离散信号与系统的Z变换分析.doc
- 格式:doc
- 大小:90.50 KB
- 文档页数:5
第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。
2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。
♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。
南昌大学实验报告学生姓名: 周倩文 学 号: 6301712010 班级: 通信121班实验类型: ■验证□综合□设计□创新 实验日期: 5月30号 实验成绩:z 变换及离散时间系统的Z 域分析一、目的(1)掌握利用MATLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MATLAB 实现方法二、离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。
将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N 个极点。
系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。
因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。
通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;三、离散系统零极点图及零极点分析 1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。
Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。
离散时间系统是指信号的取样点在时间上离散的系统。
而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。
Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。
Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。
通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。
系统的传递函数是指系统的输出与输入之间的关系。
在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。
通过Z变换可以对离散时间系统进行频域分析。
频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。
频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。
Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。
其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。
这个性质说明Z变换对线性系统是可加性的。
2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。
这个性质说明Z变换对系统的时移(时延)是敏感的。
3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。
第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。
这种方法的数学描述是离散时间傅里叶变换和逆变换。
如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。
这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。
Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。
z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。
一.实验目的1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令二.实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k k f k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④[]4()(1)()(5)f k k k k k εε=---2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+- ②22341111()1F z z z z z =++++③2342(36)()z z F z z++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+ 4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。
三.程序及仿真分析2(1)syms k zFz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/2*charfcn[0](k)+1/2*(-2)^k+1(2)syms k zFz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)(3)syms k zFz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)(4)syms k zFz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k3.(1)A=[1 7/6 1/3];B=[4 0 4];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')(2) A=[1 0 0.81];B=[1 0 -1];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线'4.A=[1 -1.2 0.35];B=[1 0.25 0];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')四.实验总结。
第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。
Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。
当然, Z 变换与拉氏变换也存在着一些重要的差异。
6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。
当 z= e j时, Z 变换就转变为傅立叶变换。
因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。
而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。
那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。
只有当式 (6.3) 的级数收敛,X (z) 才存在。
X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。
在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。
6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。
在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。
一.实验目的
1.学会使用MATLAB 表示信号的方法并绘制信号波形
2.掌握使用MATLAB 进行信号基本运算的指令
二.实验内容
1. 求出下列离散序列的Z 变换
① 1122()()cos()()k k f k k πε= ② 223()(1)()()
k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④
[]4()(1)()(5)f k k k k k εε=---
2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+- ②22341111()1F z z z z z
=++++ ③2342(36)()z z F z z
++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用
① 122344()()()z H z z z +=++ ② 221()0.81
z H z z -=+ 4. 已知描述离散系统的差分方程为:
() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-
请绘出系统的幅频和相频特性曲线,并说明系统的作用。
三.程序及仿真分析
2(1)
syms k z
Fz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
-1/2*charfcn[0](k)+1/2*(-2)^k+1
(2)
syms k z
Fz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)
(3)
syms k z
Fz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)
(4)
syms k z
Fz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式
fk=iztrans(Fz,k) %求反Z变换
fk =
-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k
3.
(1)
A=[1 7/6 1/3];
B=[4 0 4];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线')
(2) A=[1 0 0.81];
B=[1 0 -1];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线'
4.
A=[1 -1.2 0.35];
B=[1 0.25 0];
[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值
HX=angle(H); %求出相频特性值
subplot(2,1,1);plot(w,HF) %画出幅频特性曲线
title('幅频特性曲线')
subplot(2,1,2);plot(w,HX) %画出相频特性曲线
title('相频特性曲线')
四.实验总结。