有理数乘法(2)有理数乘法运算律
- 格式:doc
- 大小:46.50 KB
- 文档页数:7
说一说我们学过的有理数的运算律:加法交换律:a +b=b+a ; 加法结合律:(a +b)+c=a +(b+c);乘法交换律:a b=b a ; 乘法结合律:(a b)c=a (bc);乘法分配律:a (b+c)=a b+a c这个算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
2.有理数混合运算的运算顺序规定如下:①先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
②可以应用运算律,适当改变运算顺序,使运算简便。
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;③同级运算,按从左往右的顺序进行,这一点十分重要。
三、课堂小结:理数混合运算的规律:1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算。
有理数的混合运算的关键是运算的顺序,运算法则和性质,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,在此基础上对其运算顺序也应熟知,只要这两个方面学的好,掌握牢在运算过程中,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算适度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜卷。
1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘都得0;(3)多个有理数相乘:a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
§1.4.1 有理数的乘法(一)一、教案目标知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
过程与方法:通过教案,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
情感与态度:激发学生学习数学的兴趣,传授知识的同时。
注意培养学生勇于探索新知的精神。
二、教案重、难点重点:有理数的乘法法则。
难点:有理数乘法中的符号法则。
三、教案过程四、板书设计五、课后反思以观察为起点,以问题为主线,以能力培养为核心的宗旨:遵照教师为主导,学生为主体,训练为主线的教案原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教案法,通过课件和师生的双边活动,使学生的知识和能力得到提高。
通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,从而更好的促进学生全面、持续、和谐的发展。
1.4.1 有理数的乘法(二)教案目标:(一)知识与技能:会运用乘法运算律简化乘法运算。
(二)方法与过程:1、利用乘法运算律进行简便运算。
2、训练学生的运算技巧。
(三)情感态度与价值观:培养学生的语言表达能力,以及与他人沟通,交流的能力,增强学习数学的自信心。
教案重点:会运用乘法运算律简化乘法运算。
教案难点:运用运算律,使运算简化学法指导:自主,合作,探究教案过程一.回顾知识,导入新课1.小学我们已经学过那些乘法运算律?这些运算律有什么用途?这些运算律在有理数运算范围内同样适用,我们这节课将学习利用乘法运算律进行简便运算。
(幻灯片展播板书课题)2.出示三维目标及学法指导(幻灯片展播三维目标)二.自主,合作学习新课(一)导:学法指导:自主合作学习教材P32~ P35例4前1.动手计算书中的算式,体会感知三大运算律在有理数范围内仍然成立。
2.用心看例4,并动笔算一算,然后回答例4后的思考。
(二)学——自主合作学习教材P32~ P35例4前检测看书效果:学生先回答书中的问题,再独立完成 P32练习题 (1)抽3位同学上黑板演算,其余同学在作业本上演算 (2)讨论更正,合作探究先学生自由更正,或写出不同解法,然后评讲。
有理数乘法的运算律及运用有理数乘法的运算法则可不是闹着玩的,它就像一把神奇的魔法棒,能让我们轻松解决生活中的数学难题。
从最简单的乘法开始说起吧,比如说你有个正数乘以另一个正数,结果就更大了嘛,简直是又多又好。
