4-1第四章 常微分方程
- 格式:ppt
- 大小:234.50 KB
- 文档页数:10
第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。
与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。
微 积 分 下 册第四章 常微分方程一、学习要求与内容提要(一)基本要求1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念.2.掌握可分离变量的微分方程和一阶线性微分方程的解法.3.会用微分方程解决一些简单的实际问题.重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法。
难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法。
(二)内容提要10.⒈ 微分方程的基本概念微分方程的定义,微分方程的阶、解与通解,初始条件与特解。
10.2 一阶微分方程变量可分离的微分方程,齐次微分方程,一阶线性微分方程。
10.3高阶微分方程二阶线性微分方程解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程,几类特殊的高阶微分方程的降阶法。
二、主要解题方法1.一阶微分方程的解法例1 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解 这是可以分离变量的微分方程,将方程分离变量,有 x x y y y d 11d 12-=- 两边积分,得 =-⎰y y y d 12⎰-x x d 11求积分得 121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=- 1222e )1(1C x y -=-,222)1(e 11-±=-x y C记 0e 12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可 以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数).代入初始条件 20==x y 得 3=C ,所以特解为 22)1(31-=-x y .例2 求下列微分方程的通解:(1)x y y y +='; (2) x xy y x cos e 22=-'. (1)解一 原方程可化为1d d +=xy x yx y 令 x y u =,则 1d d +=+u u x u x u 即x x u u u d d 12-=+ 两边取积分 ⎰⎰-=+x x u u u d 1d )11(2 积分得 C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 y x C y e = (C 为任意常数)解二 原方程可化为 11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x 得其通解为 y C x =.设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C y y C =, 所以原方程的通解为 1ln C y y x =,即y xC y e = (C 为任意常数).(2)解一 原方程对应的齐次方程 02d d =-xy xy 分离变量得xy x y 2d d =, x x yy d 2d = 两边积分,得 x x y y ⎰⎰=d 2d ,2ln ln y x C =+)e ln(ln e ln ln 22x x C C y =+=,2e x C y =用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22='即 x x C cos )(='两边积分,得 C x x x x C +==⎰sin d cos )(故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y x x x x x =)d e cos e (e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数). 小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y x x P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解. 因此求曲线)(x y y =的问题,转化为求解微分方程的定解问题 ⎪⎩⎪⎨⎧=-=-'=1111x y y x y ,的特解. 由公式 C x x Q y x x P x x P +⎰⎰=⎰-d e )((e d )(d )(,得 )d e )1((ed 1d 1C x y x x x x +⎰-⎰=-⎰=ln x x Cx -+ 代入11==x y 得 1=C ,故所求曲线方程为 (1ln )y x x =-.三、学法建议1.本章重点为微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性 微分方程的常数变易法.2.本章中所讲的一些微分方程,它们的求解方法和步骤都已规范化,要掌握这些求解法,读者首先要善于正确地识别方程的类型,所以必须熟悉本课程中讲了哪些标准型,每种标准型有什么特征,以便“对号入座”,还应熟记每一标准型的解法,即“对症下药”.同时,建议读者再做足够的习题加以巩固.。
