灰色预测模型及应用论文
- 格式:doc
- 大小:1007.50 KB
- 文档页数:24
管理预测与决策的课程设计报告灰色系统理论的研究专业:计算机信息管理姓名:XXX班级:xxx学号:XX指导老师:XXX日期2012年11月01 日摘要:科学地预测尚未发生的事物是预测的根本目的和任务。
无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。
在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。
本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。
通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。
另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。
关键词:灰色预测模型;灰关联度;灰色系统理论目录1、引言11.1、研究背景 (1)1.1.1、国内研究现状 11.1.2、国外研究现状 11.2、研究意义 (2)2、灰色系统及灰色预测的概念22.1、灰色系统理论发展概况22.1.1、灰色系统理论的提出22.1.2、灰色系统理论的研究对象 22.1.3、灰色系统理论的应用范围 22.1.4、三种不确定性系统研究方法的比较分析 32.2、灰色系统的特点.42.3、常见灰色系统模型 52.4、灰色预测 (5)3、简单的灰色预测——GM(1,1)预测63.1、GM(1,1)预测模型的基本原理64、小结 (9)参考文献: (10)灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。
黑箱模型:信息缺乏,暗,混沌。
白箱模型:信息完全,明朗,纯净。
灰箱模型:信息不完全,若明若暗,多种成分。
灰色BP网络模型在嵌岩桩承载力预测中的应用摘要本文结合灰色理论和bp网络理论建立灰色bp网络模型来探讨其在嵌岩桩承载力预测中的应用。
关键词:bp网络模型, 嵌岩桩, 承载力abstract: combined with grey theory and the bp neural network theory, the paper talks about a grey bp network model to study the rock-socketed pile bearing capacity prediction of application.key words: bp network model, rock-socketed pile, bearing capacity中图分类号: tu473文献标识码:a 文章编号:由于嵌岩桩的单桩承载力很高,嵌岩桩的试验资料非常有限,在这些有限的试验资料中,真正能做到桩基破坏阶段的试验很少。
如何根据这些实测的有限的荷载与沉降数据准确地预测桩的完整的荷载一沉降关系,进而确定桩的极限承载力,对于指导嵌岩桩设计和施工是具有重要意义的。
本文结合灰色理论和bp网络理论建立灰色bp网络模型来探讨其在嵌岩桩承载力预测中的应用。
1、模型的建立由灰色理论得知单桩的极限承载力pu可由如下公式表示:(1)其中:pi为桩顶荷载序列,为pi的一次累加生成,第i+1级桩顶累计荷载预测值,a表示发展系数。
根据公式建立残差序列的bp网络模型。
若预测阶数为m,即用作为bp网络训练的输入样本;将的值作为bp网络训练的预测期望值。
采用上述bp算法,通过足够多的参差序列案例训练这个网络,使不同的输入向量得到相应的输出量值。
训练好的bp网络模型可以作为残差序列预测的有效工具,bp网络模型如下:图1 bp神经网络的设计图这里设计的bp神经网络的输入层节点为3,即由前三个数据预测下一个数据。
隐含层为一层,其节点数为6。
刍议灰色预测模型在机电工程造价中的应用摘要:加强灰色预测模型在机电工程造价中的应用的研究是十分必要的。
本文作者结合多年来的工作经验,对灰色预测模型在机电工程造价中的应用进行了研究,具有重要的参考意义。
关键词:灰色预测模型机电造价应用中图分类号:tu723.3 文献标识码:a 文章编号:科学技术出现高度综合的大趋势,导致了具有方法论意义的系统科学学科群的出现。
系统科学则揭示了事物之间的更为深刻更为具有本质性的内在联系,所以大大促进了科学技术的整体化进程。
在对系统研究的过程中,由于当前现有认知水平的局限性以及内外扰动的存在,得到的信息常常都带有很多不确定性。
