二次函数期末复习题(基础-中等)
- 格式:docx
- 大小:199.35 KB
- 文档页数:17
二次函数复习题一、选择题1.下列函数中,当x >0时y 值随x 值增大而减小的是( )。
A .y = x 2B .y = x -1C . y = 34 xD .y = 1x2.已知函数))((b x a x y --=(其中a b >)的图象如右图所示,则函数b ax y +=的图象可能正确的是( )。
3.如图为抛物线2y ax bxc =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )。
A .a +b =-1 B . a -b =-1 C . b <2a D . ac <04.二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( )。
A .-1<x<3 B .x <-1 C .x >3D .x <-1或x >35.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )。
A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h6.已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )。
A .a >0 B .b <0 C .c <0 D .a +b +c >07.如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息: (1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
你认为其中错误..的有( )。
A .2个 B .3个 C .4个 D .1个(D )5题图8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )。
A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3是方程ax 2+bx +c =0的一个根9.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )。
二次函数【复习题】(4课时)一、例题:【例1】二次函数y=ax 2+bx 2+c 的图象如图所示,则a 0,b 0,c 0(填“>”或“<”=.)【例2】二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )【例3】在同一坐标系中,函数y=ax 2+bx 与y=xb 的图象大致是图中的( )【例4】如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x 2+0.9x +10表示,而且左右两条抛物线关于y 轴对称,你能写出右面钢缆的表达式吗?【例5】图中各图是在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )【例6】抛物线y=ax 2+bx +c 如图所示,则它关于y 轴对称的抛物线的表达式是 .【例7】已知二次函数y=(m -2)x 2+(m +3)x +m +2的图象过点(0,5).(1)求m 的值,并写出二次函数的表达式; (2)求出二次函数图象的顶点坐标、对称轴.【例8】启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的利益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y 倍,且y=-102x +107x +107,如果把利润看作是销售总额减去成本费和广告费.(1)试写出年利润S (万元)与广告费x (万元)的函数表达式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.【例9】已知抛物线y=a (x -t -1)2+t 2(a ,t 是常数,a ≠0,t ≠0)的顶点是A ,抛物线y=x 2-2x +1的顶点是B (如图).(1)判断点A 是否在抛物线y=x 2-2x +1上,为什么? (2)如果抛物线y=a (x -t -1)2+t 2经过点B .①求a 的值;②这条抛物线与x 轴的两个交点和它的顶 点A 能否成直角三角形?若能,求出t 的值;若不能 ,请说明理由.【例10】如图,E 、F 分别是边长为4的正方形ABCD 的边BC 、CD 上的点,CE=1,CF=34,直线FE 交AB 的延长线于G ,过线段FG 上的一个动点H ,作HM ⊥AG 于M .设HM=x ,矩形AMHN 的面积为y .(1)求y 与x 之间的函数表达式,(2)当x 为何值时,矩形AMHN 的面积最大,最大面积是多少?【例11】已知点A (-1,-1)在抛物线y=(k 2-1)x 2-2(k -2)x +1上.(1)求抛物线的对称轴;(2)若点B 与A 点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B 的直线?如果存在,求符合条件的直线;如果不存在,说明理由.【例12】如图,A、B是直线ι上的两点,AB=4cm,过ι外一点C作CD∥ι,射线BC与ι所成的锐角∠1=60°,线段BC=2cm,动点P、Q分别从B、C同时出发,P以每秒1cm的速度,沿由B向C的方向运动;Q以每秒2cm的速度,沿由C向D的方向运动.设P、Q运动的时间为t秒,当t>2时,PA交CD于E.(1)用含t的代数式分别表示CE和QE的长;(2)求△APQ的面积S与t的函数表达式;(3)当QE恰好平分△APQ的面积时,QE的长是多少厘米?【例13】如图所示,有一边长为5cm的正方形ABCD和等腰三角形PQR,PQ=PR=5cm,PR=8cm,点B、C、Q、R在同一直线ι上.当CQ两点重合时,等腰△PQR以1cm/秒的速度沿直线ι按箭头所示方向开始匀速运动,t秒后,正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;【例14】如图2-4-16所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在圆形水面中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线的路线落下.为使水流形状较为漂亮,要求设计成水流在与高OA距离为1米处达到距水面最大高度2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水不致落到池外?(2)若水池喷出的抛物线形状如(1)相同,水池的半径为3.5米,要使水流不致落到池外,此时水流最大高度应达多少米?(精确到0.1米,提示:可建立如下坐标系:以OA所在的直线为y轴,过点O垂直于OA的直线为x轴,点O为原点)【例15】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产的产品全部售出.