1.第1章 数值分析与科学计算引论
- 格式:pdf
- 大小:2.98 MB
- 文档页数:57
第1章数值分析与科学计算引论数值分析与科学计算是一门研究数学建模和计算方法的学科,它是为了解决数学问题而发展起来的。
随着计算机技术的进步,数值分析和科学计算得到了广泛的应用。
本文将介绍数值分析与科学计算引论的一些基本概念和主要内容。
首先,数值分析是研究利用数字计算方法来求解数学问题的一门学科。
在实际问题中,很多数学问题是无法用解析方法求解的,数值分析就提供了一种有效的求解方法。
数值分析主要包括数值计算方法、误差分析和计算机算法等内容。
其次,科学计算是利用计算机技术来求解科学技术问题的一种方法。
科学计算可以帮助我们解决大规模的数学问题,提高计算的准确性和效率。
科学计算的主要内容包括建立数学模型、选择合适的数值方法、编写计算程序等。
数值计算方法是数值分析和科学计算的核心内容之一、数值计算方法是为了解决无法通过解析方法求解的数学问题而发展起来的。
常见的数值计算方法包括插值法、数值微积分、数值线性代数、数值最优化等。
这些方法可以通过迭代计算、数值逼近、数值积分等方式来求解问题。
计算机算法是科学计算的重要组成部分。
计算机算法是一种操作序列,它描述了如何通过计算机程序来解决数学问题。
好的算法可以提高计算的效率和准确性,而不良的算法则可能导致计算结果的错误和不稳定。
因此,我们需要选择合适的算法来解决具体的问题。
总之,数值分析与科学计算是一门涉及数学、计算机科学和应用科学的交叉学科。
它通过建立数学模型、选择合适的数值方法,利用计算机技术来求解科学技术问题。
数值分析与科学计算引论介绍了数值计算方法、误差分析和计算机算法等基本概念和主要内容,并为后续的深入学习打下了基础。
第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。
近似值的误差e∗(x为准确值):e∗=x∗−x近似值的误差限ε∗:|x∗−x |≤ε∗近似值相对误差e r∗(e r∗较小时约等):e r∗=e∗x≈e∗x∗近似值相对误差限εr∗:εr∗=ε∗|x∗|函数值的误差限ε∗(f(x∗)):ε∗(f(x∗))≈|f′(x∗)| ε∗(x∗)近似值x∗=±(a1.a2a3⋯a n)×10m有n位有效数字:ε∗=12×10m−n+1εr∗=ε∗|x∗|≤12a1×10−n+1第二章:插值法1.多项式插值P(x)=a0+a1x+⋯+a n x n 其中:P(x i)=y i ,i=0,1,⋯,n{a0+a1x0+⋯+a n x0n=y0 a0+a1x1+⋯+a n x1n=y1⋮a0+a1x n+⋯+a n x n n=y n 2.拉格朗日插值L n(x)=∑y k l k(x)nk=0=∑y kωk+1(x)(x−x k)ωn+1′(x k) nk=0n次插值基函数:l k(x)=(x−x0)⋯(x−x k−1)(x−x k+1)⋯(x−x n)(x k−x0)⋯(x k−x k−1)(x k−x k+1)⋯(x k−x n),k=0,1,⋯,n引入记号:ωn+1(x)=(x−x0)(x−x1)⋯(x−x n)余项:R n(x)=f(x)−L n(x)=f(n+1)(ξ)(n+1)!ωn+1(x) ,ξ∈(a,b)3.牛顿插值多项式:P n(x)=f(x0)+f[x0,x1](x−x0)+⋯+f[x0,x1,⋯,x n](x−x0)⋯(x−x n−1) n阶均差(把中间去掉,分别填在左边和右边):f[x0,x1,⋯,x n−1,x n]=f[x1,⋯,x n−1,x n]−f[x0,x1,⋯,x n−1]x n−x0余项:R n(x)=f[x,x0,x1,⋯,x n]ωn+1(x) 4.牛顿前插公式(令x=x0+tℎ,计算点值,不是多项式):P n(x0+tℎ)=f0+t∆f0+t(t−1)2!∆2f0+⋯+t(t−1)⋯(t−n−1)n!∆n f0n阶差分:∆n f0=∆n−1f1−∆n−1f0余项:R n(x)=t(t−1)⋯(t−n)ℎn+1(n+1)!f(n+1)(ξ) ,ξ∈(x0,x n)5.泰勒插值多项式:P n(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)nn阶重节点的均差:f[x0,x0,⋯,x0]=1n!f(n)(x0)6.埃尔米特三次插值:P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中,A的标定为:P′(x1)=f′(x1)7.分段线性插值:Iℎ(x)=x−x k+1x k−x k+1f k+x−x kx k+1−x kf k+1第三章:函数逼近与快速傅里叶变换1. S(x)属于 n维空间φ:S(x)=∑a jφjnj=02.