随着科技的发展以及人们对自然界和客观事物演化规律认识的进步,人们对各类系统存在的不确定性有了更加深刻的认知,对不确定性系统的研究也更加日益深入,从而使得众多科学领域中长期难以解决的各种复杂问题随着系统科学新科学的出现迎刃而解。
在系统科学和系统工程领域,各类不确定性系统理论、方法不断涌现,已经取得各种不确定性系统研究的重要成果,如扎德于 60 年代首创了模糊经理论、邓聚龙教授于 20 世纪 80 年代初创立并发展了灰色系统理论以及王光远教授于 90 年代创立的未确知数学等。
在 1982 年,邓聚龙教授发表于北荷兰出版公司期刊 systems & control letters 上的一篇名为“control problem of grey system”的论文,标志着灰色系统理论开始问世。
灰色系统理论的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,通过对部分已知信息进行生成、开发后提取有价值的信息,实现对现实世界的确切描述和认识。
自灰色理论诞生以来,它在工业、农业、社会、经济、管理和工程技术等领域得到了广泛的应用,成功的解决了生产、生活和科学研究中的大量问题. 我国现处于经济快速发展的时期,“科学发展观”既是我们开展工作的指导思想,又是社会经济进步的必要。
基于财务杠杆系数灰色灾变预测的财务预警分析摘要:由于受各种难以预料或控制因素的影响,企业的财务风险不可避免。
通过建立财务预警模型可以对企业的财务风险进行有效的防范。
而企业财务预警模型的构建,其方法及选用的指标体系是多种多样的。
本文从财务杠杆系数出发,通过运用灰色灾变预测的方法,结合实例对企业的财务风险进行预警分析。
结果证明,此方法具有很好的可行性和实用性。
关键词:财务杠杆系数灰色灾变预测财务预警在市场变化的不确定性及竞争日益激烈的环境下,由于财务的复杂性,企业的财务风险成为一种客观存在。
而企业财务活动的组织和管理过程中的某一方面或某个环节的问题,都可能促使这种风险转变为损失,导致企业发生财务危机。
因此,对企业财务状况进行预警分析并进行有效的防范,对规避企业财务风险,从而提高企业经济效益和竞争力。
一、财务预警模型的构造本文选择财务杠杆系数作为分析的财务指标,并根据灰色预测方法只需较少数据即可建立分析模型以及可处理财务风险无规则概率分布的特点,运用灰色灾变预测方法对企业的财务风险进行预警分析。
(一)财务杠杆系数企业可以通过借款或其他方式增加资本,只要债务成本低于这些资本投入的收益,财务杠杆就可以提高企业的资本收益率,但与此同时财务杠杆也提高了企业的财务风险。
资本结构决策需要在杠杆收益与其相关的风险之间进行合理的权衡。
(二)灰色灾变预测灰色灾变预测属于灰色理论中的一个部分,主要针对“部分信息已知,部分信息未知”的“小样本”,“贫信息”的不确定性问题,运用数学方法进行描述出来。
主要任务是利用模型预测出下一个或几个异常值出现的时刻,以使人们提前做好防备,采取对策,减少损失。
灰色灾变预测的准确率较高、实用性也较强,目前被大量应用于预测实践当中。
二、实证分析以下结合具体实例进行分析,该企业为河南省某一著名企业,企业近年来发展势头良好,做出了不殊的成绩。
以下数据来源于集团公司各年中期和年度财务报告,数据为集团母子公司的合并后数据。
中国人口增长模型论文摘要:人口问题涉及人口质量和人口结构等因素,是一个复杂的系统工程,稳定的人口发展直接关系到我国社会、经济的可持续发展。
如何从数量上准确的预测人口数量以及各种人口指标,对我国制定与社会经济发展协调的健康人口发展计划有着决定性的意义。
近年来我国的人口发展出现了许多新的特点,这些都影响着我国人口的增长。
鉴此,本文依据灰色预测方法和年龄移算理论,基于人口普查统计数据,从人口系统发展机理上展开讨论。
首先根据灰色预测理论,建立了一级的灰色预测模型,再将近几年我国的人口数量带入模型,便得到未来较短时间内我国的人口数量。
所得结果为我国总人口将于2006年、2007,2008,2009,2010年分别达到13.1495,13.2212,13.2909,13.3587,13.4246亿人。
然后分析人口发展方程中按年龄死亡率及生育模式等参数函数的内在变化规律,及其对总人口的影响,建立了莱斯利主模型,并在此基础上针对各参数函数的不同特点,建立了生育模型和死亡模型等子模型。
在将所得子模型和主模型结合,依据当前人口结构现状对我国的人口做了长期的预测。
所得结果是我国总人口将于2010年、2020年、2030年分别达到13.51058,14.38295,14.78661亿人与国家发展战略报告数据一致。
最后对所建模型的优缺点进行了客观的评价。
一、问题的提出1.1 问题:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。