已知生产x只玩具熊猫的成本为R(元),每只售价为P(元),且R,P与x的表达式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获利为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?【例16】阅读材料,解答问题.当抛物线的表达式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标出将发生变化.例如y=x 2-2mx +m 2+2m -1①,有y=(x -m )2+2m -1②,∴抛物线的顶点坐标为(m ,2m -1),即⎩⎨⎧-==. ④, ③12m y m x当m 的值变化时,x 、y 的值也随之变化,因而y 值也随x 值的变化而变化. 把③代入④,得y=2x -1.⑤可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足表达式y=2x -1. 解答问题:(1)在上述过程中,由①到②所学的数学方法是 ,其中运用了 公式,由③、④到⑤所用到的数学方法是 .(2)根据阅读材料提供的方法,确定抛物线y=x 2-2mx +2m 2-3m +1顶点的纵坐标y 与横坐标x 之间的表达式.二、课后练习:1.抛物线y=-2x 2+6x -1的顶点坐标为 ,对称轴为 .2.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3.已知二次函数y=41x 2-25x +6,当x= 时,y最小= ;当x 时,y随x 的增大而减小.4.抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到 的抛物线表达式为.5.二次函数y=ax 2+bx +c 的图象如图所示,则ac 0.(填“>”、“<”或“=”=)。
第22章《二次函数》章末复习题限时:120分钟满分:120分一.选择题(每题3分,共36分)1.抛物线y=x2﹣6x+5的顶点坐标为()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)2.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y 2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y23.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)4.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米5.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3 6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根7.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+48.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x29.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.11.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.12.小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0,②abc>0,③a﹣b+c>0,④2a﹣3b=0,⑤4a+2b+c>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个二.填空题(每题4分,共,20分)13.已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过象限.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是.16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,在飞机着陆滑行中,最后2s滑行的距离是m.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限.设m=a+b+c,则m的取值范围是.三.解答题(共64分)18.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.19.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).20.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.21.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,则点P的坐标为;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.22.若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 1 2 …y…0 ﹣2 ﹣2 0 4 …(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.23.如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx ﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案一.选择1.解:∵y=x2﹣6x+5,=x2﹣6x+9﹣9+5,=(x﹣3)2﹣4,∴抛物线y=x2﹣6x+5的顶点坐标为(3,﹣4).故选:A.2.解:根据题意,得y 1=1+6+c=7+c,即y1=7+c;y 2=4﹣12+c=﹣8+c,即y2=﹣8+c;y3=9+2+6﹣18﹣6+c=﹣7+c,即y3=﹣7+c;∵7>﹣7>﹣8,∴7+c>﹣7+c>﹣8+c,即y1>y3>y2.故选:B.3.解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选:D.4.解:∵高度h和飞行时间t满足函数关系式:h=﹣5(t﹣1)2+6,∴当t=1时,小球距离地面高度最大,∴h=﹣5×(1﹣1)2+6=6米,故选:C.5.解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B .6.