永磁同步风力发电系统实验指导书
- 格式:docx
- 大小:18.96 KB
- 文档页数:3
永磁同步风力发电系统控制研究随着气候变化和环境保护意识的日益增强,可再生能源的研究与应用变得越来越重要。
风能作为一种广泛分布且可再生的能源资源,被广泛应用于发电领域。
在风能发电系统中,永磁同步发电机系统因其高效率、高性能和简洁结构而备受关注。
为实现对永磁同步风力发电系统的控制,研究控制策略和算法变得至关重要。
永磁同步风力发电系统的控制是确保发电效率和系统稳定运行的关键。
因此,研究人员们对于系统的控制策略进行了广泛研究,以提高发电系统的性能和可靠性。
首先,针对永磁同步发电机系统的控制,矢量控制是最常用和有效的控制策略之一。
矢量控制通过监测永磁发电机的电流和转速,控制它们的大小和方向,以确保系统的稳定性和高效性。
矢量控制策略采用PI控制器来实现闭环控制,根据当前状态进行动态调整,以使输出电压和转速保持在一个可接受的范围内。
其次,为了提高永磁同步发电机系统的效率和性能,一些高级控制算法被引入。
例如,模糊控制策略能够根据设定的规则和输入参数来自适应地调整系统的控制策略。
这种方法可以提高系统的鲁棒性和适应性,使其能够在不同的工况下具有良好的性能。
另外,基于神经网络的控制算法也被广泛应用于永磁同步风力发电系统的控制中。
神经网络是一种模拟人类神经系统的计算模型,其具有自学习和适应性的能力。
通过训练和优化神经网络模型,可以根据风能发电系统的输入和输出数据,实现系统的自动控制和优化。
神经网络控制具有较高的灵活性和适应性,可以处理复杂的非线性系统。
此外,针对永磁同步风力发电系统控制中的低频振荡问题,一些控制策略也被提出。
例如,采用模型参考自适应控制(MRAC)策略可以有效地抑制低频振荡,提高系统的稳定性和准确性。
MRAC策略通过调整系统的控制参数,根据系统的数学模型来实现对系统的控制。
综上所述,永磁同步风力发电系统控制的研究是提高发电效率和系统性能的关键。
矢量控制、模糊控制、神经网络控制和MRAC策略等多种控制策略和算法被应用于系统的控制中,以提高系统的鲁棒性和适应性。
风力发电实验风能是一种清洁的可再生能源,蕴量巨大。
全球的风能约为2.7×10 8万千瓦,其中可利用的风能为2×10 6万千瓦,比地球上可开发利用的水能总量要大10倍。
随着全球经济的发展,对能源的需求日益增加,对环境的保护更加重视,风力发电越来越受到世界各国的青睐。
大力发展风电等新能源是我国的重大战略决策,也是我国经济社会可持续发展的客观要求。
发展风电不但具有巨大的经济效益,而且与自然环境和谐共生,不对环境产生有害影响。
近几年,随着我国的风电设备制造技术取得突破,风力发电取得飞速发展。
据2011年4月《国家电网公司促进风电发展白皮书》。
截至2010年底,全国风电并网容量2956万千瓦,“十一五”期间年均增速接近100%。
2010年,全国风电机组平均利用小时数2097小时。
蒙东、蒙西、吉林、黑龙江风电发电量占全社会用电量的比例分别达到21.1%、8.7%、5.6%、4.6%,风电利用已达到较高水平。
预计到2015年,我国风电规模将超过9000万千瓦,2020年将达到1.5亿千瓦以上。
与其它能源相比,风力,风向随时都在变动中。
为适应这种变动,最大限度地利用风能,近年来在风叶翼型设计,风力发电机的选型研制,风力发电机组的控制方式,并网发电的安全性等方面,都进行了大量的研究,取得重大进展,为风力发电的飞速发展奠定了基础。
风电的飞速发展提供大量的就业与个人发展机会,普及风电知识,在高等院校培养相关专门人才已成当务之急。