第四章常微分方程数值解[课时安排] 6 学时[教学课型] 理论课[教学目的和要求]了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler )方法、改进的欧拉方法、龙贝-库塔( Runge-Kutta )方法、阿达姆斯( Adams )方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R -K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。
[教学重点与难点]重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。
难点: R—K 方法,预估-校正公式。
[教学内容与过程]4.1 引言本章讨论常微分方程初值问题(4.1.1)的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法 .通常我们假定(4.1.1) 中f(x,y)对 y 满足 Lipschitz 条件,即存在常数 L>0,使对,有(4.1.2) 则初值问题(4.1.1) 的解存在唯一 .假定 (4.1.1) 的精确解为,求它的数值解就是要在区间上的一组离散点上求的近似 . 通常取, h 称为步长,求(4.1.1) 的数值解是按节点的顺序逐步推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题 . 4.2 简单的单步法及基本概念4.2.1 Euler 法、后退 Euler 法与梯形法求初值问题(4.1.1) 的一种最简单方法是将节点的导数用差商代替,于是(4.1.1) 的方程可近似写成(4.2.1)从出发 ,由(4.2.1)求得 代入(4.2.1)右端,得到的近似(4.2.2)称为解初值问题的 Euler 法.Euler 法的几何意义如图 4-1 所示.初值问题(4.1.1) 的解曲线 y=y(x)过点,从出发,以为斜率作一段直线,与直线 交点于,显然有 , 再从出发, 以为斜率作直线推进到上一点, 其余类推,这样得到解曲线的一条近似曲线,它就是折线.,一般写成再将Euler 法也可利用的 Taylor 展开式得到,由(4.2.3) 略去余项,以,就得到近似计算公式(4.2.2).另外,还可对(4.1.1) 的方程两端由到积分得(4.2.4)若右端积分用左矩形公式,用,,则得(4.2.2).如果在(4.2.4) 的积分中用右矩形公式,则得(4.2.5)称为后退(隐式)Euler 法.若在(4.2.4) 的积分中用梯形公式,则得(4.2.6)称为梯形方法 .上述三个公式(4.2.2), (4.2.5)及(4.2.6)都是由计算,这种只用前一步即可算 出的公式称为单步法,其中 (4.2.2)可由逐次求出的值,称为显式方法,而(4.2.5)及(4.2.6)右端含有当 f 对 y 非线性时它不能直接求出,此时应把它看作一个方程,求解 ,这类方法称为稳式方法 .此时可将(4.2.5)或(4.2.6)写成不动点形式的方程这里对式(4.2.5)有 无关,可构造迭代法(4.2.7)由于对 y 满足条件(4.1.2),故有当或,迭代法(4.2.4)收敛到 ,因此只要步长 h 足够小,就可保证迭代(4.2.4)收敛.对后退 Euler 法(4.2.5), 当 时迭代收敛,对梯形法 (4.2.6) ,当时迭代序列收敛 .例 4.1 用 Euler 法、隐式 Euler 法、梯形法解取 h=0.1, 计算到x=0.5,并与精确解比较.,对(4.2.6)则, g 与解 本题可直接用给出公式计算 . 由于,Euler 法的计算公式为.其余 n=1,2,3,4 的计算结果见表 4-1.对隐式 Euler 法,计算公式为解出当 n=0 时,4-1.表 4-1 例 4.1 的三种方法及精确解的计算结果对梯形法,计算公式为解得.其余 n=1,2,3,4 的计算结果见表n=0 时,当 n=0 时, .其余 n=1,2,3,4 的计算结果见表 4-1.本题的精确解为, 表 4-1 列出三种方法及精确解的计算结果 .4.2.2 单步法的局部截断误差解初值问题(4.1.1) 的单步法可表示为(4.2.8)其中与有关, 称为增量函数, 当含有时, 是隐式单步法, 如(4.2.5)及(4.2.6)均为隐式单步法,而当不含时,则为显式单步法,它表示为(4.2.9)如 Euler 法(4.2.2),出局部截断误差概念 .定义 2.1 设 y(x)是初值问题(4.1.1) 的精确解,记(4.2.10)称为显式单步法(4.2.9)在的局部截断误差 .之所以称为局部截断误差, 可理解为用公式(4.2.9)计算时, 前面各步都没有误差,,只考虑由计算到.为讨论方便,我们只对显式单步法 (4.2.9)给这一步的误差,此时由 (4.2.10)有即局部截断误差(4.2.10)实际上是将精确解代入(4.2.9)产生的公式误差,利用Taylor 展开式可得到.例如对 Euler 法(4.2.2)有, 故它表明 Euler 法(4.2.2) 的局部截断误差为 ,称为局部截断误差主项 .定义 2.2 设是初值问题(4.1.1) 的精确解,若显式单步法 (4.2.9) 的局部截断误差, 是展开式的最大整数,称 为单步法(4.2.9) 的阶, 含的项称为局部截断误差主项 .