2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。
试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。
灰色预测模型在公路货运量预测中的应用摘要:为了提高公路运输行业的管理水平,为设计、修建货运场站或现代物流中心提供数据依据和决策支持,就必须要准确的预测公路货运量。
在运输业今年运量统计的基础上,利用灰色预测理论的gm(1,1)模型,给出了gm(1,1)模型的详细步骤,并以公路货运量历年数据预测为例进行了实际应用。
可有效处理小样本、贫信息的不确定性,并在一定预测时段内有良好的预测精度和实用性。
关键词:公路货运量 gm(1,1)模型预测1.现有的预测方法当前普遍存在的对于社会经济的预测方法主要有时间序列法、回归分析法、灰色预测法、指数平滑法、神经网络预测法以及将不同的预测方法结合起来,按照提供信息量的多少和精度的不同,分别取不同的权重形成的组合预测模型。
货运量作为交通运输的一个重要评价指标,对于货运量的预测可以采取不同的方法进行预测,不同的方法提供的有价值信息各不相同,预测精度也各异。
本文主要采用灰色预测模型对公路货运量进行预测。
2.灰色理论与灰色预测模型由于环境对系统的干扰,系统信息中原始数据序列往往呈现离乱情况,离乱数列即为灰色数列或称灰色过程,灰色理论利用那些较少的或不确切的表示系统行为特征的原始数据序列作生成变换后建立微分方程,建立的模型称为灰色模型(greymodel),简称gm模型。
gm(1,1)表示一阶单个变量微分方程,是最常用的灰色预测模型,其形式为:式中,x=x(t),u和b为待估参数。
这个微分方程的解是:3.灰色预测模型的应用3.1灰色模型建模机理灰色系统建模是利用离散的时间序列数据建立近似连续的微分方程模型。
在这一过程中,累加生成运算(ago)是基本手段,其生成函数是灰色建模、预测的基础。
来自所收集的描述过去、现在状况的数据,是构造系统数学模型的依据。
在贫信息情况下,用概率统计方法寻求其统计规律,或用模糊统计方法寻求其隶属规律是困难的,但对于离散过程,在一定程度上相对强化确定性(规律性)和弱化不确定性是可能的,其途径就是通过累加生成运算得到生成时间序列x。
基于模式搜索法改进的单桩极限承载力灰色预测模型摘要:根据拉格朗日中值定理建立了变权背景值构造形式,背景值权值采用具有全局寻优能力的模式搜索法求解,工程实例应用结果显示基于模式搜索法改进的单桩极限承载力灰色预测模型提高了预测精度,具有更好的工程应用价值。
abstract: according to the lagrange’s mean value theorem, the paper established variable weight background value structure form. the background value right value uses pattern search method of global optimization ability to solve, engineering example application results show that the improved single pile limit bearing capacity grey forecasting model based on pattern search method improves the accuracy of the predictions, and has better applied value in engineering.关键词:极限承载力;灰色预测模型key words: ultimate bearing capacity;grey forecasting model中图分类号:tu71 文献标识码:a 文章编号:1006-4311(2012)32-0094-020 引言目前应用最广泛的是单桩极限承载力非等步长灰色预测模型,但是该模型是以紧邻均值为背景值进行参数估计的,这就造成了该模型的白化方程和灰微分方程达不到统一,因此根据拉格朗日中值定理提出了变权背景值构造形式,并采用具有全局寻优能力的模式搜索法求解背景值构造中的权值,建立基于模式搜索法改进的单桩极限承载力灰色预测模型。
灰色系统理论的研究摘要:科学地预测尚未发生的事物是预测的根本目的和任务。
无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。