实验内容实验1 风速,螺旋桨转速(也是发电机转速),发电机感应电动势之间关系测量 实验2 测量扭曲型可变浆距3叶螺旋桨风轮叶尖速比λ与功率系数C P 关系 实验3 切入风速到额定风速区间功率调节实验实验4 额定风速到切出风速区间功率调节实验 - 变浆距调节 实验5 风帆型3叶螺旋桨风轮叶尖速比λ与功率系数C P 关系的测量 实验6 平板型4叶螺旋桨风轮叶尖速比λ与功率系数C P 关系的测量实验原理1、风能与风速测量风是风力发电的源动力,风况资料是风力发电场设计的第一要素。
四川大学电气信息学院课程题目:风力发电系统实验专业班级:电力108班姓名:郭焱林孟庆伦王飞鹏杜越梁政学号:1143031056 1143031208 11430312281143031227 1143031247第二章风力发电系统实验§ 2.1 风力发电实验2.1.1 风力发电机调速一、实验类别/学时验证/2 学时二、实验目的1.掌握永磁发电机、永磁变频电机、变频调速器工作原理,以及模拟风力发电过程中,它们之间的机械、电磁关系。
2. 掌握变频器使用方法。
三、实验原理同步发电机是目前使用最多的一种发电机。
同步发电机的定子与异步发电机相同,由定子铁心和三相定子绕组组成;转子由转子铁心、转子绕组(即励磁绕组)、集电环和转子轴等组成,转子上的励磁绕组经集电环、电刷与直流电源相连,通以直流励磁电流来建立磁场。
为了便于起动,磁极上一般还装有笼型起动绕组。
同步发电机结构如图 2-1 所示。
图2-1 同步发电机结构图2-2 同步发电机转子结构a) 隐极式b) 凸极式同步发电机的转子有凸极式和隐极式两种,其结构如图 2-2 所示。
隐极式的同步发电机转子呈圆柱体状,其定、转子之间的气隙均匀,励磁绕组为分布绕组,分布在转子表面的槽内。
凸极式转子具有明显的磁极,绕在磁极上的励磁绕组为集中绕组,定、转子间的气隙不均匀。
凸极式同步发电机结构简单、制造方便,一般用于低速发电场合;隐极式的同步发电机结构均匀对称,转子机械强度高,可用于高速发电。
大型风力发电机组一般采用隐极式同步发电机。
同步发电机的励磁系统一般分为两类:一类用直流发电机作为励磁电源的直流励磁系统,另一类用整流装置将交流变成直流后供给励磁的整流励磁系统。
发电机容量大时,一般采用整流励磁系统。
同步发电机在风力机的拖动下,转子(含磁极)以转速 n 旋转,旋转的转子磁场切割定子上的三相对称绕组,在定子绕组中产生频率为 f1 的三相对称的感应电动势和电流输出,从而将机械能转化为电能。
风力发电实验风能是一种清洁的可再生能源,蕴量巨大。
全球的风能约为2.7×10 8万千瓦,其中可利用的风能为2×10 6万千瓦,比地球上可开发利用的水能总量要大10倍。
随着全球经济的发展,对能源的需求日益增加,对环境的保护更加重视,风力发电越来越受到世界各国的青睐。
大力发展风电等新能源是我国的重大战略决策,也是我国经济社会可持续发展的客观要求。
发展风电不但具有巨大的经济效益,而且与自然环境和谐共生,不对环境产生有害影响。
近几年,随着我国的风电设备制造技术取得突破,风力发电取得飞速发展。
据2011年4月《国家电网公司促进风电发展白皮书》。
截至2010年底,全国风电并网容量2956万千瓦,“十一五”期间年均增速接近100%。
2010年,全国风电机组平均利用小时数2097小时。
蒙东、蒙西、吉林、黑龙江风电发电量占全社会用电量的比例分别达到21.1%、8.7%、5.6%、4.6%,风电利用已达到较高水平。
预计到2015年,我国风电规模将超过9000万千瓦,2020年将达到1.5亿千瓦以上。
与其它能源相比,风力,风向随时都在变动中。
为适应这种变动,最大限度地利用风能,近年来在风叶翼型设计,风力发电机的选型研制,风力发电机组的控制方式,并网发电的安全性等方面,都进行了大量的研究,取得重大进展,为风力发电的飞速发展奠定了基础。