想象一下,你手里有两个苹果,每个苹果都是正的,那你一共有多少苹果呢?嗯哼,这就是加法的逻辑,不过我们今天是讲乘法呢,所以稍微改个口味,假设你有两袋糖果,每袋糖果也是正的,那你一共会有多少糖果呢?没错,就是乘法的魔力,一个袋子乘以另一个袋子,结果更甜更多!但是,生活中不光有甜的,还有酸的,比如说负数。
别怕,负数也能乘,不过得看你怎么玩了。
有个负数乘以另一个负数,结果竟然是正的,这是哪门子魔法?!别问,这就是数学的深奥之处,有时候负负得正,就像吃了个酸梅,开始酸爽无比。
就好像你有一堆欠债,然后再借出去一堆,结果是不是好像没欠债一样?那就是负负得正的生活哲学,用数学的语言来诠释,就是乘法法则的精髓所在。
哎呀,还有一种情况,一个正数乘以一个负数。
这时候结果是不是感觉有点怪怪的?像是吃了口酸奶,又甜又酸的那种感觉。
有一把钱乘以一个欠账,结果就像是借东西给人,手里的钱越来越少。
数学里这叫做相反数相乘,有点像两个人站在对立面,相乘后是不是就像变成一条线了呢?反正乘法法则就是这么个道理,见仁见智,各有千秋。
嘿,说了这么多,还没跟你讲除法呢。
别着急,我们先集中精力在乘法上,毕竟得专心做好每一步才行。
有理数乘法有个特别酷的性质,就是乘法的交换律,啥意思?就是乘法里数的位置换了也没事,结果还是一样的。
这不就像是你跟哥们交换了一下位置,但最后还是可以找到同一个好去处一样?所以,无论你是先乘前面那个数还是后面那个数,乘出来的答案永远都是老规矩,不偏不倚。
有理数的乘法还有个伙伴,那就是分配律。
这个法则就像是数学里的老大哥,一挥手,乘法和加法就一起来报道了。
比如说你有个数,它乘了括号里的两个数,结果就跟先把这两个数分别乘了再加起来一样。
有理数的乘除及乘方一、有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得 ,异号得 ,并把绝对值 .(2)任何数同零相乘,都得 .例题:①(-3) ×(+8)=__________;②173()()64-⨯+=________;③8( 2.3)()5-⨯-=__________; ④123()()54+⨯+=__________;⑤2()05-⨯=__________. (3)几个不等于0的数相乘,积的符号是由负因数的个数绝定的,当负因数有奇数个时,积得 ,当负因数有偶数个时,积得 .例题:①(-5)×(-6)×3×(-2)=__________;②(-2)×3×4×(-1)×(-3) =__________;③(-3)×(-1)×2×(-6)×0×(-2)=__________.2.有理数的乘法的运算律:交换律:a ×b=________; 结合律:(ab)c=__________=________;分配律: a(b+c)=___________. 例题:计算①118(0.36)()()411-⨯+⨯- ②-13×23-0.34×27+13×(-13)-57×0.34 ③231()243412--⨯ ④-3.14×35.2+6.28×(-23.3)-1.57×36.4 二、有理数的除法1.有理数除法法则:(1)两数相除,同号得 ,异号得 ,并把绝对值________.(2)0不能做除数,零除以任何一个__________零的数,都得零. (3)除以一个不为零的数等于乘以这个数的_________.注意:除法没有分配律,有括号时要先作括号内的.例题1:①(+28)÷(-7)=___________; ②515()()124+÷-=_______________; ③4(0.24)()5-÷-=_____________; ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题2:化简下列各式:①246-=________; ②279--=___________;③213-=__________;④07-=________. ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题3:计算①(-120)÷(-5)÷(-8) ②(-49)÷1(2)3-÷73÷(3)- ③18÷11()63- ④2(4)3-÷127-三、有理数的乘方1.求几个_________因数的积的运算,叫乘方.乘方的结果叫做_______.乘方是特殊的乘法运算.如果有n 个a 相乘,可以写为n a .nn a a a a = 个其中,n a 叫做a 的n 次方.