赵凯华-电磁学-第三版-第五章-电磁感应与暂态过程-(2)-42-pages
- 格式:ppt
- 大小:1.12 MB
- 文档页数:42
复习提纲第一章§1运用库仑定律§2理解电场强度电场线能用叠加原理求电场分布(包括离散的电荷分布和电荷的连续分布)求带电体在电场中所受的力及其运动§3高斯定理熟练运用高斯定理求解电场§4 理解电势和电势差理解静电场力作功与路径无关及静电场的环路定理能运用叠加原理和电势定义式求电势分布理解等势面理解电势梯度及与电场的关系§5 熟悉导体静电平衡条件理解静电平衡导体的性质、导体上的电荷分布、静电屏蔽熟练掌握有静电平衡导体问题的一般求法§6 了解静电能的概念§7 了解孤立导体的电容熟知典型电容器的电容能熟练求解简单电容器的电容、电容器的能量§9 理解电流密度矢量熟悉并且能运用欧姆定律的微分形式,理解电流的连续性方程、稳恒电流条件理解电动势并且能在电路中运用熟悉例题1—15,22—27。
参考习题3、13、18、25、36、37、46、52、66第二章§1 理解电流的磁效应了解安培定律、电流单位的定义§2 理解B的定义熟悉毕萨定律并且能求解简单情况下的问题(包括2.3, 2.4, 2.5的情形)§3 熟悉安培环路定理且能熟练应用求解问题§4 了解磁场的高斯定理§5 熟悉安培力熟练求解导体棒和线圈在磁场中所受的力和力矩§6 熟悉洛仑兹力及特点,能求解简单磁场分布下带电粒子在磁场中的运动问题理解霍尔效应并且能求解熟悉例题5—8,12--13参考习题1、2、3、4、7、14、16、17、23、28、32、43、50第三章§1 熟悉电磁感应现象能熟练应用电磁感应定律和楞次定律了解涡电流和电磁阻尼§2 熟练应用动生电动势公式了解交流发电机原理理解感生电场能求轴对称磁场情况下感生电动势了解感应加速器§5 理解互感和自感现象能求简单情况的自感和互感、两线圈顺接和反接的自感、互感系数和自感系数的关系熟悉自感磁能的公式,了解互感磁能熟悉例题1—3,7—9,参考习题3、4、5、11、12、14、26、32、35第四章§1 理解极化概念了解极化的微观机制理解极化强度P的定义、退极化场的概念能求解极化电荷面密度熟悉D的定义,理解D、E、P三者的关系能熟练地应用介质中的高斯定理求解问题§2 理解磁化概念了解磁化的微观机制理解磁化强度矢量M的定义、磁介质中的磁场熟悉H的定义,理解H、B、M三者的关系能熟练应用介质中的安培环路定理求解问题§5 熟悉磁介质的分类了解铁磁质的磁化规律§6 了解电磁介质的边界条件了解磁路定理§7 理解电磁场能的概念熟悉电场和磁场的能量密度及电磁场能的计算熟悉例题1--10,15--18参考习题2、5、10、12、14、20、23、34、35(不做(3)问)、60、63、68第五章§1 理解电动势、内阻和路端电压的概念§2 了解金属导电的经典电子论§3 熟练求解简单电路问题熟练应用基尔霍夫定律求解两个回路的问题§4 熟悉LR、LC及LCR电路的特点理解时间常数的意义熟悉例题1、3、4、5参考习题2、10、17、20、28第六章§1 理解位移电流概念了解麦克斯韦方程组及其物理意义§2 了解平面电磁波的性质了解光的电磁理论§3 理解电磁场的能量原理、能流密度矢量§4 了解电磁波的产生赫兹实验§5 了解能量在电路中的传播参考习题1、9。
习题五5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =. (2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.当谐波方程)(cos ux t A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.5-2 波动方程y =A cos [ω(u x t -)+0ϕ]中的ux表示什么?如果改写为y =A cos (0ϕωω+-u x t ),u x ω又是什么意思?如果t 和x 均增加,但相应的[ω(ux t -)+0ϕ]的值不变,由此能从波动方程说明什么?解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;uxω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为 )cos(0φωω+-=uxt A y t则t t ∆+时刻的波动方程为])()(cos[0φωω+∆+-∆+=∆+ux x t t A y t t其表示在时刻t ,位置x 处的振动状态,经过t ∆后传播到t u x ∆+处.所以在)(uxt ωω-中,当t ,x 均增加时,)(uxt ωω-的值不会变化,而这正好说明了经过时间t ∆,波形即向前传播了t u x ∆=∆的距离,说明)cos(0φωω+-=uxt A y 描述的是一列行进中的波,故谓之行波方程.5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点?解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ∂∂/.