风电的飞速发展提供大量的就业与个人发展机会,普及风电知识,在高等院校培养相关专门人才已成当务之急。
实验内容实验1 风速,螺旋桨转速(也是发电机转速),发电机感应电动势之间关系测量 实验2 测量扭曲型可变浆距3叶螺旋桨风轮叶尖速比λ与功率系数C P 关系 实验3 切入风速到额定风速区间功率调节实验实验4 额定风速到切出风速区间功率调节实验 - 变浆距调节 实验5 风帆型3叶螺旋桨风轮叶尖速比λ与功率系数C P 关系的测量 实验6 平板型4叶螺旋桨风轮叶尖速比λ与功率系数C P 关系的测量实验原理1、风能与风速测量风是风力发电的源动力,风况资料是风力发电场设计的第一要素。
《基于永磁同步电机的直驱型风力发电系统控制策略的研究》篇一一、引言随着环境保护意识的提高和可再生能源的快速发展,风力发电已成为一种重要的清洁能源。
在风力发电系统中,直驱型风力发电系统因结构简单、维护方便等优点受到广泛关注。
而基于永磁同步电机的直驱型风力发电系统,因其高效率、高可靠性及低成本的特性,成为风力发电领域的研究热点。
本文将深入研究基于永磁同步电机的直驱型风力发电系统的控制策略,以期提高系统的性能和稳定性。
二、系统概述基于永磁同步电机的直驱型风力发电系统主要由风轮机、永磁同步发电机(PMSM)、整流器、逆变器及控制系统等部分组成。
其中,永磁同步电机作为发电机的核心部分,其性能直接影响到整个系统的运行效率。
直驱式结构省略了齿轮箱等传统机构,使得系统结构更加简单,降低了维护成本。
三、控制策略研究(一)最大功率点跟踪(MPPT)控制策略最大功率点跟踪是风力发电系统中的重要控制策略,其目的是使风力发电机在风速变化时,始终保持在最佳工作点,以获取最大功率。
针对永磁同步电机直驱型风力发电系统,MPPT控制策略主要通过调整电机的转速和输出电压,实现最大功率的输出。
(二)矢量控制策略矢量控制是一种先进的电机控制方法,它通过对电机电流的矢量进行控制,实现对电机转矩的精确控制。
在直驱型风力发电系统中,矢量控制策略可以根据风速的变化,实时调整电机的输出转矩和转速,使系统始终保持最佳工作状态。
(三)无传感器控制策略无传感器控制策略是近年来研究的热点,它通过检测电机的电压和电流信号,估算电机的转速和位置信息,从而实现对电机的精确控制。
在直驱型风力发电系统中,无传感器控制策略可以省去机械传感器,降低系统的复杂性和成本。
四、仿真与实验分析为了验证所提控制策略的有效性,本文进行了仿真和实验分析。
首先,利用仿真软件搭建了基于永磁同步电机的直驱型风力发电系统模型,并对各种控制策略进行了仿真分析。
其次,通过实验对仿真结果进行了验证。
指导老师:联系方式:E_mail:风力发电技术实验指导书概述本文详述了介绍了风力发电技术的基本原理与实验内容。
包括湍流风速建模、风速估计、最优转矩控制、叶尖速比控制、变桨控制、限功率控制等。
基于风力机模拟器硬件实验平台,在LabVIEW上位机软件编写控制算法,并将其应用到实验平台。
小组成员姓名: 学号:姓名: 学号:姓名: 学号:姓名: 学号:姓名: 学号:日期:2016年9月23日预备知识------实验平台基本结构风力机模拟实验平台结构图上图所示,硬件主要包括:1)电机对拖机组电机对拖机组完成风力机传动链的动态模拟,其中不同类型风力机可选不同对拖形式,包括齿轮箱可选,高速/中速/低速可选,容量(5kW~500kW)可选。
其中原动机的选择交/直流电机可选(推荐使用感应电机),发电机可选择永磁或双馈电机。
2)原动机驱动器及整流/逆变变流设备本模拟试验系统统一采用技术成熟、可靠稳定的VACON工业变频器,功能上,该实验平台中的变流设备接受上层PLC控制器的运行指令(转速/转矩/电压)完成发电机与电动机的伺服控制(闭环转矩/转速控制)。