也叫做a 的n 次幂. a 叫做幂的_________,a 可以取任何有理数;n 叫做幂的_________,可取任何正整数. 例题1:把下列各式写成乘方运算的形式,并指出底数和指数各是什么?①(-1.5)·(-1.5)·(-1.5)·(-1.5)=____________________底数是__________指数是____________.②111111555555⨯⨯⨯⨯⨯=____________________ 底数是__________指数是____________.例题2:① (-3)4=_________; ②0.53=_______; ③-44=________; ④-(-2)6=________⑤32()3=_______.2.幂运算性质:(1)正数的任何次幂都是________(正,负)数,负数的______(奇,偶)次幂是负数,负数的偶次幂是______数. (2)任何一个不为_______的数的零次幂都等于_______.例题1: ①(-5)4=_______; ②-54=________;③(-1)101=_______; ④-1100=_______;⑤302()3-=________.例题2:计算①2221(6)()72(3)3-÷--+⨯- ②232100(2)(2)()(2)3÷---÷-+- ③23118(3)5()(15)52-÷-+⨯---÷ ④0322004111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦3.有理数的混合运算的顺序;先算乘方,再算乘除,最后算加减.同级运算从左到右.如果有括号先算括号里面的,按小括号,中括号,大括号依次进行.例题:计算①()3111(2)30.4122⎧⎫⎡⎤⎛⎫----+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ (注意运算顺序) ②753()18 1.456 3.9569618-+⨯-⨯+⨯ (应用分配律)③()()()21034454512242⎡⎤-⨯---÷--+⎣⎦(化繁为简) 四、有效数字和科学记数法1.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数位数只有_______的数, 即110a ≤<,n 是比原数的整数部分的位数少1的正整数.像这种记数法叫____________.例.8900000=8.9×106 286000=2.86×105 1003400=1.0034×106 例题1:用科学记数法表示下列各数. ①135000;②329.506;③1000000000.例题2:下列各数是用科学记数法表示的,请写出这个数. ①5.7×105;②3.72×107;③2.0×109.2.近似数就是与实际很接近的数.精确度是近似数的精确程度,一般有两种形式(1)一个近似数四舍五入到哪一位,就称这个近似数精确到哪一位.例.π≈3 (精确到个位) π≈3.1 (精确到0.1, 或叫做精确到十分位)π≈3.14(精确到0.01, 或叫做精确到百分位)π≈3.141(精确到 , 或叫做精确到 .)π≈3.1416(精确到 , 或叫做精确到 .)(2)一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字.一个近似数有几个有效数字就称这个近似数保留几个有效数字.例题:用四舍五入法对下列各数取近似数. ①0.056846(保留4个有效数字) ②4672164(保留5个有效数字) ③2.5(保留3个有效数字) ④0.005876(保留3个有效数字)。
专题04 有理数的乘除法重点突破知识点一 有理数的乘法 有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0.倒数:乘积是1的两个有理数互为倒数。
【注意】0没有倒数。
(数()0a a ≠的倒数是1a)确定乘积符号:(1)若a <0,b >0,则ab < 0 ;(2)若a <0,b <0,则ab > 0 ;(3)若ab >0,则a 、b 同号 (4)若ab <0,则a 、b 异号(5)若ab = 0,则a 、b 中至少有一个数为0. 多个有理数相乘的法则及规律:(1)几个不是0的数相乘,负因数的个数是奇数时,积是负数; 负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0.[注意]在乘法计算时,遇到带分数,应先化为假分数;遇到小数,应先化成分数,再进行计算。
