PC104对OV7670寄存器的读写
- 格式:docx
- 大小:10.29 KB
- 文档页数:2
2012-03-24 20:42OV7670调试的问题拿出来请大家共同解决硬件:STM32+OV7670+AL422B (电路参照zidong404的)软件思路也是参考zidong404的,现在图像显示基本出来了,但是效果很不好,最关键的是不知道从哪修改。
液晶ssd1289显示的图片如下:输出格式:QVGA RGB565 320*240出现的问题:1、图像分块,而且三块显示的是同一幅图片,不知道是缓存指针读写复位不正常的是不,程序和zidong404的一样的?2、图像重叠,一次显示不是全屏,只是半屏?好像写入的数据不够?我现在很模糊的几个问题是:1、配置QVGA RGB565格式写入缓存AL422的数据是不是320*240*2个字节?如果是,那为何一次显示只有半屏呢?2、还有窗口设置我不是太懂OV7660_config_window(272,16,320,240);// set 240*320 ,谁能帮忙解释一下,272和16这几个数据是怎么得到的?3、还有__nop();这条指令的运用,是直接用吗?需要包含什么文件吗? 51里面用它不是包含一个文件才能使用它吗?弄了半天终于弄出来了!在这里要感谢zidong404的指点。
现在分享一下我的调试结果:1、上面第一和第二个问题出现的原因很简单,摄像头配置出来的图片数据是横屏格式240行,每行320个点,每个像素2个字节,而我的液晶屏配置是竖屏显示的,所以图像分块。
这一点虽然没问题了,但我感觉这样的话图像分块应该是不规则的,而结果是三块一样的图像。
2、还有读写指针复位,如果写指针复位延时不够也会图像分块。
3、还有XCLK时钟我的是8M,这个我试了36M的影响不大,但是不能超过50M,STM32系统时钟72M直接加上也能显示图像,但是有一层绿色的背景色。
4、还有PLL倍频选择旁路PLL图像也会分块,图像发生畸变,大于输入时钟*4就OK了。
5、显示的时候有时液晶背景颜色会是淡黄的不知为何?图像显示正常。
OV7670带FIFO的CMOS摄像头使用说明OV7670是一款带有FIFO的CMOS摄像头芯片,广泛应用于各种嵌入式系统中。
它具有低功耗、高灵敏度和高图像质量等特点,适合于图像采集和处理应用。
以下是OV7670带FIFO的CMOS摄像头的使用说明。
一、硬件连接1.连接供电:将模块的VCC引脚连接到3.3V的电源,GND引脚连接到地。
2.数据传输:-使用I2C协议进行配置:将模块的SDA引脚连接到主控芯片的SDA 引脚,SCL引脚连接到主控芯片的SCL引脚。
-使用FIFO模式进行数据传输:将模块的FIFO_WR引脚连接到主控芯片的写使能引脚,FIFO_RD引脚连接到主控芯片的读使能引脚,FIFO_WE 引脚连接到主控芯片的写时钟引脚,FIFO_OE引脚连接到主控芯片的读时钟引脚,FIFO_RST引脚连接到主控芯片的复位引脚,DATA引脚连接到主控芯片的数据引脚。
二、软件配置1.I2C配置:通过I2C协议对OV7670进行配置。
首先初始化I2C总线,然后发送配置指令给OV7670的I2C地址,通过写入特定的寄存器来配置图像参数,如分辨率、亮度、对比度等。
2.FIFO配置:通过FIFO模式进行数据传输。
首先对OV7670进行FIFO模式的配置,设置FIFO的像素格式、帧率等参数。
然后初始化主控芯片的访问FIFO的接口,设置读写使能信号并根据需要配置写时钟和读时钟。
最后,在读取FIFO数据之前,先进行FIFO的复位以确保数据的正确读取。
三、数据采集和处理1.数据采集:通过FIFO模式进行数据采集,将摄像头拍摄到的图像数据存储到FIFO缓存中。
2. 数据处理:从FIFO缓存中读取图像数据,并进行相关的图像处理操作,如图像解码、颜色空间转换、图像滤波等。
可以使用各种图像处理算法和库来实现不同的功能,如OpenCV等。
四、常见问题和解决方案1.图像质量问题:如果发现图像质量差,可以尝试调整摄像头的参数,如增加亮度、对比度等,或者使用图像后处理算法进行图像增强。