范数:‖x‖∞=max1≤i≤n |x i| and maxa≤i≤b|f(x)|‖x‖1=∑|x i|ni=1 and∫|f(x)|badx‖x‖2=(∑x i2ni=1)12 and (∫f2(x)badx)123.带权内积和带权正交:(f,φk)=∑ω(x i)f(x i)φk(x i)mi=0 and ∫ρ(x)f(x)φk(x)badx(f(x),g(x))=∫ρ(x) f(x)g(x)dxba=0 4.最佳逼近的分类(范数的不同、是否离散):最优一致(∞-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖∞=minP∈H n‖f(x)−P(x)‖∞最佳平方(2-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖22=minP∈H n‖f(x)−P(x)‖22最小二乘拟合(离散点)P∗(x):‖f−P∗‖22=minP∈Φ‖f−P∗‖225.正交多项式递推关系:φn+1(x)=(x−αn)φn(x)−βnφn−1(x)φ0(x)=1,φ−1(x)=0αn=(xφn(x),φn(x))(φn(x),φn(x)),βn=(φn(x),φn(x))(φn−1(x),φn−1(x))6.勒让德多项式:正交性:∫P n(x)P m(x)dx 1−1={0 ,m≠n22n+1, m=n奇偶性:P n(−x)=(−1)n P n(x)递推关系:(n +1)P n+1(x )=(2n +1)xP n (x )−nP n−1(x)7.切比雪夫多项式:递推关系:T n+1(x )=2xT n (x )−T n−1(x )正交性:∫n m √1−x 21−1=∫cos nθcos mθπdx ={0 , m ≠n π2 , m =n ≠0π , m =n =0T n (x )在[−1,1]上有n 个零点:x k =cos2k −12nπ,k =1,⋯,n T n+1(x )在[a,b ]上有n +1个零点:(最优一致逼近)x k =b −a 2cos 2k +12(n +1)π+b +a2,k =0,1,⋯,n 首项x n 的系数:2n−18.最佳平方逼近:‖f (x )−S ∗(x)‖22=min S(x)∈φ‖f (x )−S(x)‖22=min S(x)∈φ∫ρ(x)[f (x )−S (x )]2dx ba法方程:∑(φk ,φj )a j nj=0=(f,φk )正交函数族的最佳平方逼近:a k ∗=(f,φk )(φk ,φk )9.最小二乘法:‖δ‖22=min S(x)∈φ∑ω(x i )[S (x i )−y i ]2mi=0法方程:∑(φk ,φj )a j nj=0=(f,φk )正交多项式的最小二乘拟合:a k∗=(f,P k )(P k ,P k )第四章 数值积分与数值微分1.求积公式具有m 次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过m 的多项式成立,m +1不成立∫f(x)dx b a=∑A k f(x k )nk=02.插值型求积公式I n =∫L n (x)dx b a=∑∫l k (x)dx baf(x k )nk=0=∑A k f(x k )nk=0R [f ]=∫[f (x )− L n (x)]dx ba =∫R n (x)dx ba =∫f (n+1)(ξ)(n +1)!ωn+1(x)dx ba3.求积公式代数精度为m 时的余项R [f ]=∫f (x )dx ba −∑A k f (x k )nk=0=1(m +1)![∫x m+1dx ba−∑A k x k m+1nk=0]4.牛顿-柯特斯公式:将[a,b ]划分为n 等份构造出插值型求积公式I n =(b −a)∑C k (n)f(x k )nk=05.梯形公式:当n=1时,C 0(1)=C 1(1)=12T =b −a 2[f (a )+f(b)],R n (f )=−b −a12(b −a )2f ′′(η) 6.辛普森公式:当n=2时,C 0(2)=16,C 1(2)=46,C 2(2)=16S =b −a 6[f (a )+4f (a +b 2)+f(b)],R n (f )=−b −a 180(b −a 2)4f (4)(η) 7.复合求积公式:ℎ=b−a n,x k =a +kℎ,x k+1/2=x k +ℎ2复合梯形公式:T n =ℎ2[f (a )+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 12ℎ2f ′′(η)复合辛普森公式:S n =ℎ6[f (a )+4∑f(x k+1/2)n−1k=0+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 180(ℎ2)4f (4)(η)8.高斯求积公式(求待定参数x k 和A k ):(1)求高斯点(x k ):令 ωn+1(x )=(x −x 0)(x −x 1)⋯(x −x n )与任何次数不超过n 的多项式p(x)带权ρ(x)正交,即则∫p(x)ωn+1(x )ρ(x)dx ba =0,由n +1个方程求出高斯点x 0,x 1⋯x n 。
