⼴泛使⽤的技术,但是⼤部分时间是⽤于实验室级的元件上。
实际上,⼤的器件将使⽤成百上千安培的⾮常⼤的电流,这在技术上难以处理。
在实验室级别或材料研究级别中,循环伏安是⼀种精确的技术。
它可以:1)定性和半定量研究;1)通过⼤范围的扫描速率扫描动⼒学分析;3)决定电压窗⼝。
1. 极化曲线和循环伏安的区别(什么是循环伏安?)线性伏安测试技术即电位随着时间线性的变化,从⽽测量电流随电压变化的过程。
⼀般把线性伏安技术分为两类:当扫速⾜够慢时,电极表⾯基本处于稳态,这时我们把电流随电压的响应称为稳态极化曲线,简称极化曲线,此时的电流为法拉第电流;当扫速较快时,电极表⾯处于暂态,我们将其称为伏安曲线,此时的电流包括法拉第和⾮法拉第电流。
这两者的响应是不同的(如图1),在电化学测试过程中有着不同的应⽤。
如果把伏安曲线的输⼊信号改成循环三⾓波,那么其响应就称为循环伏安曲线(如图2)。
得到的电流电压曲线包括两个分⽀,如果前半部分电位向阴极⽅向扫描,电活性物质在电极上还原,产⽣还原波,那么后半部分电位向阳极扫描时,还原产物⼜会重新再电极上氧化,产⽣氧化波。
实验一常用电池材料的循环伏安法测试一.实验目的1.让学生认识电化学工作站的基本功能;2. 通过演示实验让学生更加深刻理解循环伏安法的测试方法;3.通过观察在循环伏安法测试过程中电解池内的变化,更加深刻理解循环伏安法的原理。
二.实验原理循环伏安法(Cyclic Voltammetry)是一种常用的动电位暂态电化学测量方法,是电极反应动力学、反应机理以及可逆性研究的重要手段之一,应用非常广泛。
何。
三.主要实验设备及样品1. 电化学工作站 1台;2. 电解池(包括三个电极) 1套;3. 超级电容器电极材料4. 3mol/L KOH溶液 30ml四.实验步骤1.准备好待测电极,电解液,组装好三电极电解池。
2.连接电化学工作站电源,并启动。
3. 将电化学工作站测试端和电解池中的工作电极,参比电极,辅助电极一一对应进行连接。
4. 打开电化学工作站工作菜单,点击进入测试任务选项,选择Cyclic Voltammetry项。
5. 在Cyclic Voltammetry菜单中输入测试起始电压,结束电压,扫描速度,循环次数等参数。
6. 点击“开始”进行测量。
7.测量结束后,将数据保存到指定位置。
五.注意事项1. 实验前需要检查电解池组装是否规范,有无漏液,或者短路情况;2. 连接三电极时,要一一对应。
3. 数据注意及时保存六. 数据记录及处理数据记录(取第二圈数据)Temperature('C): 25Begin Information: Cell InformationSurface Area: 1Density: 7.8Weight: 28Polarity: 0PolarityI: 0Corrosion Unit Type: 1Reference Type: 2Reference Potential: 0.241Reference User-Defined: 0Stern-Geary: 18End Information: Cell InformationBegin Experiment:Axes Type: 3End Experiment:Data Points: 604E(Volts) i(A/cm2) T(s) E(Volts) i(A/cm2) T(s)-1.29725E-03, 1.15674E-04, 4.8 -3.12376E-03, 7.04208E-05, 4.825 -5.13839E-03, 4.49166E-05, 4.85 -7.16281E-03, 2.72451E-05, 4.875 -9.18006E-03, 1.35282E-05, 4.9 -1.11773E-02, 1.72894E-06, 4.925 -1.31812E-02, -8.77842E-06, 4.95 -1.51924E-02, -1.80440E-05, 4.975 -1.72145E-02, -2.63783E-05, 5-1.92320E-02, -3.38648E-05, 5.025 -2.12576E-02, -4.10504E-05, 5.05 -2.32638E-02, -4.77369E-05, 5.075 -2.52801E-02, -5.39935E-05, 5.1 -2.72876E-02, -5.97033E-05, 5.125 -2.92965E-02, -6.49689E-05, 5.15 -3.13045E-02, -7.01868E-05, 5.175 -3.33251E-02, -7.51396E-05, 5.2 -3.53354E-02, -7.96554E-05, 5.225 -3.73440E-02, -8.37723E-05, 5.25 -3.93377E-02, -8.80374E-05, 5.275 -4.13716E-02, -9.31000E-05, 5.3 -4.33719E-02, -9.79358E-05, 5.325 -4.53954E-02, -1.02604E-04, 5.35 -4.74220E-02, -1.06148E-04, 5.375 -4.94213E-02, -1.08527E-04, 5.4 -5.14374E-02, -1.11235E-04, 5.425 -5.34525E-02, -1.15201E-04, 5.45 -5.54650E-02, -1.20622E-04, 5.475 -5.74557E-02, -1.25804E-04, 5.5 -5.94539E-02, -1.29147E-04, 5.525 -6.14807E-02, -1.30437E-04, 5.55 -6.35065E-02, -1.31034E-04, 5.575 -6.55128E-02, -1.33529E-04, 5.6 -6.75148E-02, -1.38900E-04, 5.625 -6.95103E-02, -1.46747E-04, 5.65 -7.15228E-02, -1.54890E-04, 5.675 -7.35317E-02, -1.58950E-04, 5.7 -7.55537E-02, -1.56703E-04, 5.725 -7.75602E-02, -1.51631E-04, 5.75 -7.95586E-02, -1.50664E-04, 5.775 -8.15959E-02, -1.56777E-04, 5.8 -8.36132E-02, -1.68896E-04, 5.825 -8.56436E-02, -1.83093E-04, 5.85 -8.76477E-02, -1.91786E-04, 5.875 -8.96556E-02, -1.90162E-04, 5.9 -9.16681E-02, -1.81073E-04, 5.925 -9.36699E-02, -1.73983E-04, 5.95 -9.56871E-02, -1.75475E-04, 5.975 -9.77032E-02, -1.85610E-04, 6-9.97106E-02, -1.99642E-04, 6.025 -1.01736E-01, -2.09359E-04, 6.05 -1.03757E-01, -2.10398E-04, 6.075 -1.05770E-01, -2.05230E-04, 6.1 -1.07773E-01, -2.00741E-04, 6.125 -1.09784E-01, -2.02637E-04, 6.15 -1.11792E-01, -2.10744E-04, 6.175 -1.13810E-01, -2.20225E-04, 6.2 -1.15806E-01, -2.24213E-04, 6.225 -1.17802E-01, -2.21851E-04, 6.25 -1.19821E-01, -2.19093E-04, 6.275 -1.21842E-01, -2.20991E-04, 6.3 -1.23849E-01, -2.29419E-04, 6.325 -1.25877E-01, -2.41204E-04, 6.35 -1.27888E-01, -2.50756E-04, 6.375 -1.29893E-01, -2.52991E-04, 6.4 -1.31912E-01, -2.49024E-04, 6.425 -1.33918E-01, -2.45863E-04, 6.45 -1.35921E-01, -2.47522E-04, 6.475 -1.37922E-01, -2.53552E-04, 6.5 -1.39941E-01, -2.60895E-04, 6.525 -1.41966E-01, -2.68033E-04, 6.55 -1.43975E-01, -2.75138E-04, 6.575 -1.45981E-01, -2.81994E-04, 6.6 -1.47974E-01, -2.87725E-04, 6.625 -1.49986E-01, -2.90349E-04, 6.65 -1.52008E-01, -2.89337E-04, 6.675-1.54023E-01, -2.87797E-04, 6.7 -1.56027E-01, -2.89994E-04, 6.725 -1.58050E-01, -2.98352E-04, 6.75 -1.60070E-01, -3.10672E-04, 6.775 -1.62094E-01, -3.23784E-04, 6.8 -1.64121E-01, -3.33251E-04, 6.825 -1.66112E-01, -3.36606E-04, 6.85 -1.68135E-01, -3.35388E-04, 6.875 -1.70142E-01, -3.33360E-04, 6.9 -1.72157E-01, -3.35245E-04, 6.925 -1.74162E-01, -3.43006E-04, 6.95 -1.76166E-01, -3.54898E-04, 6.975 -1.78188E-01, -3.67474E-04, 7-1.80203E-01, -3.76056E-04, 7.025 -1.82217E-01, -3.80116E-04, 7.05 -1.84221E-01, -3.82387E-04, 7.075 -1.86231E-01, -3.86506E-04, 7.1 -1.88239E-01, -3.92820E-04, 7.125 -1.90249E-01, -3.98432E-04, 7.15 -1.92269E-01, -4.02769E-04, 7.175 -1.94267E-01, -4.07363E-04, 7.2 -1.96278E-01, -4.15330E-04, 7.225 -1.98291E-01, -4.26563E-04, 7.25 -1.99572E-01, -4.15315E-04, 7.275 -1.98498E-01, -3.56641E-04, 7.3 -1.96478E-01, -3.06516E-04, 7.325 -1.94472E-01, -2.71245E-04, 7.35 -1.92470E-01, -2.45660E-04, 7.375 -1.90468E-01, -2.26902E-04, 7.4 -1.88451E-01, -2.10830E-04, 7.425 -1.86428E-01, -1.94007E-04, 7.45 -1.84431E-01, -1.76431E-04, 7.475 -1.82416E-01, -1.59545E-04, 7.5 -1.80389E-01, -1.45482E-04, 7.525 -1.78384E-01, -1.34088E-04, 7.55 -1.76385E-01, -1.23512E-04, 7.575 -1.74384E-01, -1.12250E-04, 7.6 -1.72371E-01, -9.98343E-05, 7.625 -1.70349E-01, -8.84433E-05, 7.65 -1.68324E-01, -7.88315E-05, 7.675 -1.66309E-01, -7.07480E-05, 7.7 -1.64311E-01, -6.27457E-05, 7.725 -1.62300E-01, -5.36377E-05, 7.75 -1.60277E-01, -4.46563E-05, 7.775 -1.58253E-01, -3.64773E-05, 7.8 -1.56225E-01, -2.93370E-05, 7.825 -1.54210E-01, -2.30565E-05, 7.85 -1.52216E-01, -1.64297E-05, 7.875 -1.50208E-01, -9.30140E-06, 7.9 -1.48189E-01, -2.19938E-06, 7.925 -1.46185E-01, 3.48415E-06, 7.95 -1.44180E-01, 8.58261E-06, 7.975 -1.42170E-01, 1.40273E-05, 8-1.40141E-01, 1.95318E-05, 8.025 -1.38127E-01, 2.51198E-05, 8.05 -1.36122E-01, 3.01728E-05, 8.075 -1.34107E-01, 3.50683E-05, 8.1 -1.32103E-01, 3.98205E-05, 8.125 -1.30100E-01, 4.42264E-05, 8.15 -1.28078E-01, 4.86085E-05, 8.175 -1.26082E-01, 5.26682E-05, 8.2 -1.24071E-01, 5.69308E-05, 8.225 -1.22043E-01, 6.11576E-05, 8.25 -1.20028E-01, 6.50836E-05, 8.275 -1.17999E-01, 6.88352E-05, 8.3 -1.15994E-01, 7.21760E-05, 8.325 -1.14001E-01, 7.55670E-05, 8.35 -1.11994E-01, 7.90536E-05, 8.375 -1.09984E-01, 8.24088E-05, 8.4 -1.07966E-01, 8.56087E-05, 8.425 -1.05963E-01, 8.84051E-05, 8.45 -1.03945E-01, 9.15335E-05, 8.475 -1.01935E-01, 9.45185E-05, 8.5 -9.99210E-02, 9.74295E-05, 8.525 -9.79097E-02, 