在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。
本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。
通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。
另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。
关键词:灰色预测模型;灰关联度;灰色系统理论灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。
黑箱模型:信息缺乏,暗,混沌。
白箱模型:信息完全,明朗,纯净。
灰箱模型:信息不完全,若明若暗,多种成分。
1.1、研究背景1.1.1、国内研究现状灰色系统理论在我国提出至今已有二十几年的历史,它的应用引起了人们的广泛兴趣,不论是我国粮食发展决策中总产量预测模型,还是对湖北2000年宏观经济的发展趋势的量化分析,抑或是河南人民胜利渠的最佳灌溉决策,还是武汉汉阳火车对火车装车吨位的预测等,无一不是灰色预测系统理论杰出的硕果。
1.1.2、国外研究现状灰色系统理论在国际上也产生了很大的影响,IBM公司要求将灰色系统软件加入其为全球服务的管理软件库。
目前英国、美国、德国、日本、澳大利亚、加拿大、奥地利、俄罗斯等国家、地区及国际组织有许多学者从事灰色系统的研究和应用。
国内外84所高校开设了灰色系统课程,数百名博士、硕士研究生运用灰色系统的思想方法开展学科研究,撰写学位论文。
国际、国内200多种学术期刊发表灰色系统论文,许多会议把灰色系统列为讨论专题,SCI、EI、ISTP、SA、MR、MA等纷纷检索我国灰色论著。
1.2、研究意义邓聚龙教授提出灰色系统有着重要的意义:(1) 是系统思维和系统思想在方法论上的具体体现;(2) 是科学方法论上的重大进展, 具有原创性的科学意义和深远的学术影响,是对系统科学的新贡献。
2、灰色系统及灰色预测的概念2.1、灰色系统理论发展概况2.1.1、灰色系统理论的提出著名学者邓聚龙教授于20世纪70年代末、80年代初提出。
2.1.2、灰色系统理论的研究对象灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
2.1.3、灰色系统理论的应用范围在工程技术、社会、经济、农业、生态、环境等各种系统中经常会遇到信息不完全的情况。
比如:农业方面,农田耕作面积往往因许多非农业的因素而改变,因此很难准确计算农田产量、产值,这是缺乏耕地面积信息;生物防治方面,害虫与天敌间的关系即使是明确的,但天敌与饵料、害虫与害虫间的许多关系却不明确,这是缺乏生物间的关联信息;一项土建工程,尽管材料、设备、施工计划、图纸是齐备的,可是还很难估计施工进度与质量,这是缺乏劳动力及技术水平的信息;一般社会经济系统,除了输出的时间数据列(比如产值、产量、总收入、总支出等)外,其输入数据列不明确或者缺乏,因而难以建立确定的完整的模型,这是缺乏系统信息;工程系统是客观实体,有明确的“内”、“外”关系(即系统内部与系统外部,或系统本体与系统环境),可以较清楚地明确输入与输出,因此可以较方便地分析输入对输出的影响,可是社会、经济系统是抽象的对象,没有明确的“内”、“外”关系,不是客观实体,因此就难以分析输入(投入)对输出(产出)的影响,这是缺乏“模型信息”(即用什么模型,用什么量进行观测控制等信息)。
信息不完全的情况归纳起来有:元素(参数)信息不完全;结构信息不完全;关系信息(特指“内”、“外”关系)不完全;运行的行为信息不完全。
一个商店可看作是一个系统,在人员、资金、损耗、销售信息完全明确的情况下,可算出该店的盈利大小、库存多少,可以判断商店的销售态势、资金的周转速度等,这样的系统是白色系统。
遥远的某个星球,也可以看作一个系统,虽然知道其存在,但体积多大,质量多少,距离地球多远,这些信息完全不知道,这样的系统是黑色系统。
人体是一个系统,人体的一些外部参数(如身高、体温、脉搏等)是已知的,而其他一些参数,如人体的穴位有多少,穴位的生物、化学、物理性能,生物的信息传递等尚未知道透彻,这样的系统是灰色系统。
显然,黑色、灰色、白色都是一种相对的概念。
世界上没有绝对的白色系统,因为任何系统总有未确知的部分,也没有绝对的黑色系统,因为既然一无所知,也就无所谓该系统的存在了。
2.1.4、三种不确定性系统研究方法的比较分析表12.2、灰色系统的特点灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
(1)用灰色数学来处理不确定量,使之量化。