波动势能则是与x y ∂∂/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=∂∂x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.题5-3图对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化. 5-4 波动方程中,坐标轴原点是否一定要选在波源处? t =0时刻是否一定是波源开始振动的时刻? 波动方程写成y =A cos ω(uxt -)时,波源一定在坐标原点处吗?在什么前提下波动方程才能写成这种形式?解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程写成)(cos ux t A y -=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同?解: 取驻波方程为vt x A y απλπcos 2cos2=,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律可表示为x A λπ2cos2.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别?解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即B v u u +=',因而单位时间内通过观察者完整波的数目λu '也会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题5-6 图多普勒效应5-7 一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质点的振动频率为ν=2. 0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程. 解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为2π,取波动方程为])(2cos[0φλπ++=xT t A y 则有 ]2)12(2cos[1.0ππ++=x t y)224cos(1.0πππ++=x t m5-8 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.5-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m5-10 如题5-10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.(1)若波沿x 轴正向传播,该时刻O ,A ,B ,C 各点的振动位相是多少?(2)若波沿x 轴负向传播,上述各点的振动 位相又是多少?解: (1)波沿x 轴正向传播,则在t 时刻,有题5-10图对于O 点:∵0,0<=O O v y ,∴2πφ=O对于A 点:∵0,=+=A A v A y ,∴0=A φ 对于B 点:∵0,0>=B B v y ,∴2πφ-=B对于C 点:∵0,0<=C C v y ,∴23πφ-=C(取负值:表示C B A 、、点位相,应落后于O 点的位相)(2)波沿x 轴负向传播,则在t 时刻,有对于O 点:∵0,0>'='O Ov y ,∴2πφ-='O对于A 点:∵0,='+='A A v A y ,∴0='A φ对于B 点:∵0,0<'='B B v y ,∴2πφ=B 对于C 点:∵0,0>'='C C v y ,∴23πφ='C(此处取正值表示C B A 、、点位相超前于O 点的位相)5-11 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1,波长为2m ,原点处质点的振动曲线如题5-11图所示. (1)写出波动方程;(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.解: (1)由题5-11(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=,又5.225===λυuHz ,则ππυω52==题5-11图(a)取 ])(cos[0φω+-=ux t A y , 则波动方程为)]235(5cos[1.0ππ+-=x t y m (2) 0=t 时的波形如题5-11(b)图题5-11图(b) 题5-11图(c) 将5.0=x m 代入波动方程,得该点处的振动方程为)5cos(1.0)235.05.055cos(1.0πππππ+=+⨯-=t t y m 如题5-11(c)图所示.5-12 如题5-12图所示,已知t =0时和t =0.5s 时的波形曲线分别为图中曲线(a)和(b) ,波沿x 轴正向传播,试根据图中绘出的条件求: (1)波动方程;(2)P 点的振动方程.