有理数的乘法运算律乘法交换律:两个数相乘,交换因数的位置,积相等。
即a b b a ⨯=⨯。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即()()a b c a b c ⨯⨯=⨯⨯。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
即()a b c a b a c ⨯+=⨯+⨯。
知识点二 有理数的除法 有理数除法法则:(1)除以一个不为0的数,等于乘以这个数的倒数。
即()10a b a b b÷=⨯≠。
(2)两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除。
【注意】0除以任何不为0的数,都得0。
除法步骤:1.将除号变为乘号。
2.将除数变为它的倒数。
3.按照乘法法则进行计算。
考查题型考查题型一有理数的乘法运算典例1.(2018·重庆市期末)在﹣2,3,4,﹣5这四个数中,任取两个数相乘,所得积中最大的是()A.20 B.﹣20 C.12 D.10【答案】C【解析】本题考查的是有理数的乘法根据有理数乘法法则:两数相乘,同号得正,异号得负,而正数大于一切负数,可知同号两数相乘的积大于异号两数相乘的积,则只有两种情况,-2×(-5)与3×4,比较即可得出.,,所得积最大的是,故选C。
1.有理数的乘法(1)有理数的乘法法则:两个数相乘,同号得__________,异号得__________,并把__________相乘;任何数与0相乘,都得__________;(2)倒数的定义:乘积为__________的两个数互为倒数.注意:①__________没有倒数;②求假分数或真分数的倒数,只要把这个分数的分子、分母__________即可;求带分数的倒数时,先把带分数化为__________,再把分子、分母颠倒位置;③正数的倒数是__________,负数的倒数是__________;(即求一个数的倒数,不改变这个数的__________)④倒数等于它本身的数有__________个,分别是__________,注意不包括0.(3)有理数乘法的运算律:乘法交换律:两个数相乘,交换__________,积相等,即__________.乘法结合律:三个数__________,先把前两个数__________,或者先把后两个数__________,积相等,即(ab)c=__________.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数__________,再把积__________,即a(b+c)=__________.(4)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(5)几个数相乘,有一个因数为0,积就为0.(6)任何数同1相乘仍得原数,任何数同–1相乘得原数的相反数.2.有理数的除法(1)有理数除法法则:除以一个__________的数,等于乘这个数的__________.即a b÷= __________.(2)从有理数除法法则,容易得出:两个数相除,同号得__________,异号得__________,并把__________相除.0除以任何一个__________的数,都得__________.3.有理数的乘除混合运算(1)因为乘法与除法是同一级运算,应按__________的顺序运算.(2)结果的符号由算式中__________的个数决定,负因数的个数是__________时结果为正,负因数个数是__________时结果为负.(3)化成乘法后,应先约分再相乘.(4)有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果. K 知识参考答案:1.(1)正,负,绝对值,0(2)1,0,颠倒位置,假分数,正数,负数,符号,两,1和–1(3)因数的位置,ab =ba ,相乘,相乘,相乘,a (bc ),相乘,相加,ab +bc2.(1)不等于0,倒数,1a b(b ≠0)(2)正,负,绝对值,不等于0,0 3.(1)从左到右(2)负因数,偶数,奇数一、有理数的乘法【例1】计算3×(–1)×(–31)=__________. 【答案】1【解析】3×(–1)×(–31)=3×1×31=1.【名师点睛】先根据有理数乘法的符号法则判断符号,再把绝对值相乘即可得到结果. 