OV7670 Camera Board (B)使 用 说 明 V1.2微雪电子w ww.w a v e s目录1.OV7670一般摄像头模块1.1简介1.2管脚定义1.3控制方式说明 1.4采集图像的基本方法2.OV7670带FIFO 摄像头模块2.1简介 2.2管脚定义2.3控制方式说明 2.4图像采集的基本方法3.问题解答3.1图像采集难吗3.2学习图像方面的知识需要哪些基础 3.3初学者遇到问题该怎么解决 3.4模块提供那些资料3.5单片机能够真正的采集图像吗3.6带FIFO 和不带FIFO 的模块到底哪个好,有什么区别 3.7模块上有晶振好,还是没晶振好 3.8摄像头寄存器该怎么设置3.9 微雪电子模块提供的Demo 输出的数据是什么格式的w ww.w a ve s3.10如果想真正实现图像的采集并且能够处理图像数据该如何做 3.11 微雪电子的那个模块能够适合飞思卡尔小车的比赛 3.12 微雪电子的模块输出到底是模拟的还是数字的3.13 微雪电子模块的质量如何3.14 微雪电子几种驱动板的功能,区别是什么 3.15如何检测微雪电子摄像头模块是否损坏 3.16 微雪电子摄像头模块和模组的区别是什么w ww.w a ve s1.OV7670一般摄像头模块1.简介:OV7670一般模块指微雪电子推出的低成本数字输出CMOS 摄像头,其摄像头包含30w 像素的CMOS 图像感光芯片,3.6mm 焦距的镜头和镜头座,板载CMOS 芯片所需要的各种不同电源(电源要求详见芯片的数据文件),板子同时引出控制管脚和数据管脚,方便操作和使用。
图1.OV7670一般模块2.管脚定义:如图,控制传感器所需的管脚定义如下:3V3-----输入电源电压(推荐使用3.3,5V 也可,但不推荐使用) GDN-----接地点SIO_C---SCCB 接口的控制时钟(注意:部分低级单片机需要上拉控制,和I2C 接口类似)w ww.w a ve sSIO_D---SCCB 接口的串行数据输入(出)端(注意:部分低级单片机需要上拉控制,和I2C 接口类似)VSYNC---帧同步信号(输出信号) HREF----行同步信号(输出信号)PCLK----像素时钟(输出信号) XCLCK---时钟信号(输入信号) D0-D7---数据端口(输出信号) RESTE---复位端口(正常使用拉高)PWDN----功耗选择模式(正常使用拉低)图2.微雪摄像头接口定义3.控制方式说明采集图像数据需要严格按照OV 公司的芯片时序进行,这些时序包括:(1) S CCB 通讯时序,其作用是设置芯片内部寄存器,以控制图像的各种所w ww.w a ve s需功能。
OV7670-CMOS摄像头使用说 明2014.2.10 参赛平台1.OV7670带FIFO 模块1.简介:OV7670带FIFO 模块,是针对慢速的MCU 能够实现图像采集控制推出的带有缓冲存储空间的一种模块。
这种模块增加了一个FIFO (先进先出)存储芯片,同样包含30w 像素的CMOS 图像感光芯片,3.6mm 焦距的镜头和镜头座,板载CMOS 芯片所需要的各种不同电源(电源要求详见芯片的数据文件),板子同时引出控制管脚和数据管脚,方便操作和使用。
图1.OV7670带FIFO模块 2.管脚定义:参赛平台如图,控制传感器所需的管脚定义如下:3V3-----输入电源电压(推荐使用3.3,5V 也可,但不推荐)GDN-----接地点SIO_C---SCCB 接口的控制时钟(注意:部分低级单片机需要上拉控制,和I2C 接口类似)SIO_D---SCCB 接口的串行数据输入(出)端(注意:部分低级单片机需要上拉控制,和I2C 接口类似) VSYNC---帧同步信号(输出信号)HREF----行同步信号(输出信号)PCLK----像素时钟(输出信号)XCLCK---时钟信号(输入信号)D0-D7---数据端口(输出信号)RESTE---复位端口(正常使用拉高)PWDN----功耗选择模式(正常使用拉低)STROBE—拍照闪光控制端口(正常使用可以不需要)FIFO_RCK---FIFO 内存读取时钟控制端FIFO_WR_CTR----FIFO 写控制端(1为允许CMOS 写入到FIFO,0为禁止) FIFO_OE----FIFO 关断控制FIFO_WRST—FIFO 写指针服务端FIFO_RRST—FIFO 读指针复位端 参赛平台图7.FIFO摄像头接口定义3.控制方式说明由于采用了FIFO 做为数据缓冲,数据采集大大简便,用户只需要关心是如何读取即可,不需要关心具体数据是如何采集到的,这样可减小甚至不用关心CMOS 的控制以及时序关系,就能够实现图像的采集。