在数学发展史上,最早研究的是确定型的微分方程,即在拉普拉斯决定论框架内的数学。
他认为一旦有了描写事物的微分方程及初值,就能确知事物任何时候的运动。
随后发展了概率论与数理统计,用随机变量和随机过程来研究事物的状态和运动。
模糊数学则研究没有清晰界限的事物,如儿童和少年之间没有确定的年龄界限加以截然划分等,它通过隶属函数来使模糊概念量化,因此能用模糊数学来描述如语言、不精确推理以及若干人文科学。
灰色系统理论则认为不确定量是灰数,用灰色数学来处理不确定量,同样能使不确定量予以量化。
1,2,3不确定量量化(用确定量的方法研究)1、概率论与数理统计;2、模糊数学;3、灰色数学(灰色系统理论)(2)充分利用已知信息寻求系统的运动规律。
研究灰色系统的关键是如何使灰色系统白化、模型化、优化。
灰色系统视不确定量为灰色量。
提出了灰色系统建模的具体数学方法,它能利用时间序列来确定微分方程的参数。
灰色预测不是把观测到的数据序列视为一个随机过程,而是看作随时间变化的灰色量或灰色过程,通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型并做出预报。
这样,对某些大系统和长期预测问题,就可以发挥作用。
(3)灰色系统理论能处理贫信息系统。
灰色预测模型只要求较短的观测资料即可,这和时间序列分析,多元分析等概率统计模型要求较长资料很不一样。
因此,对于某些只有少量观测数据的项目来说,灰色预测是一种有用的工具。
2.3、常见灰色系统模型GM(1,1)模型GM(1,N)模型GM(0,N)模型GM(2,1)模型Verhulst模型目前,最常用、研究最多的是GM(1,1)模型。
2.4、灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
(4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。
上述灰预测方法的共同特点是: a.允许少数据预测;b.允许对灰因果律事件进行预测,比如:◆ 灰因白果律事件 在粮食生产预测中,影响粮食生产的因子很多,多到无法枚举,故为灰因,然而粮食产量却是具体的,故为白果。
粮食预测即为灰因白果律事件预测。
◆ 白因灰果律事件 在开发项目前景预测时,开发项目的投入是具体的,为白因,而项目的效益暂时不很清楚,为灰果。
项目前景预测即为灰因白果律事件预测。
c.具有可检验性,包括:建模可行性的级比检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。
2.5、基本概念2.5.1、灰数的概念在灰色系统中,灰数(或灰色数)是指信息不完全的数,例如:“那人的身高约为170cm 、体重大致为60kg ”,这里的“(约为)170(cm )”、“60”都是灰数,分别记为170⊗、60⊗。
又如,“那女孩身高在157-160cm 之间”,则关于身高的灰数]160,157[)(∈⊗h 。
记⊗~为灰数⊗的白化默认数,简称白化数,则灰数⊗为白化数⊗~的全体。
灰数有离散灰数(⊗~属于离散集)和连续灰数(⊗~属于某一区间)。
灰数的运算符合集合运算规律。
2.5.2、灰色生成数列在灰色系统理论中,把随机变量看成灰数,即是在指定范围内变化的所有白色数的全体。
对灰数的处理主要是利用苏剧处理方法寻求数据间的内在规律,通过对已知数据列中的数据尽心处理而产生新的数据列,以此来研究寻找数据的规律性,这种方法称为数据的生成。
数据生成的常用方式有累加生成、累减生成和加权累加生成。
2.5.3、累加生成把数列各项(时刻)数据依次累加的过程称为累加生成过程。
由累加生成过程所得的数列称为累加生成数列。
设原始数列为))(,),2(),1(()0()0()0()0(n x x x x=,令,,,2,1,)()(1)0()1(n k i x k x ki ==∑=称所得到的新数列))(,),2(),1(()1()1()1()1(n x x x x=为数列)0(x 的1次累加生成数列。
类似地有1,,,2,1,)()(1)1()(≥==∑=-r n k i x k x ki r r ,称为)0(x 的r 次累加生成数列。
2.5.4、累减生成对于原始数据列依次做前后相邻的两个数据相减的运算过程称为累减生成过程(IAGO )。
如果原始数据列为))(,),2(),1(()1()1()1()1(n x x x x=,令,,,3,2),1()()()1()1()0(n k k x k x k x =--=称所得到的数列)0(x 为)1(x 的1次累减生成数列。
注:从这里的记号也可以看到,从原始数列)0(x ,得到新数列)1(x ,再通过累减生成可以还原出原始数列。