解:∵抛物线开口向下,∴a <0,故A 选项错误; ∵抛物线与y 轴的正半轴相交,∴c >0,故C 选项错误;∵对称轴x =1,∴当x >1时,y 随x 的增大而减小;故B 选项错误; ∵对称轴x =1,∴另一个根为1+2=3,故D 选项正确. 故选:D .7.解:由原抛物线解析式可变为:y =(x +1)2+2,∴顶点坐标为(﹣1,2),与y 轴交点的坐标为(0,3), 又由抛物线绕着它与y 轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称, ∴新的抛物线的顶点坐标为(1,4), ∴新的抛物线解析式为:y =﹣(x ﹣1)2+4. 故选:B .8.解:用作图法比较简单,首先作出y =(x ﹣a )(x ﹣b )图象,任意画一个(开口向上的,与x 轴有两个交点),再向下平移一个单位,就是y =(x ﹣a )(x ﹣b )﹣1,这时与x 轴的交点就是x 1,x 2,画在同一坐标系下,很容易发现: 答案是:x 1<a <b <x 2. 故选:C .9.解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选:D.10.解:A、根据图象可知,函数在实数范围内是增函数,即函数y随x增大而增大;故本选项错误;B、根据图象可知,函数在对称轴的左边是减函数,函数y随x增大而减小;函数在对称轴的右边是增函数,即函数y随x增大而增大;故本选项错误;C、根据图象可知,函数在两个象限内是减函数,但是如果不说明哪个象限内是不能满足题意的;故本选项错误;D、根据图象可知,函数在实数范围内是减函数,即函数y随x增大而减小;故本选项正确.故选:D.11.解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,=﹣+2=.∴当1≤x≤5时,y最大值故选:C.12.解:①由二次函数y=ax2+bx+c的图象开口向上可知a>0,图象与y轴交点在负半轴,c<0,正确;②由图象可知x=﹣1时,y=a﹣b+c>0,正确;③对称轴x=﹣>0,a>0,b<0,abc>0,正确;④对称轴x=﹣=,﹣3b=2a,2a﹣3b=﹣6b,错误;⑤由图象可知x=2时,y=4a+2b+c>0,正确.所以①②③⑤四项正确.故选:C.二.填空题(共5小题)13.解:∵关于x的一元二次方程x2+bx﹣c=0无实数解,∴△=b2+4c<0,∵抛物线y=﹣x2﹣bx+c中,二次项系数﹣1<0,∴抛物线的开口向下,∵判别式=(﹣b)2﹣4×(﹣1)×c=b2+4c<0,∴抛物线与x轴无交点,∴抛物线在x轴的下方,∴抛物线y=﹣x2﹣bx+c经过第三、四象限;故答案为:三、四.14.解:∵点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,且纵坐标相等.∴根据抛物线的对称性知道抛物线对称轴是直线x==3.故答案为:x=3.15.解:设二次函数的解析式为y=ax2+bx+c.∵抛物线开口向下,∴a<0.∵抛物线与y轴的交点坐标为(0,3),∴c=3.取a=﹣1,b=0时,二次函数的解析式为y=﹣x2+3.故答案为:y=﹣x2+3(答案不唯一).16.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=18时,y=594,所以600﹣594=6(米)故答案是:6.17.解:∵二次函数y=ax2+bx+c(a>0)的图象与坐标轴分别交于点(0,﹣3)、(﹣1,0),∴c =﹣3,a ﹣b +c =0, 即b =a ﹣3, ∵顶点在第四象限, ∴﹣>0,<0,又∵a >0, ∴b <0,∴b =a ﹣3<0,即a <3,b 2﹣4ac =(a +c )2﹣4ac =(a ﹣c )2>0∵a ﹣b +c =0, ∴a +b +c =2b <0, ∴a +b +c =2b =2a ﹣6, ∵0<a <3,∴a +b +c =2b =2a ﹣6>﹣6, ∴﹣6<a +b +c <0. ∴﹣6<m <0. 故答案为:﹣6<m <0. 三.解答题(共6小题)18.解:(1)令y =0,即0=ax 2﹣4ax , 解得x 1=0,x 2=4, ∴A (0,0),B (4,0).答:点A 、B 的坐标为:(0,0),(4,0); (2)①设直线PC 解析式为y =kx +b , 将点C (2,1),P (1,﹣a )代入解得:k =1+a ,b =﹣3a ﹣1,∴直线PC 解析式为y =(1+a )x ﹣3a ﹣1, 当x =4时,y =3a +3, 所以点Q 的纵坐标为3a +3.②∵当点Q 在B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,3a+3≥0,∴a≥﹣1∴当a<0时,抛物线开口向下,抛物线只能与点Q相交,∴﹣1≤a<0当a>0时,抛物线开口向上,只能与点P相交,当x=1时,y=﹣a,y=﹣3a,所以抛物线与点P不相交.综上:a的取值范围是:﹣1≤a<019.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x的取值范围在对称轴的左侧时P随x的增大而增大,50(30+m)≥2500,解得:m≥20,∴m的取值范围是:20≤m≤40.故答案为:20≤m≤40.20.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD =2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).21.解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得:∴抛物线解析式为:y=x2﹣2x﹣;(2)连接BC,如图1所示,∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,设直线BC的解析式为y=kx+b(k≠0),且过B(5,0),C(0,﹣)∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣),故答案为:(2,﹣);(3)存在点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形.如图2所示,①当点N 在x 轴下方时, ∵抛物线的对称轴为直线x =2,C (0,﹣),∴N 1(4,﹣);②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ), ∴N 2D =OC =,即N 2点的纵坐标为.∴x 2﹣2x ﹣=,解得x =2+或x =2﹣, ∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣)或(2+,)或(2﹣,). 22.解:(1)根据表中可知:点(﹣1,﹣2)和点(0,﹣2)关于对称轴对称, 即对称轴是直线x =﹣,设二次函数的表达式是y =a (x +)2+k ,把点(﹣2,0)和点(0,﹣2)代入得:,解得:a=1,k=﹣,y=(x+)2﹣=x2+x﹣2,所以该二次函数的表达式是y=x2+x﹣2;(2)当y=4时,y=x2+x﹣2=4,解得:x=﹣3或2,所以当y≥4时,自变量x的取值范围是x≤﹣3或x≥2.23.解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),设DE交AC于F,则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC =S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6 =﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,存在最大值,∴当m=﹣3时,S△ADC又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