3)主控PLC主控PLC作为整个系统的主控器进行实时的状态监测与运行控制,本模拟实验系统采用BECKHOFF高性能工业PC。
功能上,主控PLC完成风力机模型及控制算法的嵌入与实时模拟,计算实时指令的下达与运行状态信息的接收,同时对各个节点进行状态监测与保护。
4)上位机系统完成PC调试功能,包含基于文本的数据保存功能与系统调试。
以文本形式保存的所有运行数据可以通过MATLAB进行数据后处理,模拟实验平台提供对应的数据后处理函数库。
另外,可通过LabVIEW,TwinCAT或高级语言进行人机界面的编程实现。
实验一组合风速模型的生成1.实验目的(#一级标题,宋体小三)在进行风力发电实验室模拟时,风速模拟的逼真性直接影响整个发电系统的性能研究与测试,在研究并网风电场运行、规划及动态特性等有关问题时就需要建立与之相适应的风速模型,从而能够对风速的变化进行模拟,研究在一定风速条件下系统的性能。
风⼒发电教学实验指导书⼤型风⼒发电缩⽐模型实验指导⼿册⽬录实验⼀:认识实验实验⼆:风速模拟及风速与输出功率实验实验三:⼤型风⼒发电机缩⽐模型⾃动运⾏演⽰实验实验⼀:认识实验实验⽬的:通过认识⼤型风⼒发电缩⽐模型,了解风⼒发电机组的各部分组成及基本功能。
实验内容:1、实验台结构本实验台由操作台、电⽓控制柜、执⾏平台、配电柜四部分组成。
操作台为⼈机交互平台,其中包括操作按钮以及显⽰器⾯板。
电⽓控制柜为电⽓元件安放平台,其中电源部分和控制部分。
执⾏平台由直流拖动电机和交流双馈发电机以及相应的机械结构组成。
实验⼀:风速模拟实验模拟风源电源以及调节系统:系统配备的⼀个模拟风源,且其输出的风速⼤⼩可以⽆极调节,主要⽤于⼤型风⼒发电机⾃动运⾏状态下模拟室外风源,来进⾏跟风偏航、变浆等试验。
其在操作台上的控制如图:按下“风机电源”打开模拟风源,调节风机转速电位器可对其输出风速进⾏调节,推动⽀架结构可对风向进⾏调整(注意向⼀个⽅向旋转最多2圈,防⽌绕线)电⽓柜硬件说明电⽓柜为本设备的主要控制机构,其包括了断路器、PLC、变流器、驱动器、接触器、继电器、开关电源、电流互感器、电压互感器等等。
电⽓柜内元器件安装位置图断路器、空⽓开关断路器为设备的供电电源开关器件,其位置如下:变流器变流器为VACON 变流器,其为发电机运动的直接控制单元,其由整流器INU 和逆变器AFE 组成。
变流器的主要作⽤与组成:变流器是使电源系统的电压、频率、相数和其他电量或特性发⽣变化的电器设备。
包括整流器(交流变直流)、逆变器(直流变交流)。
变流器除主电路(分别为整流电路、逆变电路、交流变换电路和直流变换电路)外,还需有控制功率开关元件通断的触发电路和实现对电能的调节、控制的控制电路。
变流器的触发电路包括脉冲发⽣器和脉冲输出器两部分。
前者根据控制信号的要求产⽣⼀定频率、⼀定宽度或⼀定相位的脉冲;后者将此脉冲的电平放⼤为适合变流器中功率开关元件需要的驱动信号。
永磁风力发电机书籍
以下是一些关于永磁风力发电机的书籍推荐:
1. 《永磁风力发电原理与技术》- 杨玉涛
该书全面介绍了永磁风力发电机的原理和技术,包括永磁材料、电机结构、电磁理论等内容。
2. 《永磁风力发电机》- 崔海滨
该书详细介绍了永磁风力发电机的设计、制造和测试方法,是一本理论与实践相结合的实用指南。
3. 《永磁同步发电机设计与应用》- 沈有鹏
该书重点介绍了永磁同步发电机的原理、设计和应用,包括双馈风力发电机和直驱风力发电机等内容。
4. 《永磁发电机技术与应用》- 赖建民
该书综合讲解了永磁电机的原理、设计和应用,包括永磁同步发电机的磁路设计、控制系统设计等方面。
5. 《风力发电技术与应用》- 梁觉
该书介绍了风力发电的基本原理、发展现状和关键技术,其中包括永磁风力发电机的设计和应用。
希望以上书籍能够对您有所帮助!。