1.00009E-04, 8.55 -9.58948E-02, 1.02444E-04, 8.575 -9.38916E-02, 1.05217E-04, 8.6 -9.18698E-02, 1.07880E-04, 8.625 -8.98583E-02, 1.10435E-04, 8.65 -8.78437E-02, 1.12629E-04, 8.675 -8.58405E-02, 1.14685E-04, 8.7 -8.38295E-02, 1.17085E-04, 8.725 -8.17965E-02, 1.19459E-04, 8.75 -7.97768E-02, 1.21790E-04, 8.775 -7.77620E-02, 1.23521E-04, 8.8 -7.57507E-02, 1.24966E-04, 8.825 -7.37477E-02, 1.26898E-04, 8.85 -7.17341E-02, 1.29381E-04, 8.875-6.97302E-02, 1.31961E-04, 8.9 -6.77210E-02, 1.33584E-04, 8.925 -6.57136E-02, 1.34456E-04, 8.95 -6.36961E-02, 1.35330E-04, 8.975 -6.16826E-02, 1.36868E-04, 9-5.96616E-02, 1.39626E-04, 9.025 -5.76670E-02, 1.42229E-04, 9.05 -5.56667E-02, 1.44307E-04, 9.075 -5.36540E-02, 1.45107E-04, 9.1 -5.16286E-02, 1.45228E-04, 9.125 -4.96018E-02, 1.46076E-04, 9.15 -4.76168E-02, 1.47745E-04, 9.175 -4.56091E-02, 1.50432E-04, 9.2 -4.35868E-02, 1.52631E-04, 9.225 -4.15638E-02, 1.53503E-04, 9.25 -3.95477E-02, 1.53202E-04, 9.275 -3.75341E-02, 1.53142E-04, 9.3 -3.55311E-02, 1.55124E-04, 9.325 -3.35125E-02, 1.58551E-04, 9.35 -3.14907E-02, 1.61465E-04, 9.375 -2.94863E-02, 1.61957E-04, 9.4 -2.75060E-02, 1.60283E-04, 9.425 -2.54828E-02, 1.59292E-04, 9.45 -2.34632E-02, 1.60357E-04, 9.475 -2.14543E-02, 1.63640E-04, 9.5 -1.94299E-02, 1.67363E-04, 9.525 -1.74186E-02, 1.69357E-04, 9.55 -1.54111E-02, 1.69130E-04, 9.575 -1.33996E-02, 1.67471E-04, 9.6 -1.13802E-02, 1.66886E-04, 9.625 -9.37224E-03, 1.67912E-04, 9.65 -7.36000E-03, 1.70121E-04, 9.675 -5.33892E-03, 1.72237E-04, 9.7 -3.32907E-03, 1.73133E-04, 9.725数据处理:七、实验结果的分析与讨论1、从实验数据中我们可以看出曲线没有测好,正常的CV曲线应是光滑曲线。
电化学测试锂离子电池稳态测量技术-线性电势扫描伏安法
(LSVCV)
锂离子电池电极材料在电池充放电过程中一般经历以下几个步骤:①溶剂化的锂离子从电解液内迁移到电解液/固体电极的两相界面;②溶剂化的锂离子吸附在电解液/固体电极的两相界面;③去溶剂化;④电荷转移,电子注入电极材料的导带,吸附态的锂离子从电解液相迁移至活性材料表面晶格;⑤锂离子从活性材料表面晶格向内部扩散或迁移;⑥电子从集流体向活性材料的迁移。
线性电势扫描法在电化学测量中有着广泛的应用,常用于:①判断电极体系中可能发生的电化学反应;②判断电极过程的可逆性;③判断电极反应的反应物来源;
④研究电极活性物质的吸脱附过程。
锂离子电池基础科学问题(Ⅻ Ⅰ)——电化学测量方法. 凌仕刚,吴娇杨,张舒,高健,王少飞,李泓.
Das S R,Majumder S B,Katiyar R S. Kinetic analysis of the Li ionintercalation behavior of solution derived nano-crystalline lithiummanganate thin films[J]. Journal of Power Sources,2005,139:261-268.