二次函数复习题精选二次函数复习题精选在数学学习中,二次函数是一个重要的概念。
它是由形如y = ax^2 + bx + c的方程所表示的函数,其中a、b和c是实数且a不等于零。
二次函数在几何学、物理学和经济学等领域中都有广泛的应用。
为了帮助大家复习二次函数的知识,下面我将给大家提供一些精选的二次函数复习题。
题目一:求解二次函数的顶点坐标和对称轴方程已知二次函数y = 2x^2 - 4x + 3,求解它的顶点坐标和对称轴方程。
解析:首先,我们可以通过求导数的方法来确定顶点的横坐标。
对于二次函数y =ax^2 + bx + c,它的导数是y' = 2ax + b。
当导数等于零时,函数取得极值。
所以,我们可以令2ax + b = 0,解得x = -b / (2a)。
将a = 2,b = -4代入,得到x = 1。
将x = 1代入原函数,可以求得y = 2(1)^2 - 4(1) + 3 = 1。
所以,顶点的坐标为(1, 1)。
其次,对称轴是通过顶点并且垂直于x轴的一条直线。
所以,对称轴的方程可以通过顶点的横坐标得到。
对于顶点(1, 1),对称轴的方程为x = 1。
题目二:求解二次函数的零点已知二次函数y = -x^2 + 4x - 3,求解它的零点。
解析:二次函数的零点即为函数的根,也就是使得函数取值为零的x值。
所以,我们可以将函数设为零,即-x^2 + 4x - 3 = 0。
为了方便计算,我们可以使用求根公式来解方程。
根据求根公式x = (-b ± √(b^2 - 4ac)) / (2a),我们可以得到两个解。
将a = -1,b = 4,c = -3代入,可以得到x = (4 ± √(4^2 - 4(-1)(-3))) / (2(-1))。
简化后,得到x = (4 ± √(16 - 12)) / (-2)。
继续简化,得到x = (4 ±√4) / (-2)。
二次函数复习题重点一.选择、填空题1..若二次函数y=ax2+c的图象形状与抛物线y=3x2相同,且顶点坐标为(0,-2),则它的表达式为____________.2.若二次函数y=(k+1)x2+k2-8有最大值1,则k=________.3.已知点A(4,y1),B(2,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是____________.4.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y =2x2-2x+3相同,则此函数的表达式为______________.5.已知点P(-1,5)在抛物线y=-x2+bx+c的对称轴上,且与该抛物线的顶点的距离是4,则该抛物线的函数表达式为______________.6.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为________.7.二次函数y=ax2+bx+c和正比例函数y=23x的图象如图21-3-6所示,则方程ax2+(b-23)x+c=0(a≠0)的两根和() A.大于0B.等于0 C.小于0 D.不能确定图21-3-6 图21-3-7 图1-ZT-5 图21-4-4 图21-4-58.若将图21-3-7中的抛物线y =x 2-2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应的x 的取值范围是________.9.如图1-ZT -5,一次函数y =-x 与二次函数y =ax 2+bx +c 的图象相交于P ,Q 两点,则函数y =ax 2+(b +1)x +c 的图象可能为( )10.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图21-4-4所示的三处各留1 m 宽的门,已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为( ) A .75 m 2 B.752 m 2 C .48 m 2 D.2252m 2 11.如图21-4-5所示,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果P ,Q 两点分别从点A ,B 同时出发,那么经过________s ,四边形APQC 的面积最小.12.如图2-G -4,一次函数y =kx +b 与二次函数y =x 2+2x +3的图象交于点M ,N ,则二次函数y =-x 2+(k -2)x +b -3的图象大致为( )图2-G -4 图21-5-12 图21-5-16 图21-5-1713.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)之间的函数表达式为s=20t-4t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行________m才能停下来.14.某种气球内充满了一定质量的气体,当温度不变时,气球内的气压p(kPa)是气球体积V(m3)的反比例函数,其图象如图21-5-12所示.当气球内的气压大于120 kPa时,气球将爆炸,为了安全,气球的体积应该()A.不大于54m3B.大于54m3 C.不小于45m3D.小于45m315.如图21-5-16,一次函数y1=k1x+b的图象和反比例函数y2=k2x的图象交于A(1,2),B(-2,-1)两点.若y1<y2,则x的取值范围是()A.x<1 B.x<-2 C.-2<x<0或x>1 D.x<-2或0<x<116.如图21-5-17,直线y=-x+5与双曲线y=kx(x>0)相交于A,B两点,与x轴交于点C,过点B作BD⊥x轴于点D,△BDC的面积是12,则k的值为_______17.如图21-Z-5,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()图21-Z-5 图21-Z-6二、解答题1.