离散信号与系统的Z变换分析.doc
- 格式:doc
- 大小:90.50 KB
- 文档页数:5
第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。
2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。
♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。
南昌大学实验报告学生姓名: 周倩文 学 号: 6301712010 班级: 通信121班实验类型: ■验证□综合□设计□创新 实验日期: 5月30号 实验成绩:z 变换及离散时间系统的Z 域分析一、目的(1)掌握利用MATLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MATLAB 实现方法二、离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。
将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N 个极点。
系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。
因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。
通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;三、离散系统零极点图及零极点分析 1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。
Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。
离散时间系统是指信号的取样点在时间上离散的系统。
而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。
Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。
Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。
通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。
系统的传递函数是指系统的输出与输入之间的关系。
在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。
通过Z变换可以对离散时间系统进行频域分析。
频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。
频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。
Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。
其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。
这个性质说明Z变换对线性系统是可加性的。
2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。
这个性质说明Z变换对系统的时移(时延)是敏感的。
3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。
一.实验目的
1.学会使用MATLAB 表示信号的方法并绘制信号波形
2.掌握使用MATLAB 进行信号基本运算的指令
二.实验内容
1. 求出下列离散序列的Z 变换
① 1122()()cos()()k k f k k πε= ② 223()(1)()()
k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④
[]4()(1)()(5)f k k k k k εε=---
2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+- ②22341111()1F z z z z z
=++++ ③2342(36)()z z F z z
++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用
① 122344()()()z H z z z +=++ ② 221()0.81
z H z z -=+ 4. 已知描述离散系统的差分方程为:
() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-
请绘出系统的幅频和相频特性曲线,并说明系统的作用。
三.程序及仿真分析
2(1)
syms k z
Fz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
-1/2*charfcn[0](k)+1/2*(-2)^k+1
(2)
syms k z
Fz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)
(3)
syms k z
Fz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)
(4)
syms k z
Fz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k
3.
(1)
A=[1 7/6 1/3];
B=[4 0 4];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线')
(2) A=[1 0 0.81];
B=[1 0 -1];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线'
4.
A=[1 -1.2 0.35];
B=[1 0.25 0];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线')
四.实验总结。