废话后面说,先直接上OV7670寄存器的配置部分const uint8_t OV7670_Reg[][2]={//Frame Rate Adjustment for 24Mhz input clock//30fps PCLK=24MHz{0x11, 0x80},//软件应用手册上设置的是0x80,例程设置的是0x00{0x6b, 0x0a},//PLL控制,软件应用手册上设置的是0x0a,例程设置的是0x40,将PLL调高的话就会产生花屏{0x2a, 0x00},{0x2b, 0x00},{0x92, 0x00},{0x93, 0x00},{0x3b, 0x0a},//Output format{0x12, 0x14},//QVGA(320*240)、RGB//RGB555/565 option(must set COM7[2] = 1 and COM7[0] = 0){0x40, 0x10},//RGB565,effective only when RGB444[1] is low{0x8c, 0x00},//Special effects - 特效//normal{0x3a, 0x04},{0x67, 0xc0},{0x68, 0x80},//Mirror/VFlip Enable - 水平镜像/竖直翻转使能{0x1e, 0x37},//修改配置值将产生图像显示上下或左右颠倒//Banding Filter Setting for 24Mhz Input Clock - 条纹滤波器//30fps for 60Hz light frequency//{0x13, 0xe7},//banding filer enable//{0x9d, 0x98},//50Hz banding filer//{0x9e, 0x7f},//60Hz banding filer//{0xa5, 0x02},//3 step for 50Hz//{0xab, 0x03},//4 step for 60Hz//{0x3b, 0x02},//select 60Hz banding filer//Simple White Balance - 白平衡//{0x13, 0xe7},//AWB、AGC、AGC Enable and ...//{0x6f, 0x9f},//simple AWB//AWBC - 自动白平衡控制(Automatic white balance control)//{0x43, 0x14},//用户手册里这些寄存器的值都是保留(Reserved),不用设置的呀?//{0x44, 0xf0},//{0x45, 0x34},//{0x46, 0x58},//{0x47, 0x28},//{0x48, 0x3a},//AWB Control//{0x59, 0x88},//用户手册连寄存器都是保留,初始值都没提供//{0x5a, 0x88},//{0x5b, 0x44},//{0x5c, 0x67},//{0x5d, 0x49},//{0x5e, 0x0e},//AWB Control//{0x6c, 0x0a},//{0x6d, 0x55},//{0x6e, 0x11},//{0x6f, 0x9f},//AGC/AEC - Automatic Gain Control自动增益补偿/Automatic exposure Control自动曝光控制//{0x00, 0x00},//{0x14, 0x20},//{0x24, 0x75},//{0x25, 0x63},//{0x26, 0xA5},//AEC algorithm selection - AEC公式选择//{0xaa, 0x94},//基于平均值的AEC算法Average-based AEC algorithm/基于直方图的AEC算法Histogram-based AEC algorithm//基于直方图的AGC/AEC的控制//{0x9f, 0x78},//{0xa0, 0x68},//{0xa6, 0xdf},//{0xa7, 0xdf},//{0xa8, 0xf0},//{0xa9, 0x90},//Fix Gain Control - 固定增益控制//{0x69, 0x5d},//Fix gain for Gr channel/for Gb channel/for R channel/for B