Tang S B,Lai M O,Lu L. Li-ion diffusion in highly (003) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition[J]. Journal of Alloys and Compounds,2008,449(1-2):300-303.。
锂离⼦电池测试最全总结:原理、⽅法步骤、数据分析:CV、EIS、充放电、微分电压电容、倍率。
锂离⼦电池具有能量密度⾼、安全性好、⽆记忆效应、循环寿命长等优势,被⼴泛应⽤于便携式电⼦产品领域,⽽近年来新能源汽车市场已成为全球锂电产业⾼速发展的主要动⼒。
此外,电化学储能作为电⽹储能技术的重要组成部分,在削峰填⾕、新能源并⽹和电⼒系统辅助服务中扮演愈发重要的⾓⾊。
在锂离⼦电池的充放电过程中,发⽣多个电化学反应过程,影响着电极材料的结构形貌和电池性能。
例如,电极材料的⽐容量和放电平台决定电池的能量密度,⽽材料或者电池的阻抗决定离⼦的扩散过程及电池的功率密度。
⼀般通过循环伏安、交流阻抗、充放电等电化学测试技术来研究锂离⼦电池等电化学储能器件中的电化学反应过程和电池的循环性能。
鉴于电化学测试技术的快速进步和数据分析⽅法的不断完善,本⽂对循环伏安、电化学阻抗和充放电等电化学测试技术展开详细的介绍,概述了这些电化学技术的测试原理和操作⽅法,并对⼀些典型的应⽤案例进⾏了深⼊分析,进⽽指出了电化学测试技术在锂离⼦电池发展中存在的局限性及其未来发展趋向。
⼀、循环伏安技术【测试原理】在锂离⼦电池的电分析技术中,循环伏安法(CV)是电化学⼯作者普遍使⽤的⼀种⽅法。
该⽅法是将⼀个线性变化电压(等斜率电压)施加在⼀个电极上。
扫描区域可以控制在静置电位的±3 V范围内,⼤多数电极反应都发⽣在这个电位区域,⼀般不超过±5 V。
在循环伏安法中,起始扫描电位可表⽰为E = Ei − vt式中:Ei——起始电位;t——时间;v——电位变化率或扫描速率。
反向扫描循环定义为E = Ei + v′t其中 v'常常与 v值相同,将其与适当形式的 Nernst⽅程相结合可以得到⼀个描述电极表⾯粒⼦流量的表达式,该表达式可以⽤连续⼩步进⾏积分求和的⽅法求其解。
如所施加的电压接近该电极过程的可逆电位时,有⼀⼩电流通过,接着迅速增⼤,但随着反应物的耗尽,电流在电位稍⾼于标准电位处变成某⼀有限数值。
循环伏安法实验报告在电化学研究中,循环伏安法是一种简单而又强大的研究方法。
通过循环伏安法,可以对电极可逆性进行判断:反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称;判断电极反应机理的判断:如电极吸附现象、电化学反应过程中产物等;更重要的是,循环伏安法能够用于实验中的定量分析。
接下来,运用实验数据来答疑解惑。
通常我们选择铁氰化钾体系(Fe(CN)63-/4-)对电化学行为中的可逆过程进行研究,它的氧化与还原峰对称,两峰的电流值相等,两峰电位差理论值为0.059V 0 通常电极表面的处理对该理论值有很大的影响,一般选择玻碳电极为工作电极、铂电极为对电极、饱和甘汞电极为参比电极。
选择AI2O3抛光粉将电极表面磨光,然后在抛光机上抛成镜面,最后分别在1:1乙醇、1:1HNO3和蒸馏水中超声波清洗15秒。
另外,溶液是否除氧,这个也是必须考虑的,我们选择通高纯N2除O2 o在电解池中放入 5.00 x l0-4mol/LK3(内含0.20mol/L KNO3 ,作为支持电解质。
支持电解质的浓度实际上也对实验有影响,此处暂不考虑)。
插入工作电极、铂丝辅助电极和饱和甘汞电极。
设置电化学工作站中的参数,参数的设定需要不断的尝试,根据电化学工作站窗口显示的图形调节出合适的参数图一的i-E曲线即为循环伏安图。
从循环伏安图中可以看出有两个峰电流和两个峰电位,阴极峰电流ipc,峰电位以Epc(jpc)表示;阳极峰电流ipa,峰电位以Epa 表示。
ipc 或ipa 的下标的 a 代表 anode, c 代表 cathode。
我们可知道,A Ep=Epa-Epc=56/n (单位:mV)( n为反应过程中的得失电子数),ipc与ipa的比值越接近于1,则该体系的可逆程度就越高。
这是判断可逆体系的最直接的方法。
OOOOOOOOODOOAUOOOO 987<05从321 12 3 4-^5-7- 从电化学工作站的工作界面,可以得出氧化峰电位为 Epa=227mV,峰电流为ipa=-1.91 '10-6A ;还原峰电位是 Epc=170mV ,峰电流是 ipc=1.9 '10-6A 。
锂电池的循环伏安曲线锂电池是一种高效、可靠的电池类型,广泛应用于移动电子设备、电动车辆等领域。
而锂电池的循环伏安曲线则是评估其性能的重要指标之一。