风力发电系统实验一、实验目的1.学习风力发电系统的原理及其组成2. 通过实训学习风力发电机输出特性3. 学习风力发电系统中离网逆变器控制原理二、实验器材风力发电排故系统V-Wind-SX100、万用表、示波器三、实验内容与步骤1. 了解整个风力发电系统的组成和各个部分的主要功能,并完成各个部分电路的接线。
2. 风力发电机输出特性测试:(1)接通系统电源和蓄电池开关,给风力控制器供电。
(2)接通变频器开关,给风源电机供电。
(3)将变频器的频率设置在20Hz,启动轴流风机运行,观察电流表和电压表的读数并记录。
(4)将变频器的频率增加5Hz,观察电流表和电压表的读数并记录。
(5)重复(4)的过程,直至变频器的频率为50Hz为止。
(6)在图1(a)所示坐标中绘制风力发电机的功率曲线。
(7)控制侧风偏航控制系统的尾舵,重复(1)至(6),在图1(b)中重新画出风力发电机的功率曲线。
(a)不调节尾舵(b)调节尾舵后图1 风力发电机的功率输出曲线3. 风力发电系统中离网逆变器测试(1)逆变器启动和空载测试1)连接好实验线路,打开市电输入,风源输入,蓄电池输入,风力输入,逆变器输入。
2)观察逆变器输入直流电压、直流电流和逆变器输出交流电压,记录在表1中,并计算逆变器空载损耗。
3)用示波器检测交流电压表两端的电压波形。
表1 逆变器空载输入输出参数记录表(2)逆变器带载运行与测试1. 交流感性负载1)启动逆变器后,接通交流风扇。
2)交流风扇正常运转后,记录逆变器输入直流电压、直流电流和逆变器输出交流电压、交流电流于表2中,并计算逆变器的转换效率。
3)用示波器检测交流电压表两端的电压波形。
表2 逆变器带交流感性负载输入输出参数记录表2. 交流阻性负载1)启动逆变器后,接通交流LED。
2)交流LED点亮后,记录逆变器输入直流电压、直流电流和逆变器输出交流电压、交流电流于表3中,并计算逆变器的转换效率。
3)用示波器检测交流电压表两端的电压波形。
实验一永磁同步风力发电系统接线实验一、实验目的1.掌握永磁同步风力发电系统的基本结构及组成;2.掌握永磁同步风力发电实验系统各部分间的接线。
二、实验原理1.永磁同步风力发电系统的结构及组成永磁步风力发电系统主要由模拟风力发电机、双向变流器、电网以及电量监视仪表等部分组成。
系统组成及控制原理框图如图1-1所示。
机侧变流器网侧变流器图1-1永磁同步风力发电系统原理框图2.模拟风力发电机模拟风力发电机即永磁直驱风力发电机组,包括风力机及永磁同步发电机、和增量编码器等组成,其中风力机由三相异步变频调速电动机组成,其由单独地变频控制转动,来模拟风力机转动,如图1-2所示。
另外,图1-3中的永磁直驱风力发电模拟系统控制柜里面包含三相变频器,是控制三相异步变频调速电机转动,模拟风机带动永磁同步电机转动发电,风力机的定子接线端接到该控制柜。
图1-4中的直驱永磁风力发电机组变频柜里面包含机侧变流器和网侧变流器,是对永磁同步发电机发出的电进行PWM整流和逆变,增量编码器的A、A_、B、B_、Z、Z_信号输出端,以及永磁同步电机的定子输出端都要接到该控制柜。
直驱永磁风力发电机组变频柜的输出端接到电网上,如图1-2所示。
增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增增图1-2 永磁直驱发电机组结构图图1-3 永磁直驱风力发电模拟系统控制柜机侧控制板网侧控制板增量式编码器输入接口图1-4 永磁直驱风力发电机组变频柜图1-5 电网接入端口三、 实验内容及步骤1. 实验准备实验前请仔细阅读系统的安全操作说明及系统相关的使用说明书,识别并准备完成实验开始前所需的器件。
2. 实验步骤1) 将机组中三相异步变频调速电动机的定子输入三相线接到永磁直驱风力发电模拟系统控制柜的U ,V ,W 端子上,注意变频器输出相序和风力机的定子输出相序一致。