根据定义, Euler 法(4.2.2) 中的=1 故此方法为一阶方法 .对隐式单步法(4.2.8)也可类似求其局部截断误差和阶,如对后退 Euler 法(4.2.5)有 局部截断误差故此方法的局部截断误差主项为同样有,也是一阶方法 .对梯形法(4.2.6)它的局部误差主项为 ,方法是二阶的 .4.2.3 改进 Euler 法上述三种简单的单步法中,梯形法 (4.2.6)为二阶方法,且局部截断误差最小,但方法 是隐式的, 计算要用迭代法 .为避免迭代, 可先用Euler 法计算出的近似,将(4.2.6)改为称为改进 Euler 法,它实际上是显式方法 . 即(4.2.11)(4.2.12)右端已不含 .可以证明, =2,故方法仍为二阶的,与梯形法一样,但用(4.2.11)计算不用迭代.例 4.2 用改进 Euler 法求例 4.1 的初值问题并与 Euler 法和梯形法比较误差的大小 . 解 将改进 Euler 法用于例4.1 的计算公式.其余结果见表4-2.当 n=0 时,表 4-2 改进 Euler 法及三种方法的误差比较从表 4-2 中看到改进Euler 法的误差数量级与梯形法大致相同,而比 Euler 法小得多,它优于 Euler 法.讲解:求初值问题(4.1.1)的数值解就是在假定初值问题解存在唯一的前提下在给定区间上的一组离散点上求解析解的一组近似为此先要建立求数值解的计算公式,通常称为差分公式,简单的单步法就是由计算下一步,构造差分公式有三种方法,一是用均差(即差商)近似,二是用等价的积分方程(4.2.4)用数值积分方法,三是用函数的 Taylor 展开,其中 Taylor 展开最有普遍性,可以得到任何数值解的计算公式及其局部截断误差。
爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。
四阶常微分方程概述说明以及解释1. 引言1.1 概述在自然科学和工程技术领域中,常微分方程一直扮演着重要的角色。
而四阶常微分方程作为其中的一个特殊类型,在许多实际问题的建模与求解过程中也具有广泛应用。
本文旨在对四阶常微分方程进行概述、说明其定义与特点,并介绍其在重要的应用领域中所起到的作用。
1.2 文章结构为了全面理解和深入探究四阶常微分方程,本文将按照以下结构展开叙述:引言部分首先对文章的主要内容进行了简单概括,并提出了本文撰写的目的。
接下来,我们将在第二部分对四阶常微分方程进行概述,包括其定义、特点以及重要应用领域。
第三部分将详细介绍解析方法与技巧,包括分离变量法、特征方程法和傅里叶级数解法等,这些方法被广泛应用于求解四阶常微分方程。
然后,在第四部分我们将探讨数值解法与计算机模拟,主要包括欧拉方法及其改进算法、迭代法与龙格-库塔方法以及使用Matlab进行四阶常微分方程模拟研究的实际操作。
最后,在第五部分我们将总结所讨论的主要内容,并对四阶常微分方程研究的意义和前景展望进行探讨。
1.3 目的本文旨在全面介绍和说明四阶常微分方程的概念、性质及其解析方法与技巧。
通过详细讲解数值解法与计算机模拟,我们希望读者能够深入理解并灵活运用这些方法来求解实际问题中涉及到的四阶常微分方程。
最后,通过总结与展望,我们将以一个更广阔的视角来认识四阶常微分方程所具有的重要性和未来发展方向。
2. 四阶常微分方程概述:2.1 常微分方程简介常微分方程是数学中的一个重要分支,广泛应用于各个科学领域。
它描述了未知函数与其导数之间的关系,并通过求解方程得到函数的解析或数值解。
常微分方程可以根据阶数进行分类,其中四阶常微分方程是其中一类比较复杂的方程。
2.2 四阶常微分方程定义与特点四阶常微分方程是指含有四个未知函数导数的常微分方程,形式可以表示为:\[ F(x, y, y', y'', y''') = 0 \]其中\(y\) 是自变量\(x\) 的函数,\(y'\)、\(y''\) 和\(y'''\) 分别表示\(y\) 关于\(x\) 的一阶、二阶和三阶导数。
第四章常微分方程§4.1 基本概念和一阶微分方程甲内容要点一.基本概念1.常微分方程含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。
2.微分方程的阶微分方程中未知函数的导数的最高阶数称为该微分方程的阶3.微分方程的解、通解和特解满足微分方程的函数称为微分方程的解;通解就是含有独立常数的个数与方程的阶数相同的解;通解有时也称为一般解但不一定是全部解;不含有任意常数或任意常数确定后的解称为特解。
4.微分方程的初始条件要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。
5.积分曲线和积分曲线族微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。
6.线性微分方程如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。
不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。