二、有理数的乘法运算律乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a(bc ).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a(b+c)=ab+ac.【例2】(–0.25)×(–79)×4×(–18).【答案】–14【解析】原式=–(14×79×4×18)=–(14×4×79×18)=–14.【名师点睛】①几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;几个数相乘,如果其中有因数为0,那么积等于0.②通过灵活运用乘法的运算律,可以使计算过程简单化.三、有理数的除法1.除以一个数等于乘以这个数的倒数.2.两数相除,同号得正,异号得负,并把绝对值相除.3.0除以任何一个不等于0的数,都得0.【例3】两个有理数的商是正数,那么这两个数一定A.都是负数B.都是正数C.至少一个是正数D.两数同号【答案】D【解析】根据有理数的除法法则,可得,两个有理数的商是正数,那么这两个数一定同号,故选D.【名师点睛】在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;除法算式中的小数常化成分数,带分数常化成假分数,以利于转化为乘法时约分;0不能作除数(即分母).四、有理数的加减乘除四则运算有理数的加减乘除四则运算:在运算时要注意按照“先乘除,后加减”的顺序进行,如有括号,应先算括号里面的.在同级别运算中,要按从左到右的顺序来计算,并能合理运用运算律,简化运算.【例4】下面是某同学计算(−)÷(−+−)的过程:解:(−)÷(−+−)=(−)÷+(−)÷(−)+(−)÷+(−)÷(−)=(−)×+×10−×6+×=(−)+−+=.细心的你能否看出上述解法错在哪里吗?请给出正确解法.【答案】见解析.【名师点睛】此题是有理数的混合运算,运算过程中要正确理解和使用运算律.。
1.4.1有理数的乘法(2):1.有理数的乘法法则:两数相乘,同号得正,异号得负,并把所得的绝对值相乘。
任何数与0相乘,都得0.2.乘积是1的两个数互为倒数。
3.几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。
4.几个数相乘,如果其中有因数为0,那么积等于0.5、有理数乘法的法则:(1)两个数相乘,交换因数的位置,积相等。
a×b=b×a(2)三个数相乘,先把前两个相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac自主学习一:阅读p32页,例如:5×(—6)= ,(—6)×5=则:5×(—6)(—6)×5乘法的交换律:ab=例如:计算[3×(—4)]×(—5)3×[(—4)×(—5)]比较它们的结果。
乘法结合律:(ab)c=例如:5×[3+(—7)] 5×3+5×(—7)乘法的分配律:a(b+c)=例4:用两种方法计算111+462⨯(—)12练一练:1.(—85)×(—25)×(—4)2.9130 1015⎛⎫⨯ ⎪⎝⎭—3.711587⎛⎫⨯⨯⎪⎝⎭—(—1)4.62617++5353⎛⎫⨯⨯⎪⎝⎭—(—)(—)()5.81.25825⎛⎫⨯⨯⎪⎝⎭—(—)自主探究:314⨯(—35)(—7)1832⨯—25157116⨯(—8)综合应用:111721+7732222⨯⨯⨯(3)(31121111+43232322⨯⨯⨯⨯(—2)(—4)—(—2)(4)—21.下列说法正确的有( )①.两数相乘,若积为正数,则这两个因数都是整数②同号两数相乘,取原来的符号,并把绝对值相乘③两数相乘,若积为负数,则这两个因数都是负数④.一个数乘以—1,便得这个数的相反数A.1个B.2个C.3个D.4个2.下列计算正确的是( )A.—5×(—4)×(—2)×(—2)=5×4×2×2=80B.11=++=34⨯(—12)(——1)—4310C.(—9)×(—4)×5×0=9×4×5=180D.—2×5—2×(—1)—(—2)×2=—2×(5+1—2)=—83.|—3|的倒数是( )A. —3B. 3C. 13—D. 134.如果两个数的乘积是正数,那么这两个有理数一定是( )A.都是正数B. 都是负数C. 符号相同D. 符号相反5.在—2,3,4,—5这四个数中,任取两个数相乘,所得的积是最大的是()A.20B. —20C. 12D.