某商品的进价为每件40元,当售价为每件50元时,每个月可卖出210件;当每件商品的售价超过50元但不超过80元时,若售价每上涨1元,则每个月少卖出1件;当每件商品的售价超过80元时,若再涨价,则每上涨1元每月会少卖出3件.设每件商品的售价为x(x为整数)元,每个月的销售量为y件.(1)求y与x之间的函数表达式,并直接写出自变量x的取值范围;(2)设每月的销售利润为W元,请直接写出W与x之间的函数表达式.2.如图21-2-5①,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).(1)当m=-1,n =4时,k=______,b=______;当m=-2,n=3时,k=______,b=______.(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论.(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴、y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.①当四边形AOED为菱形时,m与n满足的关系式为____________;②当四边形AOED为正方形时,m=________,n=__________.图21-2-53.若二次函数y=ax2+b的最大值为4,且该函数的图象经过点A(1,3).(1)求a,b的值以及顶点D的坐标.(2)直接写出这个函数图象关于x轴对称的图象所对应的函数表达式.(3)在该函数图象上是否存在点B,使得S△DOB=2S△AOD?若存在,请求出点B的坐标;若不存在,请说明理由.4.二次函数y=ax2+bx+c的图象如图21-3-8所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x增大而减小时的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.图21-3-85.如图21-4-6,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)若C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.图21-4-66.如图21-4-7,一个矩形菜园ABCD,一边AD靠墙(墙MN长为a米,MN≥AD),另外三边用总长100米的不锈钢栅栏围成.(1)当a=20时,矩形ABCD的面积为450平方米,求AD的长;(2)求矩形ABCD面积的最大值.图21-4-77.已知y=(m2+2m)xm2+m-1.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?8.如图21-5-10,点A(m,6),B(n,1)在某反比例函数的图象上,AD⊥x 轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值,并写出反比例函数的表达式.(2)连接AB,在线段DC上是否存在点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,说明理由.图21-5-109.如图2-ZT-4,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D,M分别在边AB,OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=mx(x<0)的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.图2-ZT-410.已知关于x的一元二次方程x2+(k-5)x+1-k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等的实数根;(2)已知函数y=x2+(k-5)x+1-k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.11.金华甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图21-X -4,甲在O 点正上方1 m 的P 处发出一球,羽毛球飞行的高度y (m)与水平距离x (m)之间满足函数表达式y =a (x -4)2+h ,已知点O 与球网的水平距离为5 m ,球网的高度为1.55 m.(1)当a =-124时,①求h 的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7 m ,离地面高度为125m 的Q 处时,乙扣球成功,求a 值.图21-X -412..襄阳精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数表达式为y =⎩⎨⎧mx -76m ()1≤x <20,x 为正整数,n (20≤x ≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入-成本).(1)m=________,n=________;(2)求销售蓝莓第几天时利润最大,最大利润是多少;(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?。
二次函数复习题一、选择题(每题3分,共30分)1,二次函数y =(x -1)2+2的最小值是( )A.-2B.2C.-1D.12,已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( )A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)3,函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )4,在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )A.28米B.48米C.68米D.88米5,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②③6,二次函数y =ax 2+bx +c 的图象如图3所示,若M =4a +2b +c ,N =a -b +c ,P =4a +2b ,则( )A.M >0,N >0,P >0B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <07,如果反比例函数y =k x的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )图3 图18,用列表法画二次函数y =x 2+bx +c 的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是( )A. 506B.380C.274D.189,二次函数y =x 