解: (1)由题5-12图可知,1.0=A m ,4=λm ,又,0=t 时,0,000<=v y ,∴20πφ=,而25.01==∆∆=t x u 1s m -⋅,5.042===λυu Hz ,∴ππυω==2 故波动方程为]2)2(cos[1.0ππ+-=x t y m(2)将1=P x m 代入上式,即得P 点振动方程为t t y ππππcos 1.0)]22cos[(1.0=+-= m题5-12图5-13 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s -1,波长为2m ,求: (1)波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标;(4) P 点回到平衡位置所需的最短时间.解: 由题5-13图可知1.0=A m ,0=t 时,0,200<=v A y ,∴30πφ=,由题知2=λm , 10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m题5-13图(2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由P 点回到平衡位置应经历的位相角题5-13图(a)πππφ6523=+=∆ ∴所属最短时间为121106/5==∆=∆ππωφt s5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =A cos(0ϕω+t ).(1)分别就图中给出的两种坐标写出其波动方程; (2)写出距P 点距离为b 的Q 点的振动方程. 解: (1)如题5-14图(a),则波动方程为])(cos[0φω+-+=uxu l t A y 如图(b),则波动方程为题5-14图])(cos[0φω++=uxt A y(2) 如题5-14图(a),则Q 点的振动方程为 ])(cos[0φω+-=ubt A A Q 如题5-14图(b),则Q 点的振动方程为])(cos[0φω++=ubt A A Q5-15 已知平面简谐波的波动方程为)24(cos x t A y +=π(SI).(1)写出t =4.2 s 时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何时通过原点?(2)画出t =4.2 s 时的波形曲线. 解:(1)波峰位置坐标应满足ππk x t 2)24(=+ 解得 )4.8(-=k x m (,2,1,0±±=k …) 所以离原点最近的波峰位置为4.0-m . ∵uxt t t ωωππ+=+24 故知2=u 1s m -⋅,∴ 2.024.0=-='∆t s ,这就是说该波峰在2.0s 前通过原点,那么从计时时刻算起,则应是42.02.4=-s ,即该波峰是在4s 时通过原点的.题5-15图(2)∵2,4==u πω1s m -⋅,∴12===ωπλuuT m ,又0=x 处,2.4=t s 时,ππφ8.1642.40=⨯=A A y 8.02.44cos 0-=⨯=π又,当A y -=时,πφ17=x ,则应有πππ1728.16=+x 解得 1.0=x m ,故2.4=t s 时的波形图如题5-15图所示5-16 题5-16图中(a)表示t =0时刻的波形图,(b)表示原点(x =0)处质元的振动曲线,试求此波的波动方程,并画出x =2m 处质元的振动曲线.解: 由题5-16(b)图所示振动曲线可知2=T s ,2.0=A m ,且0=t 时,0,000>=v y , 故知20πφ-=,再结合题5-16(a)图所示波动曲线可知,该列波沿x 轴负向传播,且4=λm ,若取])(2cos[0φλπ++=xT t A y题5-16图则波动方程为]2)42(2cos[2.0ππ-+=x t y 5-17 一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为18.0×10-3J ·m -2·s -1,频率为300 Hz ,波速为300m ·s -1,求 : (1)波的平均能量密度和最大能量密度? (2)两个相邻同相面之间有多少波的能量?解: (1)∵ u w I =∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅ 4max 102.12-⨯==w w 3m J -⋅(2) νπλπωu d w d wV W 224141=== 7251024.9300300)14.0(41106--⨯=⨯⨯⨯⨯=πJ5-18 如题5-18图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求: (1) 1S 外侧各点的合振幅和强度; (2) 2S 外侧各点的合振幅和强度解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ2121114,2A A I A A A A ===+=5-19 如题5-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5m ,波速u =0.2m ·s -1,求:(1)两波传到P 点时的位相差;(2)当这两列波的振动方向相同时,P 处合振动的振幅;*(3)当这两列波的振动方向互相垂直时,P 处合振动的振幅. 