—126.已知|a|=1,|b|=2,则a 与b 的乘积等于( )A. 2B. —2C. ±2D. 07.计算41+=+54⨯—(10 ,这一步应用的运算律是( )A.加法结合律B. 乘法结合律C. 乘法交换律D.乘法分配律8.绝对值不大于4的所有的负整数的积等于( )A.—24B. 24C. 0D. —6 9.已知a <0,—1<b <0,则a ,ab ,ab 2,由大到小的顺序排列10.如果有理数a 的倒数的相反数是23—,那么这个数a 是11.已知|m|=8,|n|=6,m+n <0,则 1mn=212.计算:+⨯⨯(—6)(25)(—0.04) (97 -65 +43 -187 )×36(-5)×(+731 )+(+7)×(-731)-(+12)×73113.运用运算规律计算:1.25⨯⨯⨯⨯⨯(—2.5)(—0.5)428 249925⨯(—5)14.设A B A B A B *=⨯++,例如,2*3=2×3+2+3=11,试计算下列各式,(1)1135*(—)(—)(2)[(—2)*4]*(—6)。
有理数的运算(乘、除、乘方)教学目的:1、 理解有理数的乘法法则;掌握异号两数的乘除运算的规律:2、 会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、 有理数的乘法、除法法则:2、 熟练的进行有理数乘法、除法、乘方运算。
教学难点:若干个有理数柑乘,积的符号的确定,乘方的符号确世。
有理数的乘法有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例题目的:掌握有理数的乘法法则。
有理数乘法法则的推广:(1) 几个不等于0的数相乘,积的符号由负因数的个数决定。
当负数的个数为奇数时,积为负,当负因数为偶数个时,积为正。
(2) 几个数相乘,有一个因数为0,积为0. ⑵ 1^X (-1)X (-2.5)X (-A) 3 9 25例®目的:会算两个以上有理数的乘法,并能判定积的符号。
有理数乘法的运算律:衽有理数运算中,乘法的交换律,结合律以及乘法对加法的分配律仍然成立。
乘法交换律:两个数相乘,交换因数的位S,积不变,用式子表示为a b=b a例1:计算⑴(-5)x(-3)⑵(一7)x41 7例 2: (I) -X(--)x(-4)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a ・b)・c=a ・(b ・c)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘. 用字母表示成-a(b+c)=a ・b+a ・c⑶7唏心)例題目的:掌握有理数乘法的运算律。
有理数的除法法则两个有理数相除,同号得正,异号向负,并把绝对值相除。
0除以任何非0的 数都得0。
倒数与负倒数的概念:乘积为1的两个有理数互为倒数,即若a, b 互为倒数,则ah = l ; 乘积为一1的两个有理数互为负倒数,即若互为负倒褻 则a b = -l法则2:除以一个数等于乘以这个数的倒数,即《4 ="・一0式0) b 例4: 1.求下列各■数的倒数,负倒数。
有理数的乘法(二)一、学生起点分析:学生的知识技能基础:学生在小学已经学习过四则运算的五条运算律,并初步体验到了运算律可以简化运算,具备了对非负有理数运用运算律进行简便运算的意识和技能。
在本章的第四节的第二课时又熟悉了有理数的加法交换律与加法的结合律,并经历了它们的探索活动过程,具有了探索学习有理数的乘法交换律、乘法结合律、乘法对加法的分配律的基本技能基础,尤其是上节课有理数的乘法法则更是重要的知识基础。
学生的活动经验基础:学生在探究有理数加法的交换律、结合律的活动过程中,已经有了切身的体验,积累了经验,丰富了阅历,并体会到了运算律对有理数加法的简化作用,这不仅在探索方法上提供了经验基础,而且从情趣意识、求知欲望上也为本节可增添了兴趣基础。
另外上节课学生在有理数乘法法则的训练过程中曾经出现的问题和解决修正的过程,也是本节课学习的有用经验。
二、学习任务分析:教科书在学生已掌握了有理数加法、减法、乘法运算的基础上,提出了本节课的具体学习任务:探索发现有理数长法的运算律,会运用运算律简化运算过程。
本节课的教学目标是:1.经历探索有理数的乘法运算律的过程,发展观察、归纳、猜想、验证等能力。
2.学会运用乘法运算律简化计算的方法,并会用文字语言和符号语言表述乘法运算律。