数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。
一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。
有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。
即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。
其中m 位该数字在科学计数法时的次方数。
例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。
2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。
对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。
(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。
《数值计算方法》课程教学大纲一、课程基本信息二、课程教学目标数值计算方法是大规模科学模拟计算领域的一门重要的基础课,具有很强的应用性。
通过对本课程的学习及上机实习,使学生掌握掌握数值计算的基本概念、基本方法及其原理,培养应用计算机从事科学与工程计算的能力。
具体能力目标如下:具有应用计算机进行科学与工程计算的能力;具有算法设计和理论分析能力;熟练掌握并使用数学软件,处理海量数据,进行大型数值计算的能力。
三、教学学时分配《数值计算方法》课程理论教学学时分配表《数值计算方法》课程实验内容设置与教学要求一览表四、教学内容和教学要求第一章数值分析与科学计算引论(4学时)(一)教学要求1.了解误差的来源以及舍入误差、截断误差的定义;2.理解并掌握绝对误差、相对误差、误差限和有效数字的定义和相互关系;3.了解函数计算的误差估计,误差传播、积累带来的危害和提高计算稳定性的一般规律。
(二)教学重点与难点教学重点:误差理论的基本概念教学难点:误差限和有效数字的相互关系,误差在近似值运算中的传播(三)教学内容第一节数值分析的对象、作用与特点1.数学科学与数值分析2.计算数学与科学计算3. 计算方法与计算机4. 数值问题与算法第二节数值计算的误差1.误差的来源与分类2.误差与有效数字3. 数值运算的误差估计第三节误差定性分析与避免误差危害1.算法的数值稳定2.病态问题与条件数3. 避免误差危害第四节数值计算中算法设计的技术1.多项式求值的秦九韶算法2.迭代法与开方求值本章习题要点:要求学生完成作业10-15题。
其中概念题15%,证明题5%,计算题60%,上机题20%第二章插值法(12学时)(一)教学要求1.掌握插值多项式存在唯一性条件;2.熟练掌握Lagrange插值多项式及其余项表达式,掌握基函数及其性质;3.能熟练使用均差表和差分表构造Newton插值公式;4.能理解高次插值的不稳定性并熟练掌握各种分段插值中插值点和分段的对应关系;5.熟练掌握三次样条插值的条件并能构造第一和第二边界条件下的三次样条插值。
数值分析复习大纲编者:向穗华时间:2010.5教材:《数值分析(第5版)》. 李庆扬,王能超等编著. 2008年12月第5版.第1章 数值分析与科学计算引论1.1 知识要点总结1. x :准确值2. *x :近似值3. *e :绝对误差 x x e -=**4. *ε:误差限 **ε≤e5. *r e :相对误差 ***xe e r = 6. *r ε:相对误差 ***x r εε=7. *x 具有n 位有效数字,则:)101010(10)1(23121*----⨯++⨯+⨯+±=n n m a a a a x1*1021+-⨯≤-n m x x 1*1021+-⨯=n m ε )1(1*1021--⨯≤n r a ε 8. 误差))(()()(***x x x f x f x f -'≈-误差限 )()())((***'=x x f x f εε9. 误差10≤E E n ,则数值稳定10. 计算函数值问题的条件数10)()(***≥'=x f x f x C p ,则问题是变态的。
11. 避免误差危害,防止有效数字损失,通常要避免两相近数相减和用绝对值很小的数做除数,还要注意运算次序和减少运算次数。