下面我们将为大家介绍锂电池的循环伏安曲线,以及对其进行合理解读的方法。
循环伏安曲线是指在电化学循环过程中,通过测量电流与电位之间的关系而绘制成的图像。
通过观察该曲线,我们可以了解锂电池的电化学特性以及其在循环使用过程中的变化规律。
循环伏安曲线的横坐标是电位(单位:伏特),纵坐标是电流(单位:安培)。
锂电池在循环过程中,电位从一个初始值逐渐增加或减小,电流也相应地在正负值之间变换。
这种电位-电流变化的规律,反映了锂电池正负极之间的电化学反应以及电荷的存储和释放过程。
循环伏安曲线通常包括两个主要特征,即阳极峰和阴极峰。
阳极峰是曲线上的一个波峰,代表了阳极处发生的氧化反应。
阴极峰则是曲线上的一个波谷,代表了阴极处发生的还原反应。
这两个峰的位置和形状,可以反映出锂离子在电池中的嵌入和脱嵌情况,以及电池内部的电化学界面反应情况。
除了阳极峰和阴极峰之外,循环伏安曲线中还可能存在其他的电流特征,比如扩散控制区、极化区、电解液的电化学反应等。
这些特征的存在,反映了锂电池的电荷传输和离子扩散过程,对于评估锂电池的性能和循环寿命具有重要意义。
要合理解读循环伏安曲线,首先需要了解锂电池的材料组成和电化学反应机制。
对于不同类型和规格的锂电池,其循环伏安曲线的形状和特征可能会有所差异。
因此,在解读锂电池循环伏安曲线时,应结合具体的电池型号和使用条件,以及相关的性能指标进行综合分析和判断。
此外,锂电池的充放电过程中还存在着一些潜在问题,如锂电池容量衰减、内阻增加等。
通过观察循环伏安曲线的变化,我们可以及时发现这些问题,并采取相应的措施进行维护和修复。
总之,锂电池的循环伏安曲线不仅是一种电化学测试手段,也是评估锂电池性能和循环寿命的重要依据。
通过合理解读循环伏安曲线,我们可以更好地了解锂电池的电化学特性,及时发现问题并进行相应的维护和管理,以提高锂电池的使用效果和寿命。
锂离子电池电化学测量方法解析锂离子电池电极过程动力学探究中常用的有循环伏安法(CV)、电化学阻抗谱(EIS)、恒电流间歇滴定技术(GITT)、恒电位间歇滴定技术(PITT)、电流脉冲弛豫(CPR)、电位阶跃计时电流(PSCA)和电位弛豫技术(PRT)等。
1、锂电池的主要电极反应电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空问电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。
这些过程有些同时进行,有些先后发生。
电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。
2、分清两电极和三电极电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。
(1)两电极两电极由研究电极(W),亦称之为工作电极和辅助电极(C),亦称之为对电极组成。
锂电池的研究中多数为两电极电池,两电极电池测量的电压是正极电势与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。
(2)三电极三电极电池包括,W和C分别是工作电极和对电极,R是参比电极。
W和C 之间通过极化电流,实现电极的极化。
W和R之间通过极小的电流,用于测量工作电极的电势。
通过三电极电池,可以专门研究工作电极的电极过程动力学。
3、参比电极的特征●参比电极应为可逆电极;●不易被极化,以保证电极电势比较标准和恒定●具有较好的恢复特性,不发生严重的滞后现象●具有较好的稳定性和重现性●快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性●不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。
4、常用的参比电极水溶液体系参比电极:可逆氢电极、甘汞电极、汞一氧化汞电极、汞一硫酸亚汞电极等;非水溶液体系参比电极:银一氯化银电极、Pt电极以及金属锂、钠等电极。
实验十循环伏安法分析一、实验目的1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。
2.熟练使用循环伏安法分析的实验技术。
二、实验原理循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。
现代电化学仪器均使用计算机控制仪器和处理数据。
CV测试比较简便,所获信息量大。
采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线表1. 图1的实验条件和一些重要解释零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。
