支持向量机
• 核:
核是一个函数K ,对所有x,z X , 满足 K ( x, z ) ( x ) ( z ) 这里是从输入空间X 到到特征空间F的映射. x ( x1,...xl ) ( x) (1( x),..., n( x)) 将输入空间X 映射到一个新的空间F ={( x) | x X }
最优分类面
首先建立Lagrange函数 w J ( w, b, ) [ y ( w x b) 1] 2
2 l i i i i 1
J ( w, b, ) 条件1: 0 w J ( w, b, ) 条件2: 0 b
最终可得到
1 l l Q( ) J ( w, b, ) i i jyiyj ( xi xj ) 2 i 1 j 1 i 1 寻找最大化目标函数Q( )的Lagrange乘子{ i }li 1 , 满足约束条件 (1)
所谓最优分类线就是要求分类线不 但能将两类正确分开(训练错误率 为0),而且使分类间隔最大. 推广到高维空间,最优分类线就变 为最优分类面。
最优分类面
设线性可分的样本集: D维空间中的线性判别函数:
{xi, yi}, i 1,...l, yi {1,1}, xi Rd
d 维空间中的判别函数:g ( X ) w x b, 分类面方程为w x b 0. k1 k 2 设H : w x b 0; H 1 : w x b k 1; H 2 : w x b k 2 令k , 2 H 1 : w x b k 1 k k ; H 2 : w x b k 2 k k 重写H 1, H 2 : H 1 : w x b k ; H 2 : w x b k 归一化:H 1 : w x b 1; H 2 : w x b 1