寄存器与存储器
- 格式:ppt
- 大小:1.52 MB
- 文档页数:64
存储的核心概念存储是计算机系统中的一个重要组成部分,用于存储和管理数据和程序。
它允许计算机在执行指令和处理数据时进行读写操作,并且可以长期保存数据以供以后使用。
存储的核心概念包括存储层次结构、存储器层次、主存储器和辅助存储器。
一、存储层次结构计算机中的存储层次结构是根据存取速度和容量来划分的,它分为多个层次,每个层次都有自己的特点和功能。
存储层次结构从上到下分为:寄存器、高速缓存、主存储器、辅助存储器。
下面我将逐一介绍这些层次。
1. 寄存器:寄存器是存储器层次结构中最接近CPU 的一层,也是最快的一层。
它用于存放CPU 需要立即访问的数据和指令。
寄存器的容量很小,一般只有几十个字节,但是它的读写速度非常快,能够满足CPU 对数据和指令的高速处理需求。
2. 高速缓存:高速缓存是位于CPU 和主存储器之间的一层存储器,作为主存储器和寄存器之间的缓冲区,用于加速CPU 对数据和指令的访问。
高速缓存的容量比寄存器大,但比主存储器小,一般几十到几百个千字节。
它的读写速度比主存储器快,但比寄存器慢。
它通过缓存一部分主存储器中的数据和指令,提高了CPU 对存储器的访问效率。
3. 主存储器:主存储器(也叫内存)是计算机系统中最重要的存储器,用于存放程序和数据。
它的容量比高速缓存大,一般几十到几百个千兆字节。
主存储器的读写速度比高速缓存慢,但比辅助存储器快。
它能够提供给CPU 进行读写操作。
4. 辅助存储器:辅助存储器(也叫外存)是计算机系统中最大的存储器,负责长期保存数据和程序。
它的容量比主存储器大,可以达到几百个千兆字节或者更大。
辅助存储器的读写速度比主存储器慢,但它具有永久存储的特点,即使计算机断电,数据也不会丢失。
以上是存储层次结构中的几个层次,不同层次的存储器在容量、读写速度、价格等方面都有所不同,通过合理地利用这些存储器,可以提高计算机系统的性能和效率。
二、存储器层次存储器层次是指存储器在层次结构中的位置和关系。
/p-20032411.html寄存器和存储器的区别如果仅是讨论CPU的范畴寄存器在cpu的内部,容量小,速度快存储器一般都在cpu外部,容量大,速度慢回答者:athlongyj - 高级经理六级6-1 08:52 从根本上讲,寄存器与RAM的物理结构不一样。
一般寄存器是指由基本的RS触发器结构衍生出来的D触发,就是一些与非门构成的结构,这个在数电里面大家都看过;而RAM则有自己的工艺,一般1Bit由六MOS管构成。
所以,这两者的物理结构不一样也导致了两者的性能不同。
寄存器访问速度快,但是所占面积大。
而RAM相反,所占面积小,功率低,可以做成大容量存储器,但访问速度相对慢一点。
1、寄存器存在于CPU中,速度很快,数目有限;存储器就是内存,速度稍慢,但数量很大;计算机做运算时,必须将数据读入寄存器才能运算。
2、存储器包括寄存器,存储器有ROM和RAM寄存器只是用来暂时存储,是临时分配出来的,断电,后,里面的内容就没了`````寄存器跟存储器有什么区别?一般数据在内存里面,要处理(或运算)的时候,独到寄存器里面。
然后CPU到寄存器里面拿值,拿到运算核内部,算好了在送到寄存器里面再到内存寄存器跟存储器有什么区别?寄存器跟存储器有什么区别?寄存器上:“一个操作码+一个操作数”等于一条微指令吗?一条微指令是完成一条机器指令的一个步骤对吗?cpu是直接跟寄存器打交道的对吗?也就是说寄存器是运算器、控制器的组成部分对不?设计一条指令就是说把几条微指令组合起来对吗?刚开始学硬件相关知识,学的晕头转向的!!存储器与寄存器区别2009-06-09 12:27寄存器是CPU内部存储单元,数量有限,一般在128bit内,但是速度快,CPU访问几乎没有任何延迟。
分为通用寄存器和特殊功能寄存器。
通常说的存储器是独立于cpu之外的,比如内存,硬盘,光盘等。
所有数据必须从存储器传入寄存器后,cpu才能使用。
程序存储器指令寄存器程序计数器地址寄存器2009年05月21日星期四下午 10:411、程序存储器(program storage)在计算机的主存储器中专门用来存放程序、子程序的一个区域。
计算机数据存储的基本概念
计算机数据存储是指计算机系统中的存储主要包括寄存器,内存,外
存等,它包括了一系列的存储设备用于存储计算机中的信息,并且它是保
证计算机系统运行的基础。
数据存储分为内存和外存两部分,它们之间有
很多差异,但二者都可以存放计算机数据。
