灰色差分预测模型及应用
- 格式:pdf
- 大小:196.24 KB
- 文档页数:3
灰色预测法GM(1,1)理论及应用一、概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型的研究及应用
灰色预测模型是一种用于预测问题的数学模型,广泛应用于各个领域。
它在1982年由中国科学家GM灰所提出,因此得名为“灰色预测模型”。
灰色预测模型基于灰色系统理论,它假设事物的发展具有一定的规律性和趋势性,但也存在不确定性的因素。
它通过对已知数据的分析和处理,来预测未来的发展趋势。
灰色预测模型的核心思想是将已知数据序列分解为两个部分:灰色部分和白色部分。
灰色部分是由数据的数量级和函数形式决定的,因此可以用来预测未来的趋势。
白色部分则是由不确定的随机因素引起的,往往被视为噪声,不具备预测能力。
灰色预测模型有多种形式,其中最常用的是GM(1,1)模型。
该模型通过建立一阶线性微分方程来描述数据的变化趋势,然后利用指数累减生成灰色模型。
基于灰色模型,可以进一步进行累加、累减、累乘等操作,来实现更复杂的预测。
灰色预测模型在各个领域都有广泛的应用。
其中最典型的应用是经济预测领域,包括国民经济、金融市场等。
此外,它还可以应用于工业生产、环境保护、农业发展、医疗卫生等方面的预测。
灰色预测模型的优点是简单易懂、计算量小、适用范围广。
它可以对数据的趋势进行较为准确的预测,尤其适用于数据量较小或者不完整的情况下。
缺点是对数据的要求较高,数据的采
样点要均匀分布,并且在建立模型时需要进行一些参数的选择,可能存在主观性和不确定性。
总之,灰色预测模型是一种有效的预测方法,具有广泛的应用前景。
在实际应用中,需要对具体问题进行合理的建模和参数选择,以提高预测的准确性。
灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
灰色预测法第一节灰色系统一、灰色预测的概念灰色预测是就灰色系统所作的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体含义是:如果某一系统的全部信息已知为白色系统,全部信息末知为黑箱系统,部分信息已知、部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测,可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有本知或非确定信息的系统进行预测,就是对在一定范围内变化的,与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律。
灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测一般有四种类型。
1.数列预测。
对某现象随时间的顺延而发生的变化所作的预测定义为数列预测。
例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平,另一个是这一水平所发生的时间。
2.灾变预测。
对发生灾害或异常突变事件可能发生的时间预测称为灾变预测。
例如对地震时间的预测。
3.系统预测。
对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。
例如市场中代用商品、相互关联商品销售量互相制约的预测。
4.拓扑预测。
将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
二、系统功能模拟与灰色分析(一)系统模拟所谓系统模拟是指通过系统模型间接地模拟真实系统的过程。
系统模型建立起来后,在人为控制的条件下,通过改变特定参数,观察和研究模型的情况,以预测系统在真实环境下的特征、规律、作用、效率等。
这是组建系统的必经过程,也是研究系统的重要手段。
根据系统模型和系统真实情况相似关系的特点,一通常把模拟分为物理模拟与数学模拟两大类。
物理模拟是以系统模型和真实系统之间物理相似或几何相似为基础的一种模拟方法。
灰色理论与灰色预测模型研究与应用灰色理论是一种基于不完全信息的数学方法,由中国科学家陈纳德于1982年提出。