二.变量可分离方程及其推广1.变量可分离的方程(1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()()C dy y N y N dx x M x M =+⎰⎰1221 ()()()0,012≠≠y N x M2.变量可分离方程的推广形式(1)齐次方程⎪⎭⎫ ⎝⎛=x y f dx dy 令u x y=, 则()u f dxdu x u dx dy =+=()c x c x dxu u f du +=+=-⎰⎰||ln(2)()()0,0≠≠++=b a c by ax f dxdy令u c by ax =++, 则()u bf a dxdu+=()c x dx u bf a du+==+⎰⎰(3)⎪⎪⎭⎫ ⎝⎛++++=222111c y b x a c y b x a f dx dy①当02211≠=∆b a b a 情形,先求出⎩⎨⎧=++=++00222111c y b x a c y b x a 的解()βα, 令α-=x u ,β-=y v则⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=u v b a u v b a f v b u a v b u a f du dv 22112211属于齐次方程情形 ②当02211==∆b a b a 情形,令λ==1212b b a a 则()⎪⎪⎭⎫ ⎝⎛++++=211111c y b x a c y b x a f dxdy λ令y b x a u 11+=, 则⎪⎪⎭⎫ ⎝⎛+++=+=211111c u c u f b a dx dyb a dx du λ 属于变量可分离方程情形。
常微分方程教程第四章奇解第四章的主题是奇解。
奇解是指常微分方程的特解,它们具有非常特殊的性质。
在这一章中,我们将讨论奇解的定义、性质和求解方法。
首先,我们来看奇解的定义。
对于一个常微分方程,如果一些函数既是它的解,又满足该方程的初值条件,那么这个解就是初值问题的特解。
如果一个特解在一些区间上唯一地存在,且不能由其他解表示,那么它就是奇解。
奇解是一种与常解不同的特殊解,它在数学研究和应用中具有重要的意义。
接下来,我们将讨论奇解的性质。
首先,奇解的存在性和唯一性是奇解研究的基本问题。
对于一些常微分方程,它们可能具有奇解,而对于其他方程,则可能不存在奇解。
为了证明奇解的存在性和唯一性,我们需要运用一些相关的定理和方法,如皮卡逐步逼近法和柯西定理等。
这些定理和方法提供了解决奇解问题的有力工具。
其次,奇解的求解方法也是本章的重点内容。
对于一些特定的常微分方程,我们可以采用一些特殊的技巧和方法来求解它们的奇解。
例如,对于线性常微分方程,我们可以利用常系数线性微分方程的特征根和特征向量来求解奇解。
而对于一些非线性常微分方程,我们可以运用变量分离、积分因子和分离变量等方法来求解奇解。
这些求解方法的研究可以帮助我们更好地理解奇解的性质和特点。
最后,我们将讨论奇解的应用。
奇解不仅仅在数学研究中具有重要意义,它们还广泛应用于物理、化学、生物学等领域。
例如,在物理学中,奇解可以描述一些具有特殊性质或特殊行为的物理系统。
在化学反应动力学中,奇解也被广泛应用于描述化学反应过程中的特殊现象。
奇解的应用研究有助于我们更好地理解和掌握自然界中的现象和规律。
综上所述,第四章主要讨论了奇解的定义、性质和求解方法。
奇解是常微分方程中的特殊解,具有非常特殊的性质。
我们可以通过研究奇解的存在性、唯一性和求解方法,来更好地理解和应用常微分方程。
奇解的研究不仅在数学领域有重要意义,而且在物理、化学、生物学等领域也有广泛的应用。
通过学习和掌握奇解的知识,我们可以拓宽自己的数学视野,提高问题解决能力,并在实际应用中发挥奇解的作用。
常微分方程第四章课后答案大家好,我是你们的语文老师小七。
在高中阶段很多学生对于课本上的知识点都有一些基础认识,但是有些同学在理解了这个知识点之后就不知道该如何去理解了,所以今天我就来给大家讲解一下常微分方程第四章课后习题练习。
这一章节主要讲两个内容:①什么是常微分方程;②常微分方程解法。
第一个内容是常微分方程解法的定义,这是在课本中找不到的知识。
这一部分主要要学习基本的表达式以及一些解析式。
第二个内容是常微分方程中积分法,对于初学者来说这一部分更是需要好好学习了。
下面我们就来了解一下这些知识点吧。
首先要明确一下这章节讲的内容不能单独做练习题,而是需要把每一道例题都做完才行。
这节课除了常规的知识会做一些相关例题之外,还会讲解下几道解析式以及常见的几种情况了。
1.线性表达式的两个性质线性表达式中含有一个值为 y,由定义可知 x的值为 y=0,这种情况下表达式的两个性质分别为①线性表达式有无限长时,函数的阶数不变;②线性表达式随解变小而逐渐递减;③线性表达式对任意一阶值的变换都可以得到对应形式,比如用n× n来表示(如矩阵)。
这两个性质可以通过具体例子来说明这一点。
在函数 x>0时,由于有无穷多个解,每个解都有相应的矩阵,并且在这个矩阵中存在相同的化简问题。
那么解方程中所含有的多变量就是这两个性质。
其中 x 和 y分别表示对一个函数 x和 y取对应微分时变量之间的关系。
另外还有一种情况会用到近似解来证明:即满足 k、 z、?三大条件中有任意一种条件时,可以得到一个近似求解的常微分方程:所以两个函数均满足 k、 z、?三大条件中任意一项就可以得到这类线性表达式下面这个解法:若 y为二元函数,则 y=2 x+1 y^2 x+1 y^2 x^2 x=+1x?1=+1x-2-0 (如矩阵)。
2.等比数列在常微分方程解法方面,我们的解法就是将该解法和实际中计算的解做一个等值处理。
我们通常将等值数列分为等比数列(m= m)和等比数列(m=1)。