解: (1) )(2)(12BP CP ---=∆λπϕφφ)(BP CP u --=ωπ0)4.05.0(2.02=--=ππ题5-19图(2)P 点是相长干涉,且振动方向相同,所以321104-⨯=+=A A A P m(3)若两振动方向垂直,又两分振动位相差为0,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,所以合振幅为33122211083.210222--⨯=⨯==+=A A A A m5-20 一平面简谐波沿x 轴正向传播,如题5-20图所示.已知振幅为A ,频率为ν 波速为u .(1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;(2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置.解: (1)∵0=t 时,0,000>=v y ,∴20πφ-=故波动方程为]2)(2cos[ππ--=u x t v A y m题5-20图(2)入射波传到反射面时的振动位相为(即将λ43=x 代入)2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为ππλλπ25432-=-⨯-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为 ]2)(2cos[ππυ-+=u x t A y 反 此时驻波方程为 ]2)(2cos[ππυ--=u x t A y ]2)(2cos[ππυ-++u x t A )22cos(2cos2ππυπυ-=t u x A 故波节位置为2)12(22πλππυ+==k x u x 故 4)12(λ+=k x (,2,1,0±±=k …)根据题意,k 只能取1,0,即λλ43,41=x 5-20 一驻波方程为y =0.02cos20x cos750t (SI),求:(1)形成此驻波的两列行波的振幅和波速;(2)相邻两波节间距离.解: (1)取驻波方程为 t u x A y πυπυ2cos 2cos2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅ (2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离 157.02==∆λx m5-22 在弦上传播的横波,它的波动方程为1y =0.1cos(13t +0.0079x ) (SI)试写出一个波动方程,使它表示的波能与这列已知的横波叠加形成驻波,并在x =0处为波 节.解: 为使合成驻波在0=x 处形成波节,则要反射波在0=x 处与入射波有π的位相差,故反射波的波动方程为)0079.013cos(1.02π--=x t y5-23 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =0.06cos(t x ππ4-)(SI), 2y =0.06cos(t x ππ4+)(SI).(1)试证明绳子将作驻波式振动,并求波节、波腹的位置;(2)波腹处的振幅多大?x =1.2m 处振幅多大?解: (1)它们的合成波为)4cos(06.0)4cos(06.0t x x y ππππ++-=t x ππ4cos cos 12.0=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动.令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置; 令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置. (2)波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即 097.0)2.1cos(12.0=⨯=π驻A m5-24 汽车驶过车站时,车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz ,设空气中声速为330m ·s -1,求汽车的速率.解: 设汽车的速度为s v ,汽车在驶近车站时,车站收到的频率为 01υυsv u u -= 汽车驶离车站时,车站收到的频率为02υυs v u u +=联立以上两式,得3010012001000120030021211=+-⨯=+-=υυυυυu 1s m -⋅ 5-25 两列火车分别以72km ·h -1和54 km ·h -1的速度相向而行,第一 列火车发出一个600 Hz的汽笛声,若声速为340 m ·s -1,求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少?解: 设鸣笛火车的车速为201=v 1s m -⋅,接收鸣笛的火车车速为152=v 1s m -⋅,则两者相遇前收到的频率为 66560020340153400121=⨯-+=-+=υυv u v u Hz 两车相遇之后收到的频率为54160020340153400121=⨯+-=+-=υυv u v u Hz。