2的图象向上平移2个单位,得到新的图象的二次函数表达式是( )A. y =x 2-2B. y =(x -2)2C. y =x 2+2D. y =(x +2)210,如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s二、填空题(每题3分,共24分)11,形如y =___ (其中a ___,b 、c 是_______ )的函数,叫做二次函数.12,抛物线y =(x –1)2–7的对称轴是直线 .13,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .14,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ .15,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =____(只要求写出一个).16,现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ), 那么它们各掷一次所确定的点P 落在已知抛物线y =-x 2+4x 上的概率为___.17,二次函数y =ax 2+bx +c 的图像如图7所示,则点A (a ,b )在第___象限.18,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .三、解答题(共66分)19,已知抛物线y =ax 2经过点(1,3),求当y =4时,x 的值.20,已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8)。
二次函数复习题一、填空题1.已知函数y=(m+2)x m(m+1)是二次函数,则m=______________.2.二次函数y=-x2-2x的对称轴是x=_____________3.函数s=2t-t2,当t=___________时有最大值,最大值是__________.4.已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=__________.5.抛物线y=-3(x+2)2的顶点坐标是_____,若将它旋转180º后得新的抛物线,其解析式为_________.6.抛物线y=5x-5x2+m的顶点在x轴上,则m=_____________________.7.已知抛物线y=ax2+bx+c的图象与x轴有两个交点,那么一元二次方程ax2+bx+c=0的根的情况是___________________.8.已知二次函数y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则点C的坐标为________.9.把抛物线y=2(x+1)2向下平移____单位后,所得抛物线在x轴上截得的线段长为5.10.如果二次函数y=x2-3x-2k,不论x取任何实数,都有y>0,则k的取值范围是________11.已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5)x2 -x1 =k k241,其中正确的结论有__ __(只需填写序号)12.已知二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0),B(x2,0), x1<0<x2,与y轴交于点C, 且满足OC(OB-OA)=2OA·OB,则该二次函数的解析式为__________二.选择题13.抛物线y=(x-1)2+1的顶点坐标是( )(A) (1,1) (B) (-1,1) (C) (1,-1) (D) (-1,-1)14.抛物线y=-x2+x+7与坐标轴的交点个数为( )(A) 3个(B) 2个(C) 1个(D) 0个15.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( )(A) b=3,c=7 (B) b=-9,c=-15 (C) b=3,c=3 (D) b=-9,c=2116.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为17.当a,b为实数,二次函数y=a(x-1)2+b的最小值为-1时有( )(A) a<b (B) a=b (C) a>b (D) a≥b18.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.85,y1),B(1.1,y2),C(2,y3),则有( )(A) y1<y2<y3(B) y1>y2>y3(C) y3>y1>y2(D) y1>y3>y219如果二次函数y=ax2+bx+c的顶点在y=2x2-x-1的图象的对称轴上,那么一定有( )(A) a=2或-2 (B) a=2b (C) a=-2b (D) a=2,b= -1,c=-120抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正确的个数有( )(A) 1个(B) 2个(C) 3个(D) 4个三解答题:21.已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围。
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t时间t (秒) 1 2 3 4 … 距离s (米) 281832…写出用t 表示s 的函数关系式: 2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21y x x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数 5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D .6、已知函数24mm ymx 的图像是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?s tOstOstOs tO10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 . 4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积. 6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。