2) 将机组中增量式编码器输出端口的A 、A _、B 、B _、Z 、Z _信号输出端口接到永磁直驱风力发电机组变频柜的机侧控制板上对应的增量式编码器输入接口。
新能源风能发电原理实验系统实验指导书1012-1014沈阳职业技术学院电气工程学院2015年11月目录一、设备操作注意事项 (1)二、永磁同步风力机操作流程1.就地手动方式 (2)2.远控试验方式 (3)3.远控运行方式 (4)三、实验指导书 (6)1.MW级永磁同步风力发电机特性与离线仿真 (6)2.永磁同步发电机空载特性实验 (10)3.风力发电机正常启机、停机与并网 (12)4.风力发电机各类故障、安全链保护与紧急停机 (14)5.风力发电机恒速区间、变速恒频区间、恒功率区间运行 (16)6.风力发电机有功、无功解耦控制与最大功率跟踪试验 (19)7.风力发电机电参数测量与电能质量分析 (24)8系统整机调试与运行 (26)一、实验室设备操作注意事项1.实验前需检查确保控制柜门处于关闭锁紧状态,实验中严禁打开柜门;2.实验前确保三相五线电源正确,三相电压平衡、无缺相;3.每次实验前需运行监控软件;4.模拟风力机启动后,“驱动器准备”指示灯亮,如散热风机没有工作,应立即停止风力机,或按下“惯性停车”按钮,禁止散热风机没有工作的情况下继续后续操作步骤,否则会损坏风力机模拟器!5.发电机组开始启动前,应提醒机组周围人员注意,并保持一定距离;6.转速调节过程中,必须由同组人员观察同步发电机电压变化,当电压超过AC400V,禁止继续增加转速,否则电压过高会导致全功率变流器损坏!7.每次实验结束后,需检查实验设备电源是否关闭!二、永磁同步风力机操作流程(一)就地手动方式1.合上风力机模拟器柜、全功率变流器柜电源开关(开关位置在水平位置为“断开”,顺时钟旋转90度到竖直位置开关合上,通过系统电压表可以查看电源三相线电压,再逆时针转到水平位置断开电源开关),松开系统控制柜、风力机模拟柜的“紧停开关”;2.启动监控主机,运行监控主机上的系统监控软件;3.将风力机模拟柜的功能选择开关从左至右的位置为:●惯性停机按钮松开;●“停机”、“就地”、“试验”、“开”(使能开关);●试验给定逆时针旋到零位;4.风力机模拟柜的“风力机停机”、“驱动器正常”、“零速”指示灯亮,;5.将风力机模拟柜的启动/停机按钮旋至“启动”位;6.风力机模拟柜的“驱动器准备”指示灯亮,说明风力机驱动器主电源回路接通,原动机散热风机开始工作;7.顺时钟平稳调节风力机模拟柜的“试验给定”电位器,“零速指示灯”灭,机组开始转动;8.改变试验给定,可以改变机组转速和永磁同步发电机端电压,风力机模拟柜电枢电压表、电枢电流表、励磁电压表实时反应风力机模拟器的运行工况,全功率变流器柜上具有永磁同步发电机电压表,通过切换开关可以观察发电机三相线电压;特别提醒:转速调节过程中,必须由同组人员观察同步发电机电压变化,当电压超过AC400V,禁止继续增加转速,否则电压过高会导致全功率变流器损坏!9.停机操作:将风力机模拟柜的试验给定逆时针调至零,启动/停机按钮旋至“停止”位,机组停机。
目的:为了保证**电厂二期工程(2×900MW)#6标段永磁机设备安装的施工质量,检验永磁机安装质量和制造质量符合有关规程规定,保证永磁机安全投运。
适用范围:适用于**电厂二期工程(2×900MW)#6标段永磁机交接试验。
编制依据:SIEMENS 施工图纸及安装手册《电力建设安全工作规程第1部分:火力发电厂》(DL5009.1-2002)《电气装置安装工程电气设备交接试验标准》(GB50150—91)试验项目:测量绕组的绝缘电阻测量绕组的直流电阻绕组的交流耐压试验试验人员:试验负责人:1名。
试验员:2名。
