运筹学
- 格式:doc
- 大小:32.14 KB
- 文档页数:4
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
运筹学综述运筹学的简介一:什么是运筹学?运筹学是Operations Research的英文单词缩写。
运筹学界的元老说运筹学是执行部门对所控制的业务做出决策提供数量上的依据的科学或利用所有应用科学执行部门对其所属业务作出决策提供数量上依据的一门科学;世界上最早的运筹学协会说运筹学是运用科学方法来解决工业、商业、政府、国防等部门里有关人力、机器、物资、金钱等大型系统的指挥或管理中所出现的复杂问题的一门学科,其目的是“帮助管理者以科学方法确定其方针和行动”。
二:运筹学的三个来源1、军事二战期间例一:在第二次世界大战期间,鲍德西雷达站的研究——“布莱克特马戏团”的出色工作,Bawdsey雷达站—Blackett杂技班专门就改进空防系统进行研究。
成员组成:心理学家3,数学家2,数学物理学家2,天文物理学家1,普通物理学家1,陆军军官1,测量员1。
研究的问题是设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力协调等获得成功,大大提高了英国本土的防空能力,不久以后在对抗德国对英伦三岛的狂轰滥炸中发挥了极大的作用,堪称运筹学的发祥与典范,展示了运筹学的本色与特色。
二战期间例二:大西洋反潜战——Morse小组的重要工作。
1942年麻省Morse教授应美国大西洋舰队反潜战官员Baker舰长的请求担任反潜战运筹组的计划与监督工作,其最出色的工作之一是协助英国打破了德国对英吉利海峡的海上封锁,研究所提出的两条重要建议是:将反潜攻击由反潜舰艇投掷水雷改为飞机投掷深水炸弹,起爆深度由100米改为25米左右,即当德方潜艇刚下潜时攻击效果最佳;运送物资的船队及护航舰艇的编队由小规模、多批次改为大规模、少批次,从而减少了损失率丘吉尔采纳Morse的建议,从而打破德国封锁;重创德国潜艇部队;Morse同时获得英国及美国战时最高勋章二战期间例三:英国战斗机中队援法决策。
运筹学涉及的数学知识
摘要:
一、引言
二、运筹学简介
三、线性规划
四、整数规划
五、动态规划
六、网络优化
七、总结
正文:
运筹学是一门运用数学和统计学方法对实际问题进行建模、优化和求解的学科。
它广泛应用于生产调度、交通运输、资源分配等领域。
本文将简要介绍运筹学涉及的数学知识。
首先,线性规划是运筹学的基础知识。
线性规划研究在一定约束条件下线性目标函数的最优化问题。
它可以用矩阵表示,并使用单纯形法等数学方法求解。
其次,整数规划是线性规划的特殊情况,要求部分或全部变量取整数值。
整数规划在运输、调度和选址等问题中具有重要意义。
常用的求解方法有分枝定界法、割平面法等。
动态规划是另一种重要的优化方法。
它将问题分解成相互联系的子问题,通过求解子问题并将结果存储起来,以避免重复计算,从而提高效率。
动态规
划广泛应用于最短路径、背包问题等领域。
网络优化是运筹学的另一个重要分支,研究在网络结构中的最优化问题。
这类问题可以描述为带权的有向图,通过求解最短路径、最大流等问题,可以有效地改善网络的性能。
总之,运筹学涉及的数学知识包括线性规划、整数规划、动态规划和网络优化等。
(名词解释)运筹学
运筹学是一门研究如何在有限资源下做出最佳决策的学科。
它
涉及数学、统计学和计算机科学等多个领域,旨在找到最优解决方
案以最大程度地满足特定目标或约束条件。
运筹学的应用范围非常
广泛,包括生产调度、物流管理、供应链优化、交通规划、金融风
险管理等诸多领域。
在运筹学中,常用的方法包括线性规划、整数规划、动态规划、排队论、模拟等。
线性规划用于解决线性约束条件下的最优化问题,整数规划则是在变量为整数时的最优化问题,动态规划通过分阶段
决策来解决多阶段问题,排队论则研究排队系统的性能指标,模拟
则是通过构建模型来模拟实际系统的运行情况。
运筹学的发展历史可以追溯到二战期间,当时运筹学被用于军
事决策和战争规划,随后逐渐应用于工业生产和商业管理领域。
如今,随着信息技术的发展,运筹学在大数据分析、人工智能和机器
学习等方面也得到了广泛应用。
总的来说,运筹学致力于通过科学的方法和技术手段,帮助人
们做出最佳决策,提高资源利用效率,降低成本,优化系统运行,对于提升生产效率和管理水平具有重要意义。