二次函数期末复习题(基础-中等)知识导图考点精练考点一:二次函数的定义、解析式、图象及性质1.(金华)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个第1题第2题2.(凉山州)已知二次函数y=ax2+bx+1的大致图象如图所示,那么函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3B.﹣1C.3D.无法确定4.(陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.抛物线y=3(x+2)2﹣2的顶点坐标是.6.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9=.7.(辽阳)如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为.考点二:二次函数的图象变换1.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣12.(山西)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣33.(山西)抛物线y=﹣2x2﹣4x﹣5经过平移得到y=﹣2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位4.如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.5.(宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.考点三:用待定系数法求二次函数解析式1.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.2.(牡丹江)如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C,对称轴是直线x=﹣3,B(﹣1,0),F(0,1),请解答下列问题:(1)求抛物线的解析式;(2)写出抛物线顶点E的坐标,并判断AC与EF的位置关系.考点四:二次函数与一元二次方程、一元二次不等式的关系1.抛物线y=x2﹣2x﹣3与x轴的交点个数是()A.0个B.1个C.2个D.3个2.(随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小3.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<24.如图,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3;⑤(a+c)2>b2 。
其中正确的有()A.1个B.2个C.3个D.4个5.(大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1B.2C.3D.46.若抛物线y=2x2+mx+8与x轴只有一个公共点,则m的值为.7.(兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.8.(荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.考点五:建立二次函数模型解决实际问题1.(株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米第1题第3题2.(河北)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/s C.10m/s D.5m/s3.(枣庄)小敏在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是()A.3.5m B.4m C.4.5m D.4.6m4.(营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.5.(安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.6.如图所示,某农场要建一个矩形的菜地ABCD,四边用木栏围成,其中AB边留一个2米的门(门不用木栏).现有木栏长40米,设CD=x,菜地面积为y.(1)菜地的面积能达到120平方米吗?说明理由;(2)求菜地的面积的最大值.7.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.(Ⅰ)求P与x的函数关系式;(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?8.如图是某公园一喷水池,在水池中央有一垂直于地面的喷水柱,喷水时,水流在各方向沿形状相同的抛物线落下.若水流喷出的高度y(m)与水平距离x(m)之间的函数关系式为y=﹣(x﹣1)2+2.25(1)求喷出的水流离地面的最大高度;(2)求喷嘴离地面的高度;(3)若把喷水池改成圆形,那么水池半径至少为多少时,才能使喷出的水流不落在水池外?9.(随州)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?二次函数期末复习题(基础-中等)参考答案与试题解析考点一1.【解答】解:①∵抛物线的开口向下,∴a<0,错误;②∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,正确.∴有2个正确的.故选:C.2.【解答】解:由图中二次函数的图象开口向下可得a<0,再由对称轴x=﹣<0,可得b<0,那么函数y=ax+b的图象经过二、三、四象限,因此图象不经过第一象限.故选:A.3.【解答】解:根据题意得m2﹣2m﹣3=0,所以m=﹣1或m=3,又因为二次函数的二次项系数不为零,即m+1≠0,所以m=3.故选:C.4.【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.5.【解答】解:由y=3(x+2)2﹣2,根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).6.【解答】解:∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴﹣(﹣2)2﹣2b+c=3,整理得,﹣2b+c=7,∴2c﹣4b﹣9=2(c﹣2b)﹣9=2×7﹣9=5,故答案为5.7.【解答】解:令x=0,则y=﹣3,所以,点C的坐标为(0,﹣3),∵点D的坐标为(0,﹣1),∴线段CD中点的纵坐标为×(﹣1﹣3)=﹣2,∵△PCD是以CD为底边的等腰三角形,∴点P的纵坐标为﹣2,∴x2﹣2x﹣3=﹣2,解得x1=1﹣,x2=1+,∵点P在第四象限,∴点P的横坐标为1+.故选:A.考点二1.【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.2.【解答】解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选:D.3.【解答】解:y=﹣2x2﹣4x﹣5=﹣2(x+1)2﹣3,则该抛物线的顶点为(﹣1,﹣3),根据顶点由(﹣1,﹣3)平移到(0,0),得到向右平移1个单位,再向上平移3个单位.