试验条件:制造厂技术文件和出厂试验报告齐全。
设备安装工作结束,设备接地良好可靠。
现场道路通畅。
试验方案:见附图一。
试验方法:测量定子绕组的直流电阻:试验接线:试验仪器:速测欧姆计TG3960-7,温度计。
将被测绕组接入仪器,检查试验接线正确。
按测试仪器的操作使用规程进行操作。
记录环境温度和绕组电阻的测量值。
重复以上步骤,依次测量其余绕组的值。
记录表格:温度:数据分析:换算到同温度下,与出厂值比较,相互误差不大于2%。
安全注意事项:测试导线应有足够的截面。
更换试验接线时,一定要先断开试验电源。
测量定子绕组的绝缘电阻:试验接线:将定子绕组头尾短接,接入兆欧表。
试验仪器:500V兆欧表。
试验步骤:a.将定子三相绕组头尾短接后,接地放电,时间不小于1分钟。
b.测量定子绕组对外壳的绝缘电阻,记录1分钟的电阻值。
c.同时记录测试温度。
d.测量完毕,将定子绕组接地放电,时间不小于1分钟。
e.记录表格:数据分析:不应低于0.5MΩ。
安全注意事项:a.接地线必须是截面不小于4mm2的多股软铜线,接地必须良好可靠。
b.试验前,被试设备必须接地放电。
c.用兆欧表测定绝缘电阻时,被试物要确实与电源断开,试验中要防止与人体接触。
d.试验后被试物必须要放电。
定子绕组的交流耐压试验:试验仪器:试验变,YSQ-3160,60kV ,3kV A 。
直驱永磁同步风力发电实验系统的构建与实验发布时间:2022-09-01T07:17:30.569Z 来源:《科学与技术》2022年4月8期(下)作者:杨光普[导读] 风力发电对于能源产业来讲给予有力的支持,然而在风力发电中,电机的运行非常重要。
杨光普中车永济电机有限公司山西永济 044502摘要:风力发电对于能源产业来讲给予有力的支持,然而在风力发电中,电机的运行非常重要。
想要确保风力发电能够正常工作,那么发电机就是重中之重。
当风力发电机在运行时,轴承出现温度升高的情况,那么会影响到轴承正常工作,同时也会影响到风力发电机组的正常运行。
在无法正常工作的状态下,那么会导致风能利用率不断的降低,同时也会引起停机,会带来很大的利益损失。
就此本文针对直驱永磁同步风力发电实验系统的构建与实验展开分析,力求为风力发电事业提供有力帮助。
关键词:直驱永磁同步风力发电;实验室;故障引言:目前全球都面临着资源紧缺的问题,如何将能源再生、充分的利用,是各个国家都非常重视的事情。
风能分布非常广泛,并且储存量无限,没有污染,这相当于新能源。
风能的充分利用,能够促进中国的发展。
到2021年时,中国所建立的风电组网已经达到了163.67GW,在不久的将来会建立更多的风力发电机组。
目前来看,在国内风力发电机组的使用率比较高,并且也分为多种型号。
但是随着使用率越来越高,所面临的问题也会越来越多。
例如风力发电机最重要的零部件轴承经常会出现故障,所以会增加维修费用,降低了风能的利用率。
所以目前急需对直驱永磁同步电力发电实验系统进行构建,通过不断的实验来完善直驱永磁同步风力发电的功能。
一、直驱永磁同步风力发电实验系统的构建专业技术人员进行此项目研究的主要目的就是能够有效的提高轴承和电机的装配率,改善传统方法在生产轴承时的问题和弊端,风力发电机安装轴承技术有利于提高生产效率减少资源浪费。
为了能够更好的实现该目标,达到预期的制造目的,智能化技术方案主要进行了以下改革:首先,智能化制造电机装配轴承压装装置的主要构造包括两部分,设备的底座和和顶部装置,设备的顶部装置主要是依靠固定材料来有效的将顶部装置机型固定和连接,主要的固定材料有连接块,该活动块具有较好的灵活性在进行装置内部连接时,可以将该装置从上到下从内到外进行全面连接,很好的达到了固定效果。
永磁同步风力发电系统实验指导书
一、实验目的
1. 学习永磁同步风力发电系统的原理及其组成
