统计模式识别简介
- 格式:ppt
- 大小:386.01 KB
- 文档页数:37
统计模式识别统计分类方法
统计模式识别是一种常见的机器学习算法,用于对未知模式和统
计模式进行学习。
它可以使用模式的历史记录和观察结果来预测未来
模式的行为。
该技术也被称为统计分类,用于解决分类和分组问题,
其目的是根据现有的统计数据来评估一个特定的类别的可能性。
统计模式识别基于概率统计理论,可对数据进行分析并扩展到传
统模式识别范围之外,以解决复杂问题。
它可以用于分类多维数据,
识别新类别或模式,并帮助训练机器学习模型,使用有效的特征提取
和结构学习算法。
它提供一种新的方法,通过有效的表示和分类模型,来表示实体和相关的对象。
与其他分类算法相比,统计模式识别的有点是它'数据挖掘'的概念,在这种类型的模式识别中,模式数据是根据观察数据一直进行改
变的,没有预先定义模式及其功能,它根据具有可利用自学能力的方
法逐渐改善。
统计模式识别非常重要,因为它可以帮助我们找到自动化解决方
案来实现更多基于数据的智能分析和决策,从而增强分析模型的能力,例如,可以使用该技术识别股票市场及其他金融市场的模式变化,以
便于能够更高效地进行投资决定。
它也可以应用于诊断和分析少量样
本事件,进而对学习和决策进行调节和优化。
模式识别综述摘要:介绍了模式识别系统的组成及各组成部分包含的内容。
就统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等模式识别的基本方法进行简单介绍,并分析了其优缺点。
最后列举了模式识别在各领域的应用,针对其应用前景作了相应分析。
关键字:模式识别系统、统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别背景随着现代科学技术的发展,特别是计算机技术的发展,对事物认识的要求越来越高,根据实际需求,形成了一种模拟人的各种识别能力(主要是视觉和听觉)和认识方法的学科,这个就是模式识别,它是属于一种自动判别和分类的理论。
这一理论孕育于20世纪60年代,随着科学技术的发展,特别是20世纪70年代遥感技术的发展和地球资源卫星的发射,人们通过遥感从卫星取得的巨量信息,需要进行空前规模的处理、识别和应用,在此推动下,模式识别技术便得以迅速发展[1]。
发展到现在,应用领域已经非常广阔,包括文本分类、语音识别、视频识别、信息检索和数据挖掘等。
模式识别技术在生物医学、航空航天、工业生产、交通安全等许多领域发挥着重要的作用[2]。
基本概念什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称之为模式。
但模式所指的不是事物本身,而是我们从事物获取的信息。
因此模式往往表现为具有时间或空间分布的信息[3]。
人们在观察各种事物的时候,一般是从一些具体的个别事物或者很小一部分开始的,然后经过长期的积累,随着对观察到的事物或者现象的数量不断增加,就开始在人的大脑中形成一些概念,而这些概念是反映事物或者现象之间的不同或者相似之处,这些特征或者属性使人们对事物自然而然的进行分类。
从而窥豹一斑,对于一些事物或者现象,不需要了解全过程,只需要根据事物或者现象的一些特征就能对事物进行认识。
人脑的这种思维能力视为“模式”的概念。
模式识别就是识别出特定事物,然后得出这些事物的特征。
识别能力是人类和其他生物的一种基本属性,根据被识别的客体的性质可以将识别活动分为具体的客体与抽象的客体两类。
第六讲 统计模式识别(三)一、 正态分布情况下的贝叶斯分类1、 正态分布:设连续型随机变量X 具有概率密度∞<<-∞=--x ex p x ,21)(222)(σμσπ则称X 服从参数为μ,σ的正态分布或高斯分布,记为),(2σμN 。
其分布函数为dt ex F xt ⎰∞---=22)(21)(σμσπ()[]())()()(,)()(:222方差,均值或数学期望其中dx x p x x E dx x xp x E ⎰⎰∞∞-∞∞--=-===μμσμ正态分布曲线中,横轴与正态曲线之间的面积恒等于1;横轴区间(μ-σ,μ+σ)内的面积为68.268949%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。
对于n 维正态分布,其概率密度公式为:()()()()∑∑∑∑∑--∑⨯==⎥⎦⎤⎢⎣⎡---∑=的行列式为的逆阵,为维协方差矩阵,为维均值向量,维特征向量其中121211212),...,,(,,...,,:21exp ||21)(d d d d x x x x p Td Td Tdμμμπμx μx μx均值向量μ的分量μi 为:i i i i i dx x p x x E ⎰∞∞-==)()(μ协方差矩阵为:()()[]()()()()[]()()()()()()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=--=∑d d d d d dd d d d d d Tx x x x x x x x E x x x x E E μμμμμμμμμμμμ,...,......,...,,...,......111111111111μx μx()()[]()()[]()()[]()()[]⎪⎪⎭⎫ ⎝⎛≠=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=是协方差,非对角线是方差对角线j i j i x x E x x E x x E x x E ij ij dd d d d d d d d d d d d 22222212121221111111111,,..............................σσσσσσσσμμμμμμμμ 多维正态分布具有以下性质:μ与∑对分布起决定作用, μ由d 分量组成,∑由d(d+1)/2个元素组成,所以多维正态分布由d+d(d+1)/2个参数组成。
统计模式识别的原理与⽅法1统计模式识别的原理与⽅法简介 1.1 模式识别 什么是模式和模式识别?⼴义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进⾏观测所得到的具有时间和空间分布的信息;把模式所属的类别或同⼀类中模式的总体称为模式类(或简称为类)]。
⽽“模式识别”则是在某些⼀定量度或观测基础上把待识模式划分到各⾃的模式类中去。
模式识别的研究主要集中在两⽅⾯,即研究⽣物体(包括⼈)是如何感知对象的,以及在给定的任务下,如何⽤计算机实现模式识别的理论和⽅法。
前者是⽣理学家、⼼理学家、⽣物学家、神经⽣理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学⼯作者近⼏⼗年来的努⼒,已经取得了系统的研究成果。
⼀个计算机模式识别系统基本上是由三个相互关联⽽⼜有明显区别的过程组成的,即数据⽣成、模式分析和模式分类。
数据⽣成是将输⼊模式的原始信息转换为向量,成为计算机易于处理的形式。
模式分析是对数据进⾏加⼯,包括特征选择、特征提取、数据维数压缩和决定可能存在的类别等。
模式分类则是利⽤模式分析所获得的信息,对计算机进⾏训练,从⽽制定判别标准,以期对待识模式进⾏分类。
有两种基本的模式识别⽅法,即统计模式识别⽅法和结构(句法)模式识别⽅法。
统计模式识别是对模式的统计分类⽅法,即结合统计概率论的贝叶斯决策系统进⾏模式识别的技术,⼜称为决策理论识别⽅法。
利⽤模式与⼦模式分层结构的树状信息所完成的模式识别⼯作,就是结构模式识别或句法模式识别。
模式识别已经在天⽓预报、卫星航空图⽚解释、⼯业产品检测、字符识别、语⾳识别、指纹识别、医学图像分析等许多⽅⾯得到了成功的应⽤。
所有这些应⽤都是和问题的性质密不可分的,⾄今还没有发展成统⼀的有效的可应⽤于所有的模式识别的理论。
1.2 统计模式识别 统计模式识别的基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。