首先是寄存器。
寄存器也叫寄存器存储器,是计算机中的高速存储器,它由多个计算机指令和数据组成,对指令和数据的存取速度非常快,但它
的存储量非常少,一般只有几十个字节。
其次是内存。
内存是计算机操作系统中的一部分,是计算机的主存储器,也叫主存,它是指用于存储计算机系统中正在运行的程序和运行所需
要的内容的计算机存储器。
内存的存储容量一般介于几百兆到几十兆,它
在计算机运行中是十分重要的,能够提高计算机的运算速度。
最后是外存。
外存是指与主机相外的、以磁带、磁盘、光盘等形式存
在的存储器,它的存储容量一般在几十兆到几千兆之间,是计算机中最大
的存储设备,外存不仅可以存储程序和数据,而且能够持久保存有用的信息。
寄存器跟存储器有什么区别?如仅讨论CPU的范畴:寄存器是CPU内部存储单元,在cpu的内部,,寄存器只是用来暂时存储,是临时分配出来的,断电,后,里面的内容就没了,容量小,速度快,数目有限,CPU访问几乎没有任何延迟,分通用寄存器、特殊功能寄存器,寄存器是中央处理器内的组成部份。
它跟CPU有关。
寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。
在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。
在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
存储器范围最大,它几乎涵盖了所有关于存储的范畴。
你所说的寄存器,内存,都是存储器里面的一种。
凡是有存储能力的硬件,都可以称之为存储器,这是自然,硬盘更加明显了,它归入外存储器行列,由此可见——。
而通常说的存储器是独立于cpu之外的,,容量大,速度稍慢,比如内存,硬盘,光盘等。
从根本上讲,寄存器与RAM的物理结构不一样。
一般寄存器是指由基本的RS触发器结构衍生出来的D触发,就是一些与非门构成的结构,这个在数电里面大家都看过;而RAM则有自己的工艺,一般1Bit由六MOS管构成。
所以,这两者的物理结构不一样也导致了两者的性能不同。
寄存器访问速度快,但是所占面积大。
而RAM相反,所占面积小,功率低,可以做成大容量存储器,但访问速度相对慢一点。
一般数据在内存里面,要处理(或运算)的时候,读到寄存器里面,然后CPU到寄存器里面拿值,拿到运算核内部,算好了在送到寄存器里面,再到内存。
寄存器和cache区别cache是一个高速小容量的临时存储器,可以用高速的静态存储器芯片实现,或者集成到CPU芯片内部,存储CPU最经常访问的指令或者操作数据。
而寄存器不同,寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径,寄存器存放的是当前CPU环境以及任务环境的数据,而cahe则存放最近经常访问的指令和数据的.把CPU比做大脑寄存器就像你正在思考的问题,而cahe就是你的记忆(临时的)大脑的其他部分存储了记忆,但是大脑直接处理比较慢则需要一个更加快的地方来临时存放你从大脑其他部分提取的记忆这个地方就是cahe当然不一样,寄存器是CPU为了运算,存储关键数据的和临时数据的,cache是为了弥补CPU和内存的速度上的差异设置的缓存cache 是给cpu用的,Cache是存储内存中你用过的数据,而且尽量存储用的频繁的数据寄存器是CPU为了运算,必须要有的临时存放数据的器件,而cache是为了弥补CPU和内存的速度上的差异设置的缓存Register可以给Programer用,cache的速度在register与内存之间,所以叫他缓存,起到弥补CPU和内存的速度上的差异这个作用,但是register是为了运算而设置的临时存储单元,register是直接与CPU接触的,是程序员控制CPU的工具,cpu的cache就是高速缓存,分一级和二级,全速和半速,空间相寄存器来说比较大,而register也就是寄存器,是cpu内部运算和执行指令时存放数据的存储器,相对cache来说,空间小很多。
计算机组成原理中的存储器与寄存器计算机组成原理是计算机科学和工程领域中的基础课程,它涉及到计算机的各个组成部分以及它们之间的工作原理。
存储器和寄存器是计算机重要的组成部分,它们在数据存储和数据传输方面起到了至关重要的作用。
本文将深入探讨计算机组成原理中的存储器与寄存器。
一、存储器存储器是计算机用于存储和访问数据的物理组件。
它由一组存储单元组成,每个存储单元可以存储一个固定大小的数据。