它主要用于解决样本数据有限、不完整、不确定的问题,适用于各种领域的预测和决策。
灰色预测模型是灰色理论的核心内容之一,通过对数据序列进行建模和预测,可以在一定程度上弥补数据不完整性带来的问题。
灰色理论的核心思想是通过构建灰色模型,对数据进行预测和分析。
灰色模型是一种基于时间序列的预测模型,它主要包括GM(1,1)模型和GM(2,1)模型。
GM(1,1)模型适用于一阶动态系统,通过建立灰微分方程和灰累加方程,可以对数据进行预测和分析。
GM(2,1)模型是GM(1,1)模型的扩展,适用于二阶动态系统,通过引入二次累加生成序列,可以提高预测的准确性。
灰色预测模型的应用非常广泛,可以用于经济、环境、医疗、交通等领域的预测和决策。
以经济领域为例,灰色预测模型可以用于宏观经济指标的预测,如国内生产总值、物价指数等。
通过对历史数据的分析和建模,可以预测未来一段时间内的经济走势,为政府和企业的决策提供参考。
在环境领域,灰色预测模型可以用于空气质量、水质监测等方面的预测和评估。
通过对历史数据的分析,可以预测未来一段时间内的环境状况,为环境保护和治理提供科学依据。
灰色预测模型的优势在于能够处理数据不完整、不确定的问题。
在实际应用中,往往会遇到数据缺失、数据质量差等问题,传统的预测模型很难处理这些问题。
而灰色预测模型通过对数据序列的分析和建模,可以在一定程度上弥补数据不完整性带来的问题,提高预测的准确性。
此外,灰色预测模型还具有模型简单、计算快速等特点,适用于大规模数据的处理和分析。
然而,灰色预测模型也存在一些不足之处。
首先,灰色预测模型对数据的要求较高,需要满足一定的前提条件,如数据序列的稳定性、线性关系等。
如果数据不满足这些条件,就无法进行有效的预测和分析。
其次,灰色预测模型对参数的选择较为敏感,不同的参数选择可能会导致不同的预测结果。
灰色预测模型理论及其应用Document number【980KGB-6898YT-769T8CB-246UT-18GG08】灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
基于灰色关联分析的市场预测模型构建与应用随着市场竞争的日趋激烈,企业如何准确预测市场变化、抓住机遇成为了一个重要的课题。
传统的市场预测方法往往过于简化,无法精确反映市场的复杂性和变化性。
而基于灰色关联分析的市场预测模型则具备了处理不确定性和非线性问题的能力,被广泛应用于各行业的市场预测中。
灰色关联分析的基本思想是寻找两个或多个时间序列之间的关联度,并以此来构建预测模型。
与传统的统计模型相比,灰色关联分析不依赖于大量的历史数据,可以降低数据要求,并减少对数据分布假设的依赖。
因此,它可以更好地处理少量样本的预测问题,对市场变化进行精确的预测。
在市场预测中,灰色关联分析主要包括了四个步骤:数据归一化、灰色关联度计算、灰色关联度排序和建立预测模型。
首先,数据归一化是指将原始数据转化为无量纲化的数据,以便进行比较和计算。
通常采用的方法包括极差归一化、标准差归一化等。
接下来是灰色关联度的计算。
通过灰色关联度计算,可以得到各个时间序列之间的关联度。
基于信息熵理论,灰色关联度分析可以衡量不同时间序列之间的相似性,进而反映它们之间的联系程度。
然后是灰色关联度的排序。
在计算得到各个时间序列之间的关联度后,可以将它们排序,找出最相关的时间序列。
通过排序可以发现时间序列之间存在的关联性,为后续的预测建模提供依据。
最后,建立预测模型。
通过分析和研究相关性高的时间序列,可以构建出相应的预测模型。
预测模型可以是线性模型,也可以是非线性模型,根据具体情况选择合适的建模方法。
利用预测模型,可以对未来的市场变化进行预测,为企业的战略决策提供依据。
基于灰色关联分析的市场预测模型在实际应用中取得了一定的成果。
以电子商务行业为例,通过对用户历史消费数据的灰色关联分析,可以对用户未来的购买行为进行预测,从而个性化推荐商品,提高销售额。
在金融领域,灰色关联分析也被应用于股票市场的预测,为投资者提供参考。
然而,基于灰色关联分析的市场预测模型也存在一些挑战和限制。