12. 秦九韶n n n n a x a x a x a x p ++++=--1110)( ,求)(*x p 和)(*x p ' 由⎩⎨⎧+==-ii i a x b b a b *100⇒n b x p =)(* 由⎩⎨⎧+==-ii i b x c c b c *100⇒1*)(-='n c x p 1.2 课后习题参考答案1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:令)ln()(x x f =x 的相对误差为δ ∴δ=-=***xx x e r )(x f 的误差为δ=-=-'≈-*****))(()()(x x x x x x f x f x f 所以,ln x 的误差为δ2.设x 的相对误差为2%,求nx 的相对误差。
第一章 数值分析与科学计算引论1.1误差采用数值方法求解问题,获得的是近似解。
若近似程度满足不了实际问题的需要,这方法就将失效。
因此构造一个合理的数值方法时必须注重误差分析,注意误差的影响. 1.1.1误差来源(1) 模型误差:数学描述与实际问题之间的误差(2) 观测误差: 数值问题的原始数据,一般由观测或实验手段获得。
由于测量或实验工具的精度有限,因此总有误差。
(3) 截断误差:实际计算只能用有限次运算来完成,而理论上的精确值往往要求用无限的过程来实现,因此需要将无穷过程进行截断。
这样产生的误差通常称作截断误差(与具体算法有关)。
如:!201!21!111++++≈ e 产生的误差. (4) 舍入误差:计算机数系是有限集。
因此大多数数只能用计算机数系中和它们比较接近的数来表示。
由此而产生的误差就是舍入误差,如:取14159265.3≈π产生的误差。
每一步的舍入误差虽是微不足道的,但经过计算过程的传播和积累,舍入误差甚至可能会“淹没”所要求的真解。
从上述四种误差的来源来看,模型误差和观测误差往往是科学计算工作者不能独立解决的,甚至是尚待解决的问题。
因此在数值计算过程,一般只讨论截断误差和舍入误差,讨论它们在计算过程中的传播和对计算结果的影响,研究控制它们的影响以保证最终结果有足够的精度,既希望解决问题的算法简便而有效,又使最终结果准确而可靠。
1.1.2 绝对误差和相对误差为了刻划近似数的精确程度,引入绝对误差和相对误差的概念。
绝对误差:设数x 精确值,*x 为其近似值,*x x e -=称为近似数*x 的绝对误差。
绝对误差限:准确值x 是未知的,因此绝对误差e 也是未知的。
因此我们常常设法估计x 的取值范围,即求出一个正数ε使ε≤-=||||*x x e称ε为近似值*x 的绝对误差限或精度。
则有:εε+<<-**x x x 或表示成: ε±=*x x 相对误差:***x x x x x e r --=或相对误差限r ε: r r e ε≤ 注:1、绝对误差限与相对误差限惟一;2、绝对误差限与相对误差限越小,近似值的近似程度越高;3、实际中通常按四舍五入取近似值。
第一章:数值分析与科学计算引论截断误差:近似 解与精确解之间的误差。
近似值的误差:(.为准确值):e*-x*-x近似值的误差限一: 1疋近似值相对误差(较小时约等)近似值相对误差限 :函数值的误差限 :苗⑺“ Ifool 叱)近似值;一士心:化叙…®)"八■有n 位有效数字:第二章:插值法P (对J =0.1/*%?] Oo + %呵+…+偽!曙=九 % +如股+…+ %!珥=Y1 % +舸斗1 +…+ %坊=儿 2•拉格朗日插值 (x- x k )6J n+1(x k ) .次插值基函数: (X- x)-(x-x fc -i)(x-曲十 1)…a — X JJ ) (Xk - X 0)-(X k - X k_i) (x k - x k¥1)-(x k - X…)1•多项式插值其中:P(x) = a()+ OjX + …+ a n ^I>k — O.L —.n = _xl(r -n+l引入记号:^n+l(X)={X-Xo)(A?-粗)…(#- Xj余项:=f(x} - SG)=:;:;詁+W > 5 e 3:3•牛顿插值多项式: ^nW = /(^0)+f 必珀("叼)+・”+/■[和巧严如(龙-坯”心-*_』〔阶均差(把中间去掉,分别填在左边和右边) :店”“皿]丿杯Fmr gd余项:4•牛顿前插公式(令心'小,计算点值,不是多项式):PQ +t h )=/o +帧 + 忖A 讥 + - + 心1)::*%°〔阶差分:AVo = A n "7i -余项:严(和E 3J5•泰勒插值多项式:•阶重节点的均差:6.埃尔米特三次插值:p (x ) -f (^X Q )十打和尤』仗—如+f 1叼公1也](JC-衍)(工一 Xi ) +人(尤-叼)(黑-衍)o — x 2)其中,A 的标定为:咋沪f (社)7.分段线性插值:第三章:函数逼近与快速傅里叶变换p n (x) = 7(X Q ) + f(x Q )(x -和)+ “•+警(U血屯“匈1.-:-属于’.维空间:5(玄)=。