第1章电磁学教学大纲(包括讲座共60学时)第2章静电场参考学时 10§1 库仑定律•扭称实验及其它实验,电力平方反比律•库仑定律的物理内涵•库仑定律的成立条件• 电荷守恒定律,电荷的量子性§2 电场电场强度•电场,电场强度矢量•场强叠加原理§3 静电场的高斯定理•源与旋,通量与环流•静电场的高斯定理§4 静电场的环路定理电势•静电场的环路定理•关于静电场高斯定理和环路定理的几点说明•电势•场强与电势的微分关系§5静电场的基本微分方程*讲座:“电力平方反比律的理论与示零实验”;第3章静电场中的导体和电介质参考学时 8§1导体和电介质§2 静电场中的导体•导体的静电平衡条件•导体空腔与静电屏蔽•导体的静电平衡的基本性质•静电场边值问题的唯一性定理•尖端放电及其应用§3电容和电容器•孤立导体的电容•电容器及其电容•平行板电容器球形电容器同轴柱形电容器•分布电容•电容器的串并联§4 电介质极化•极化的微观机制•极化的描绘•极化强度矢量P和极化电荷q’的关系•极化强度矢量P和总电场E的关系——极化规律•各向异性电介质铁电体•例题§4有介质时的静电场•有介质时的高斯定理电位移矢量•应用例举§5静电场的边界条件•D的法向分量连续•E的切向分量连续§5带电体系的静电能•带电体系的静电势能•电容器储存的静电能•静电场的能量第4章直流电参考学时 4§1电流的连续性方程恒定条件·电流和电流密度矢量·电流的连续性方程恒定条件§2欧姆定律· 欧姆定律(积分形式)·电阻率和电导率·欧姆定律(微分形式)·焦耳定律•金属导电的经典微观解释§3 电源和电动势•电源的电动势•电源的路端电压•电源的功率•直流电路中的静电场的作用•温差电动势§4 直流电路•简单电路·复杂电路基尔霍夫定律第5章恒定磁场参考学时 10§1奥斯特实验•磁的基本现象•奥斯特实验•相关实验•研究课题§2毕奥-萨伐尔定律•毕奥-萨伐尔定律的建立•磁感应强度•载流回路的磁场§3磁场的“高斯定理”和“安培环路定律”•磁感应线•磁场的高斯定理•矢势*•磁单极* •安培环路定理§4安培定律•安培定律的建立* •安培定律=毕萨定律+安培力公式•磁场对载流线圈的作用,磁矩含讲座:“毕奥-萨筏尔定律、安培定律的示零实验”;§5 洛伦滋力•洛仑兹力•带电粒子在均匀电磁场中的运动•回旋加速器基本原理•霍耳效应•J.J.Thowmson的阴极射线实验,电子的发现•例题含讲座:“带电粒子在电磁场中的运动—磁约束、漂移、寝渐不变量”;第6章磁介质参考学时 4§1“分子电流”模型§2 顺磁质与抗磁质•顺磁质•抗磁质§3 磁化规律• 磁化的描绘•磁化强度矢量M与磁化电流I’的关系• 磁化强度矢量M与总磁感应强度B的关系§4有磁介质存在时的磁场•有磁介质存在时的磁高斯定理•有磁介质存在时的安培环路定理•磁介质的磁化规律§4 铁磁质•铁磁质的磁化规律•铁磁质磁化机制•铁磁材料的分类及其应用§5磁场的边界条件和磁路定理•B的法向分量连续•H的切向分量连续•磁路定理•磁屏蔽第7章电磁感应参考学时 10§1法拉第电磁感应定律•电磁感应现象的发现•法拉第对电磁感应的研究*•法拉第电磁感应定律•楞次定律•涡电流,电磁阻尼和电磁驱动含讲座:“法拉第电磁感应定律及其定量表达式”;§2动生电动势感生电动势涡旋电场•动生电动势•感生电动势,涡旋电场•交流发电机原理•电子感应加速器§3自感与互感•自感系数与互感系数•自感磁能与互感磁能•磁场的能量与能量密度§4暂态过程• RL电路的暂态过程•RC电路的暂态过程•RLC电路的暂态过程•灵敏电流计讲座:“超导体”;第8章交流电参考学时 8§1交流电概述• 各种形式的交流电• 简谐交流电的特征量• 几点说明§2交流电路中的基本元件•电阻元件•电感元件•电容元件•小结§3 元件的串联、并联——矢量图解法•串联电路•并联电路•多个元件的串、并联电路§4 交流电路的复数解法•交流电的复数表示法• 串、并联电路的复数解法• 串、并联电路的应用•复数形式的基尔霍夫定律•交流电桥§5 谐振电路•串联谐振电路•并联谐振电路• Q值的物理意义•谐振电路应用例举§6 交流电功率•瞬时功率、平均功率和功率因数•有功电阻与电抗•有功电流和无功电流•视在功率和无功功率•提高功率因数的意义•提高功率因数的方法§7 变压器简介•理想变压器•电压变比公式•电流变比公式•阻抗变比公式•功率传输效率§8 三相交流电•三相交流电• 相电压、线电压•负载的联接•三相电功率第9章麦克斯韦方程组——电磁波参考学时6讲座:“Maxwell电磁理论的建立”§1位移电流•电磁场的基本规律•位移电流§2麦克斯韦方程组•积分形式•微分形式•边界条件§3电磁波•电磁波的产生和传播•赫兹实验•电磁波的性质•电磁场的能量与动量•电磁波的传输与辐射•电磁理论与时空观狭义相对论的提出•麦克斯韦*。