channel//Color saturation 颜色饱和度+ 0//{0x4f, 0x80},//{0x50, 0x80},//{0x51, 0x00},//{0x52, 0x22},//{0x53, 0x5e},//{0x54, 0x80},//{0x58, 0x9e},//Brightness - 亮度+ 0//{0x55, 0x00},//Contrast - 对比度+ 0//{0x56, 0x40},//Gamma Curve - 伽马曲线//{0x7a, 0x20},//{0x7b, 0x1c},//{0x7c, 0x28},//{0x7d, 0x3c},//{0x7e, 0x55},//{0x7f, 0x68},//{0x80, 0x76},//{0x81, 0x80},//{0x82, 0x88},//{0x83, 0x8f},//{0x84, 0x96},//{0x85, 0xa3},//{0x86, 0xaf},//{0x87, 0xc4},//{0x88, 0xd7},//{0x89, 0xe8},//Matrix Coefficient - 色彩矩阵系数//{0x4f, 0x80},//{0x50, 0x80},//{0x51, 0x00},//{0x52, 0x22},//{0x53, 0x5e},//{0x54, 0x80},//Lens Correction Option - 镜头补偿选项 //{0x62, 0x00},//{0x63, 0x00},//{0x64, 0x04},//{0x65, 0x20},//{0x66, 0x05},//{0x94, 0x04},//effective only when LCC5[2] is high//{0x95, 0x08},//effective only when LCC5[2] is high//注释这些配置的话,就倾斜显示,并显示多块,这到底是控制什么的?跟时序图有关?{0x17, 0x16},//行频Horizontal Frame开始高八位(低三位在HREF[2:0]){0x18, 0x04},//行频Horizontal Frame结束高八位(低三位在HREF[5:3]){0x19, 0x02},//场频Vertical Frame开始高八位(低二位在VREF[1:0]){0x1a, 0x7b},//场频Vertical Frame结束高八位(低二位在VREF[3:2]){0x32, 0x80},//HREF{0x03, 0x06},//VREF//注释这个配置的话,就显示花屏了{0x15, 0x02},//配置PCLK、HREF、VSYNC相关//Automatic black Level Compensation - 自动黑电平校正{0xb0, 0x84},//调试时注释这项配置时,颜色显示不正常了,红色练绿色,绿色变红色,但用户手册对这寄存器是保留RSVD//{0xb1, 0x0c},//{0xb2, 0x0e},//{0xb3, 0x82},//{0xb8, 0x0a},//SCALING_xx寄存器//{0x70, 0x00},//{0x71, 0x00},//{0x72, 0x11},//{0x73, 0x08},//{0x3e, 0x00},//ADC//{0x37, 0x1d},//ADC控制ADC Control//{0x38, 0x71},//ADC和模拟共模控制ADC and Analog Common Mode Control//{0x39, 0x2a},//ADC偏移控制ADC Offset Control//零杂的寄存器//{0x92, 0x00},//空行低八位Dummy Line low 8 bits//{0xa2, 0x02},//像素时钟延时//{0x0c, 0x0c},//{0x10, 0x00},//{0x0d, 0x01},//{0x0f, 0x4b},//{0x3c, 0x78},//{0x74, 0x19},//用户手册里这几个寄存器都是保留RSVD//{0x0e, 0x61},//{0x16, 0x02},//{0x21, 0x02},//{0x22, 0x91},//{0x29, 0x07},//{0x33, 0x0b},//{0x35, 0x0b},//{0x4d, 0x40},//{0x4e, 0x20},//{0x8d, 0x4f},//{0x8e, 0x00},//{0x8f, 0x00},//{0x90, 0x00},//{0x91, 0x00},//{0x96, 0x00},//{0x9a, 0x80},};刚开始学OV7670摄像头,我想大家跟我一样心里很毛躁吧,一个模块需要你配置100多个寄存器,但用户手册对寄存器的介绍却草草的一笔带过,自己无从下手啊,只能看开发板给的例程和上网找一些大虾的帖子了。