若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。
WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。
CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。
分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。
与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。
循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。
循环伏安法实验报告实验目的1. 了解电化学分析的工作原理、发展过程,掌握用循环伏安法判断电极是否可逆。
2. 学会测定循环伏安曲线3. 掌握循环伏安法的一般操作过程,学会测量峰电流和峰电位。
实验原理循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。
该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。
根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。
对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。
循环伏安法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。
若溶液中存在氧化态,电极上将发生还原反应;反扫时,电极上生成的还原态将发生氧化反应。
峰电流可表示为1/2p i Kv c = 即峰电流与被测物质浓度,扫描速率等有关。
如何判断表面电化学反应的可逆性1. 对于可逆体系,氧化峰电流与还原峰电流之比:1papc i i = 2. 氧化峰峰电位与还原峰电位差: 0.058(V)pa pc Zϕϕϕ∆=-≈ 3. 当扫速较慢时,峰电位不随扫速的变化而变化判断一个电极是扩散过程还是表面过程:1/2ppi V i V 为直线,则为表面过程为直线,则为扩散过程实验仪器:仪器: CHI 电化学工作站440;玻碳工作电极,铂丝对电极和Ag-AgCl 电极。
试剂:1.00×10-3mol/L K 3Fe(CN)6+0.50mol/LKNO 3实验步骤:1.玻碳电极的预处理玻碳电极用Al 2O 3粉将电极表面抛光,然后用蒸馏水清洗,用超声处理,待用。
2.K 3Fe (CN )6溶液的循环伏安图1) 在电解池中放入配制好的K 3Fe (CN )6溶液,插入三电极池,玻碳工作电极、大表面的铂丝辅助电极和Ag/AgCl 参比电极。
锂电池负极材料循环容量保持率测试方法详解一、引言锂电池作为目前最为广泛应用的可充电电池之一,其负极材料的循环容量保持率是评价锂电池性能的重要指标之一。
循环容量保持率能够反映锂电池在多次充放电过程中,储存和释放电能的能力。
锂电池负极材料循环容量保持率的测试方法对于研发和生产高性能锂电池具有重要意义。
本文将详细介绍锂电池负极材料循环容量保持率测试的方法和步骤。
二、锂电池负极材料循环容量保持率测试方法1. 样品的准备需要准备好锂电池负极材料的样品。
通常,样品可以是锂离子电池的负极材料,如石墨或硅基负极材料。
样品应经过事先处理,以确保其纯度和一致性。
2. 样品的制备制备好的样品需要经过一系列处理步骤,以保证测试结果的准确性。
将样品进行研磨,使其粒度均匀。
接下来,将样品与导电剂混合,以提高样品的导电性能。
将混合物与粘结剂进行混合,并制备成为负极片。
3. 循环容量保持率测试装置的准备循环容量保持率的测试通常需要使用电化学工作站。
这种仪器可以模拟锂电池的充放电过程,并记录电池的电流和电压变化。
测试装置需校准,以确保测试结果的准确可靠。
4. 循环容量保持率测试步骤(i) 清洁和激活电池:将锂电池样品置于电池槽中,用适当的电解液进行清洗和激活,以确保样品的正常工作。
(ii) 初始化测试:进行一次完全充放电循环,以建立样品的基准容量。
(iii) 进行多次充放电循环:根据需要,将样品进行多次充放电循环。
每次循环包括充电和放电过程,可以根据实际需求设定充放电的电流和电压范围。
(iv) 记录数据:在每次充放电循环结束后,记录电池的电流、电压和容量变化。
还可以记录其他参数,如循环次数和温度等。
(v) 分析结果:根据记录的数据,可以对样品的循环容量保持率进行计算和分析。
通常,循环容量保持率可以通过计算循环结束后的容量与循环开始时的容量之比来确定。
更复杂的分析方法还可以应用于提取更详细的信息。
三、观点和理解测试锂电池负极材料循环容量保持率对于研发和生产高性能锂电池具有重要意义。