存储器根据其访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。
1. 随机存储器(RAM)随机存储器是计算机中最常用的存储器类型之一。
它具有随机访问的能力,即可以直接访问任何存储单元。
RAM是易失性存储器,当计算机断电时,其中的数据将会丢失。
它主要用于存储临时数据和程序指令。
2. 只读存储器(ROM)只读存储器是一种不可更改的存储器,其中的数据在计算机断电时依然保持不变。
ROM常用于存储计算机的固件和启动程序等无需修改的数据。
与RAM不同,ROM无法直接修改其中的数据,因此被称为只读存储器。
二、寄存器寄存器是计算机中最快速的存储器,它被用于执行计算和数据传输等临时性操作。
寄存器具有很高的读取和写入速度,但其容量较小。
计算机中的寄存器包括通用寄存器、特殊寄存器和程序计数器等。
1. 通用寄存器通用寄存器是一类用于存储操作数和计算结果的寄存器。
它们具有固定的位数,通常为32位或64位。
通用寄存器可以存储整数、浮点数和指针等不同类型的数据。
在计算机执行程序时,通用寄存器被广泛用于数据的传递和临时存储。
2. 特殊寄存器特殊寄存器包括程序计数器(PC)、指令寄存器(IR)和状态寄存器等。
程序计数器用于存储下一条要执行的指令地址,指令寄存器用于存储当前正在执行的指令,而状态寄存器用于存储计算机的运行状态信息,如标志位等。
三、存储器与寄存器的作用和区别存储器和寄存器在计算机中起着不同的作用。
1. 存储器的作用存储器主要用于存储程序和数据,可以实现数据的长期保存。
存储器与寄存器设计1. 导言在计算机系统中,存储器和寄存器是两个重要的组成部分。
存储器用于存储数据和指令,而寄存器则用于临时存放和处理数据。
本文将重点论述存储器和寄存器的设计原则和方法。
2. 存储器设计存储器是计算机系统中用于存储数据和指令的设备。
其设计需要考虑容量、速度、稳定性和可靠性等因素。
2.1 存储器类型常见的存储器类型包括随机存取存储器(RAM)、只读存储器(ROM)、闪存等。
在设计存储器时,需要根据应用需求选择合适的类型。
2.2 存储器组织结构存储器的组织结构分为层次式结构和平坦式结构。
层次式结构包括高速缓存、主存储器和辅助存储器,其中高速缓存用于提高读写速度。
平坦式结构指主存储器和辅助存储器直接相连,适用于较小规模的系统。
2.3 存储器管理存储器管理是指对存储器进行分配和回收等操作。
常用的存储器管理方式有静态存储器管理和动态存储器管理。
静态存储器管理通过编译器确定存储器的分配和回收时机,而动态存储器管理由操作系统负责管理。
3. 寄存器设计寄存器是计算机系统中用于临时存放和处理数据的设备。
其设计需要考虑存储容量、读写速度和位宽等因素。
3.1 寄存器的种类常见的寄存器种类包括通用寄存器、特定用途寄存器和状态寄存器等。
通用寄存器用于存放临时数据,特定用途寄存器用于特定计算操作,状态寄存器用于存放处理器的状态信息。
3.2 寄存器位宽寄存器的位宽决定了其可以存储的最大数据量。
在设计寄存器时,需要根据计算需求选择合适的位宽,以提高计算效率。
3.3 寄存器读写速度寄存器的读写速度对计算机系统的性能有重要影响。
为提高读写速度,可采用并行读写、预取和流水线等技术。
4. 存储器与寄存器协同设计存储器和寄存器在计算机系统中紧密配合,提供高效的数据存储和处理能力。
在存储器和寄存器的设计过程中,需要考虑它们的互联和数据传输等问题。
4.1 存储器与寄存器的接口存储器和寄存器通过总线进行数据传输。
在设计存储器与寄存器的接口时,需要考虑数据传输的稳定性和速度。
存储器与寄存器的组成与工作原理存储器与寄存器是计算机系统中重要的组成部分,它们在数据存储和处理方面发挥着关键的作用。
本文将从存储器与寄存器的组成结构、工作原理两个方面进行介绍。
一、存储器的组成与工作原理存储器,简单来说,是用于存储和读取数据的计算机设备。
它由一系列存储单元组成,每个存储单元能够存储一定数量的数据。
根据存取方式的不同,存储器可以分为随机存储器(RAM)和只读存储器(ROM)。
1. 随机存储器(RAM)随机存储器是一种临时存储介质,具有读写功能。
它由一系列存储单元组成,每个存储单元都有一个独立的地址。
数据可以通过地址访问和存取。
随机存储器的存储单元可以分为静态随机存储器(SRAM)和动态随机存储器(DRAM)两种。
静态随机存储器(SRAM)由触发器组成,每个存储单元由6个触发器构成,能够稳定地存储数据。
