线性代数1-3n阶行列式的定义
- 格式:ppt
- 大小:206.50 KB
- 文档页数:8
《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:nq q q n a aa⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。
行列式的三种定义行列式是线性代数中一个非常重要的概念,它具有着许多重要的性质和应用。
在学习行列式的过程中,需要掌握三种不同的定义方法,包括代数定义、几何定义、和递推定义。
本文将从这三个方面一步一步讲解,帮助读者更好地理解行列式的概念和计算方法。
1. 代数定义行列式的代数定义是最基本也是最常用的定义方法。
对于一个n阶矩阵A,其行列式记为|A|或det(A),代数定义为:|A| = Σ(-1)^(i+j) * a_ij * M_ij其中i和j分别表示矩阵A中的第i行和第j列,a_ij表示A中第i行第j列的元素值,M_ij表示去掉矩阵A中第i行和第j列的子矩阵的行列式值。
这个定义可能看起来比较复杂,但是实际上非常好理解。
它的基本思路是将n阶矩阵A转化为n个n-1阶矩阵的运算,然后不断地递归计算,最终得出行列式的值。
这种方法的优点在于,它不仅适用于方阵,也适用于非方阵,所以可以广泛地应用到各种各样的问题中。
2. 几何定义几何定义是行列式另一种常用的定义方法。
它的基本思路是将矩阵A对应的线性变换视为对n维空间中一个向量的拉伸,从而将行列式的值解释为拉伸的比例因子。
具体来说,对于一个n阶矩阵A,其行列式的几何定义为:|A| = S*B/S*A其中S*A和S*B分别表示矩阵A和B对应线性变换后向量的长度,也就是表示空间中一个体积的大小。
这个定义方法非常直观,可以帮助我们更好地理解行列式的含义,也适用于二维和三维空间中的向量计算。
3. 递推定义递推定义是行列式的另一种常见定义方法。
它的基本思路是不断地删减矩阵的行和列,直至得到一个常数值。
这个定义方法虽然比较抽象,但是它有着较高的计算效率和便利性。
对于一个n阶矩阵A,其行列式的递推定义为:|A| = a_11 * |A'|其中A'是去掉A中的第一行和第一列所得的(n-1)阶矩阵。
这个定义方法可以方便地使用递归或循环算法实现,对于大规模矩阵的计算尤其有效。
线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。
线性代数计算行列式行列式是线性代数中的一个重要概念,用于刻画矩阵的性质和运算。
行列式可以看做是一个线性变换对体积的放缩比例,它可以用来描述矩阵的可逆性、线性相关性、多项式方程的根等。
本文将从行列式的定义、性质、计算方法以及一些应用等方面详细介绍线性代数中行列式的相关知识。
首先,我们来定义什么是行列式。
给定一个n阶矩阵A = [a_ij](其中i表示行数,j表示列数),则A的行列式记作,A,或det(A),它是一个标量,表示一个n维线性变换的放缩比例。
根据矩阵的行列数不同,行列式可以分为一阶行列式、二阶行列式、三阶行列式等。
一阶行列式就是一个数本身,即,a,=a。
二阶行列式的计算公式如下:,A,=a_11*a_22-a_12*a_21三阶行列式的计算公式如下:,A,=a_11*a_22*a_33+a_12*a_23*a_31+a_13*a_21*a_32-a_13*a_22*a_31-a_11*a_23*a_32-a_12*a_21*a_33根据行列式的定义,我们可以推导出一些重要的性质:1. 行列式与转置:对于任意的n阶矩阵A,有det(A) = det(A^T)。
2. 行列式的性质:如果A的行元素全为0,则det(A) = 0。
如果A的两行元素相同,则det(A) = 0。
如果A的行元素与另一行元素成比例,则det(A) = 0。
3. 行列式的性质:行列式的值不变,当交换A的两行或两列的顺序时。
即det(A) = det(A'),其中A'是A的两行或两列交换后得到的矩阵。
4. 行列式的性质:如果A的行元素加上行元素的k倍得到B,则det(B) = det(A)。
有了这些性质,我们可以通过行列式的性质进行计算,并进行一些变换,使得计算行列式的过程更加简单。
下面,我们来介绍一些行列式的计算方法:1.二阶行列式的计算:根据二阶行列式的计算公式,直接计算即可。
2.三阶及以上的行列式的计算:一般采用代数余子式和按行展开的方法。
n阶行列式的定义计算在线性代数中,行列式是一个非常重要的概念,它在矩阵理论和线性方程组的求解中起着关键作用。
n阶行列式是一个n×n的方阵所对应的一个数值。
它的计算方法可以通过定义来进行推导。
设A为一个n阶方阵,其元素为a_ij,其中i和j分别表示矩阵A的行和列。
那么n阶行列式的定义如下:首先,我们定义一个n阶排列,即一个1到n的自然数的一种排列。
例如,当n=3时,排列可能是(1, 2, 3)或者(3, 1, 2)等等。
然后,对于每一个n阶排列,我们可以计算其符号,如果这个排列可以通过交换相邻的两个数的方式从一个标准排列(1, 2,3, ..., n)变换而来,那么它的符号为正,否则为负。
例如,当n=3时,排列(1, 2, 3)是标准排列,符号为正;而排列(3, 1, 2)需要交换两次才能变为标准排列,所以符号为负。
最后,我们将矩阵A的元素按照排列中的顺序进行取数,乘以对应排列的符号,然后将所有结果相加,得到的和就是n阶行列式的值。
举个例子,对于一个3阶矩阵A:A = | a11 a12 a13 |。
| a21 a22 a23 |。
| a31 a32 a33 |。
我们可以列举出所有的排列:(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)。
然后计算每个排列的符号,再将对应位置的元素相乘,最后相加得到行列式的值。
这就是n阶行列式的定义计算方法。
它虽然在实际计算中可能会比较繁琐,但是却是理解行列式的重要基础。