2. 学习永磁同步风力发电系统并网过程及并网连续运行过程
3. 了解永磁同步风力发电系统MPPT控制方法与过程
二、实验器材
永磁同步风力发电系统V-Wind-YC、功率分析仪
三、实验内容与步骤
1. 了解整个永磁同步发电系统的组成和各个部分的主要功能(包括异步原动机、永磁同步电机、变频器、双向变流器等)。
2. 掌握永磁同步风力发电系统的并网过程和脱网过程。
(1)系统开机前准备
1)检查供电状态,2)接通控制电源,3)检查通信。
(2)启动网测变流器
在上位机主界面的“网测通讯”区域,点击“启动网测”按钮。
(3)启动风机
在上位机主界面的“变频器通讯”区域,在“给定转速”框中输入转速值,然后点击“启动风机”按钮。
(4)并网运行
在上位机主界面的“机测通讯”区域,点击“并网”按钮,并设置定子有功和定子无功。
(5)脱网
将给定定子有功和无功均设为0,并网输出功率逐渐下降,然后点击“脱网”按钮,脱网完成。
(6)停机
脱网完成后,将给定转速设为0,当风机逐渐停止后,点击“停止风机”按钮,然后点击“网测通讯”区域的“停止网测”按钮,最后关闭主电路旋钮。
3. 掌握永磁同步风力发电系统的自由并网试验。
(1)并网运行
将风机转速设为300r/min,电机转速稳定后,点击“并网”按钮。
(2)低速并网运行
电机转速为300r/min时,手动设定机侧有功功率500W至2000W,记录机侧相电流有效值、网测相电压有效值、网测相电流有效值、机侧有功和网测有功,填入表1中。
(3)额定速并网运行
电机转速设为1000r/min,手动设定机侧有功功率1000W至4000W,记录机侧相电流有效值、网测相电压有效值、网测相电流有效值、机侧有功和网测有功,填入表2中。
(4)离网
离网时,先将机侧给定有功设为0,等待实际功率降为零后,点击“离网”按钮使机侧脱网。
4. 永磁同步风力发电机最大功率跟踪实验
(1)MPPT运行
手动将给定转速设为300r/min,在电机稳定后,进行转子励磁,励磁完成后点击“并网”按钮。
成功并网后点击“MPPT”按钮,“MPPT”按钮变绿,此时控制系统按风力机模拟环境运行发电,原动机根据设定的模拟风场特性运行,变流器进行MPPT最大功率跟踪运行。
(2)低速风况模拟
当风速小于12m/s,则风力场最大功率点在运行转速范围之内。
此时在跟踪算法控制下,电机转速调整至最大功率点,输出功率为风机在此风速下能输出的最大功率。
将基本风设为6m/s,8m/s,10m/s,记录此时电机转速和实时机侧有功功率,填入表3中。
(3)额定转速风况模拟
当风速大于12m/s小于14m/s时,则风力场最大功率点高于最大运行转速1000r/min,此时发电机只能运行在1000r/min,但因风场在此运行点其最大输出转矩小于电机额定转矩,最大输出功率小于3000W,因此电机采用恒转速运行模式。
将基本风设为12m/s,变流器根据基本风的设定,自行调速模拟风速到额定转速1000r/min左右。
记录此时电机转速和实时机侧有功功率,填入表3中。
(4)超速风况模拟
当风速大于14m/s时,风场在1000r/min运行点其最大输出转矩大于电机额定转矩,最大输出功率大于3000W,因此风机必须进行变桨操作,电机采用最大转速的恒功率运行模式。
当将基本风设为14m/s,16m/s,18m/s时,记录机侧有功功率和变浆角度,填入表4中。
(5)退出风速模拟
再次点击MPPT按钮,MPPT按钮变灰,则关闭MPPT模式,此时转换为自由运行模式,在自由模式下按照脱网操作方式进行脱网。
四、实验数据及结果分析
1. 画出实验接线图。
2. 用功率分析仪测试试验波形,并进行分析。
3 将观察到的实验现象和测试数据记录到表格中,并对记录的数据进行分析。
五、总结。