它的读写速度较快,但芯片密度较低,价格较高。
动态随机存储器(DRAM)利用电容器存储数据,需要定期刷新来保持数据的有效性。
相较于SRAM,DRAM的芯片密度较高,价格也较低,但读写速度较慢。
2. 只读存储器(ROM)只读存储器是一种只能读取数据而不能写入数据的存储设备。
它通常用于存储不会改变的程序代码和固定数据。
只读存储器的存储单元由硅片上的门电路组成,数据在制造过程中被写入,不可修改。
二、寄存器的组成与工作原理寄存器是一种用于暂存和处理数据的高速存储设备。
它位于计算机的中央处理器内部,是一组用于存储指令、地址和数据的二进制单元。
寄存器的组成与存储器相比较小,但速度更快。
它由多个存储单元组成,每个存储单元能够存储一个或多个二进制位。
寄存器的位数决定了其可以存储的数据量大小。
寄存器在计算机中发挥着重要的作用,它可以用于暂存指令和数据,提高计算机的运行效率。
它还可以用于存储地址,使得计算机能够正确地访问存储器中的数据。
寄存器具有多种类型,常见的有通用寄存器、程序计数器、指令寄存器等。
通用寄存器用于存储临时数据,程序计数器用于存储下一条要执行的指令地址,指令寄存器用于存储当前正在执行的指令。
电路基础原理数字信号的存储器与寄存器实现在电路基础原理中,数字信号的存储器与寄存器是关键的组成部分。
它们扮演着信息存储和传输的重要角色。
本文将详细介绍数字信号的存储器与寄存器的实现原理。
1. 数字信号的存储器数字信号的存储器是用于存储二进制数据的电路。
常见的存储器类型包括SR(Set-Reset)存储器、D(Data)存储器和JK存储器等。
其中,SR存储器是最简单的一种。
它有两个输入端,分别是Set和Reset,以及两个输出端,分别是Q和Q'。
当Set端为1,Reset端为0时,SR存储器的状态变为1。
当Set端为0,Reset端为1时,SR存储器的状态变为0。
当Set端和Reset端同时为1时,SR存储器的状态是无法确定的。
为了解决SR存储器的不确定性问题,D存储器应运而生。
D存储器有一个输入端D,即数据输入端。
当D为1时,D存储器的状态变为1;当D为0时,D存储器的状态变为0。
相比于SR存储器,D存储器只有一个输入端,更加简洁。
另一个常见的存储器类型是JK存储器。
JK存储器有两个输入端J和K,以及两个输出端Q和Q'。
当J和K同时为1时,JK存储器的状态不变。
当J为1,K为0时,JK存储器的状态变为1。
当J为0,K为1时,JK存储器的状态变为0。
当J和K同时为0时,JK存储器的状态也是无法确定的。
2. 数字信号的寄存器数字信号的寄存器是一种可以在时钟信号的作用下存储和传输数据的电路。
它常用于在数码管、LED灯等显示设备中,以及在计算机等系统中。
寄存器通常由触发器(Flip Flop)和多路选择器构成。
触发器有很多种类,常见的有D触发器、JK触发器和T触发器等。
与存储器类似,触发器也可以通过时钟信号的作用控制数据的存储和输出。
多路选择器可以选择不同的输入信号,并将其传递到输出端。
对于寄存器来说,多路选择器常用于选择输入信号和输出信号的连接。
寄存器的实现原理是:在每个时钟跳变的时刻,输入信号被保存在触发器中,然后通过多路选择器选择性地传递到输出端。
寄存器与存储器
从根本上讲,寄存器与RAM的物理结构不一样。
一般寄存器是指由基本的RS触发器结构衍生出来的D触发,就是一些与非门构成的结构,个在数电里面大家都看过;而RAM则有自己的工艺,一般1Bit由六MOS管构成。
所以,这两者的物理结构不一样也导致了两者的性能不同。
寄存器访问速度快,但是所占面积大。
而RAM相反,所占面积小,功率低,可以做成大容量存储器,但访问速度相对慢一点。
1、
寄存器存在于CPU中,速度很快,数目有限;
存储器就是内存,速度稍慢,但数量很大;
计算机做运算时,必须将数据读入寄存器才能运算。
2、
存储器包括寄存器,
存储器有ROM和RAM
寄存器只是用来暂时存储,是临时分配出来的,断电,后,里面的内容就没了
寄存器是中央处理器内的组成部分。
寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和地址。
在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。
在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。