故选:D.4.【解答】解:设平移后的抛物线解析式为y=x2﹣2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2﹣2x+3.故答案是:y=x2﹣2x+3.5.【解答】解:(1)把点C(5,4)代入抛物线y=ax2﹣5ax+4a,得25a﹣25a+4a=4,解得a=1.∴该二次函数的解析式为y=x2﹣5x+4.∵y=x2﹣5x+4=(x﹣)2﹣,∴顶点坐标为P(,﹣).(2)如先向左平移3个单位,再向上平移4个单位.得到的二次函数解析式为y=(x﹣+3)2﹣+4=(x+)2+,即y=x2+x+2.考点三1.【解答】解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x﹣1)(x﹣3),把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上(答案不唯一).2.【解答】解:(1)∵B(﹣1,0),抛物线的对称轴是直线x=﹣3,∴A(﹣5,0),根据题意得:,解得:,∴抛物线的解析式为:y=﹣x2﹣6x﹣5;(2)当x=﹣3时,y=﹣(﹣3)2﹣6×(﹣3)﹣5=4,∴顶点E(﹣3,4),当x=0时,y=﹣5,∴C(0,﹣5),设直线AC的解析式为:y=kx+b,把A(﹣5,0)和C(0,﹣5)代入得:,解得:,∴直线AC的解析式为:y=﹣x﹣5,同理可得:直线EF的解析式为:y=﹣x+1,∴AC∥EF.考点四1.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.则抛物线与x轴的交点坐标为(﹣1,0),(3,0).故选:C.2.【解答】解:A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故此选项正确,不合题意;故选:C.3.【解答】解:抛物线y=ax2+2ax+m的对称轴为直线x=﹣=﹣1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.4.【解答】解:①由图象可知:△>0,∴b2﹣4ac>0,故①错误;②∵抛物线y=ax2+bx+c的顶点为B(﹣1,3),∴抛物线的对称轴为x=﹣1∴(﹣3,0)关于直线x=﹣1的对称点坐标为(1,0),(﹣2,0)关于直线x=﹣1的对称点坐标为(0,0)由图象可知,令x=1代入y=ax2+bx+c,∴y=a+b+c<0,故②错误;③由对称轴可知:x==﹣1,∴2a﹣b=0,故③正确;④∵抛物线y=ax2+bx+c的顶点为B(﹣1,3),∴3=a﹣b+c,∵b=2a,∴c﹣a=3,故④正确;⑤令x=1,y=a+b+c<0,令x=﹣1,y=a﹣b+c>0,∴(a+c)2﹣b2=(a﹣b+c)(a+b+c)<0,∴(a+c)2<b2,故⑤错误故选:B.5.【解答】解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(4,5a)关于直线x=1的对称点为(﹣2,5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.6.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=m2﹣4×2×8=0;∴m=±8.故答案为:±8.7.【解答】解:(1)∵顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0),∴点C的坐标为(﹣1,0),设抛物线的解析式为y=a(x﹣3)(x+1),把A(1,﹣4)代入,可得﹣4=a(1﹣3)(1+1),解得a=1,∴抛物线的解析式为y=(x﹣3)(x+1),即y=x2﹣2x﹣3;(2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3.8.【解答】(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k≥0,解得k≤1,即k的取值范围是k≤1;(3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1•x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.则k的最大整数值为2.考点五1.【解答】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选:A.2.【解答】解:当刹车距离为5m时,即y=5,代入二次函数解析式:5=x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选:C.3.【解答】解:如图,把C点纵坐标y=3.05代入y=x2+3.5中得:x=±1.5(舍去负值),即OB=1.5,所以L=AB=2.5+1.5=4m.故选:B.4.【解答】解:设定价为x元,每天的销售利润为y.根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870,∴y=﹣2x2+88x﹣870=﹣2(x﹣22)2+98,∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.5.【解答】解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.6.【解答】解:(1)设CD=x,则AD==21﹣x,根据题意得:x(21﹣x)=120,整理得:x2﹣21x+120=0,∵△=b2﹣4ac=441﹣480<0,∴菜地的面积不能达到120平方米.(2)根据题意得:y=x(21﹣x)=﹣x2+21x=﹣(x﹣)2+,所以面积的最大值为.7.【解答】解:(Ⅰ)设P=kx+b,根据题意,得:,解得:,则P=﹣x+120;(Ⅱ)y=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900;(Ⅲ)∵销售单价不低于成本单价,且获利不得高于50%,∴60≤x≤(1+50%)×60,即60≤x≤90,又当x≤90时,y随x的增大而增大,∴当x=90时,y取得最大值,最大值为900,答:销售单价定为90元时,商场可获得最大利润,最大利润是900元.8.【解答】解:(1)∵水流喷出的高度y(m)与水平距离x(m)之间的函数关系式为y=﹣(x﹣1)2+2.25,∴喷出的水流离地面的最大高度为:2.25m;(2)当x=0,则y=﹣(0﹣1)2+2.25=1.25(m),答:喷嘴离地面的高度为1.25m;(3)由题意可得;y=0时,0=﹣(x﹣1)2+2.25解得:x1=﹣0.5,x2=2.5,答:水池半径至少为2.5m时,才能使喷出的水流不落在水池外.9.【解答】解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.。