2012-03-24 20:42OV7670调试的问题拿出来请大家共同解决硬件:STM32+OV7670+AL422B (电路参照zidong404的)软件思路也是参考zidong404的,现在图像显示基本出来了,但是效果很不好,最关键的是不知道从哪修改。
液晶ssd1289显示的图片如下:输出格式:QVGA RGB565 320*240出现的问题:1、图像分块,而且三块显示的是同一幅图片,不知道是缓存指针读写复位不正常的是不,程序和zidong404的一样的?2、图像重叠,一次显示不是全屏,只是半屏?好像写入的数据不够?我现在很模糊的几个问题是:1、配置QVGA RGB565格式写入缓存AL422的数据是不是320*240*2个字节?如果是,那为何一次显示只有半屏呢?2、还有窗口设置我不是太懂OV7660_config_window(272,16,320,240);// set 240*320 ,谁能帮忙解释一下,272和16这几个数据是怎么得到的?3、还有__nop();这条指令的运用,是直接用吗?需要包含什么文件吗? 51里面用它不是包含一个文件才能使用它吗?弄了半天终于弄出来了!在这里要感谢zidong404的指点。
现在分享一下我的调试结果:1、上面第一和第二个问题出现的原因很简单,摄像头配置出来的图片数据是横屏格式240行,每行320个点,每个像素2个字节,而我的液晶屏配置是竖屏显示的,所以图像分块。
这一点虽然没问题了,但我感觉这样的话图像分块应该是不规则的,而结果是三块一样的图像。
2、还有读写指针复位,如果写指针复位延时不够也会图像分块。
3、还有XCLK时钟我的是8M,这个我试了36M的影响不大,但是不能超过50M,STM32系统时钟72M直接加上也能显示图像,但是有一层绿色的背景色。
4、还有PLL倍频选择旁路PLL图像也会分块,图像发生畸变,大于输入时钟*4就OK了。
5、显示的时候有时液晶背景颜色会是淡黄的不知为何?图像显示正常。
PC104对OV7670寄存器的读写
摘要:Ominisrision 公司的新型摄像头模组OV7670,具有体积小、输出图
像格式多、接口方便、寄存器可读写等特点,是嵌入式系统中图像采集的理想
选择。
通过设置OV7670 的寄存器的值,可以更好地实现对摄像头的控制,得
到更加理想的图像。
本文介绍了PC104 系统对OV7670 摄像头模组寄存器读写的过程及编程方法。
关键词:OV7670;图像采集;PC104;SCCB 嵌入式系统中的图像采集是进行图像处理的基础,只有在采集时就进行前端的处理和控制,才能减少图像中的噪声,为后续的图像处理提供良好的数据。
OV7670 开放了
控制寄存器,用户可以通过SCCB 总线来实现读写操作,可以设置图像输出格式、控制曝光等,为具体的应用场景提供了更底层的支持。
正确的读写寄存器
就成为获得图像的第一步。
1 OV7670 摄像头模组简介OV7670 CAMERACHIPTM 图像传感器,体积小、工作电压低,提供单片VGA 摄像头
和影像处理器的所有功能。
通过SCCB 总线控制,可以输出整帧、子采样、取
窗口等方式的各种分辨率8 位影响数据。
该产品VGA 图像最高达到30 帧/秒。
用户可以完全控制图像质量、数据格式和传输方式。
所有图像处理功能过程包
括伽玛曲线、白平衡、饱和度、色度等都可以通过SCCB 接口编程。
OmmiVision 图像传感器应用独有的传感器技术,通过减少或消除光学或电子
缺陷如固定图案噪声、托尾、浮散等,提高图像质量,得到清晰的稳定的彩色
图像。
功能框图如图1 所示。
为了保证图像采集的连续性和完整性,外加一个384K,8 位的FIFO,AL422 为图像采集和处理作缓冲。
OV7670 与AL422 的
连接如图2 所示。
2 两线SCCB SCCB(Serial Camera Control Bus),即串行摄像机控制总线,是。