3.在合作学习过程中,发展合作能力和交流能力。
三、教学过程设计:本节课设计了六个环节:第一环节:探究猜想,引入新课;第二环节:文字表达,理解运算律;第三环节:符号表达,熟悉运算律;第四环节:体验运算律简化计算作用;第五环节:课堂小结;第六环节:布置作业。
第一环节:探究猜想,引入新课活动内容:(1)根据有理数乘法法则,计算下列各题,并比较它们的结果:⑴(-7)×8与8×(-7);(-5÷3)×(-9÷10)与(-9÷10)×(-5÷3)⑵[(-4)×(-6)]×5与(-4)×[(-6)×5];[1÷2×(-7÷3)]×(-4)与1÷2×[(-7÷3)×(-4)];⑶(-2)×[(-3)+(-3÷2)]与(-2)×(-3)×(-2)×(-3÷2);5×[(-7)+(-4÷5)]与5×(-7)+5×(-4÷5);(2)通过计算积的比较,猜想乘法运算律在有理数范围内是否适用。
活动目的:复习巩固有理数的乘法法则,训练学生的运算技能,通过比较结果,探究猜想乘法交换律、结合律、分配律在有理数范围内使用的结论,从而引入本节课的课题:乘法运算律在有理数运算中的应用。
活动的注意事项:在以上的活动⑴中,学生在计算过程中肯定会有一些错误,教师应事先有所预料,可采取分组竞赛的方式进行活动以激发兴趣和提高运算准确性和述度,同时教师应有针对性的巡视,对有困难的学生加以指导和帮助,并对学生的表现给出正面评价。
在活动⑵中,学生经过正确计算后,自然会发现计算结果分别相等。
此时,教师应出示相等的算式,最好用投影展示:⑴(-7)×8=8×(-7);(-3÷5)×(-10÷9)×=(—10÷9)×(-3÷5);⑵[(-4)×(-6)]×5=(-4)×[(-6)×(-5)];[1÷2×(-7÷3)]×(-4)=1÷2×[(7÷3)×(-4);]⑶(-2)×[(-3)+(-3÷2)]=(-2)×3+(-2)×(-3÷2);5×[(-7)+(-4÷5)]=5×(-7)+5×(-4÷5)。
这样便于学生观察猜想,乘法的运算律在有理数范围内适用。
第二环节:文字表达,理解运算律活动内容:通过回忆交流,相互补充,用文字语言准确表达乘法运算律。
乘法运算律有三条,分别是乘法的交换律;乘法的结合律;乘法对加法的分配律。
乘法的交换律:两个数相乘,交换因数的位置,积不变;乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;乘法对加法的结合律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
活动目的:以讨论回顾的形式口头表达乘法运算律,一方面达到训练学生语言表达能力的目的,另一方面达到理解乘法运算律的目的,并为本课时下一环节的实施作准备。
活动的注意事项:学生在表述出现语言障碍,教师应设法给予帮助,但主要应由学生通过回忆、讨论、交流、修正、补充自己完成,而不能由教师代替。
实践证明,只要相信学生,并适当引导,学生是能够完成任务的。
第三环节:符号表达,熟悉运算律活动内容:(1)用投影片展示一组等式,请同学们判定等式成立的依据是哪条运算律,并口述对应运算律的内容。
(2)思考如何用字母来表示每条运算律。
下列等式成立吗?为什么?(1) (-765)×4=4×(-765);(2) [7×(-8)] 3=7 ×[(-8) ×3];(3) (-5) ×[1/2+(-1/3)]= (-5) ×1/2+(-5 )×(-1/3) .你能用字母表示乘法运算律吗?活动目的:这个环节的设计目的,一方面是让学生在具体等式中熟悉运算律,并再一次叙述运算律的内容,从而加深印象,明确应用;另一方面是让学生用符号语言来表达运算律。
事实上,运算律是经过对具体算式的探索,猜想发现的一般化的表示形式,它有多种表达方法(文字语言、符号语言、图形语言),其中符号语言方法,更能简捷深刻地揭示问题的共性,有助于对一般问题的认识,而且为数学交流提供了有效途径,特别能有效地发展学生的符号感及运用符号解决问题的能力,进行推理判断的能力。
活动的注意事项:运算律的文字语言叙述一般问题不大,而符号语言的表达学生会有困难,教师应有充分的预见性,并切实帮助学生正确的得到运算律的符号表达,至于学生采用那些字母,是否小写等等问题,教师不应求全责备,只要正确,就要鼓励,最后教师可将结论统一,用投影片展示规范的符号表达。
第四环节:体验运算律简化计算的作用活动内容:(1)教科书第53页例3,计算:⑴(-5÷6+3÷8)×(-24)⑵(-7)×(-4÷3)×5÷14用两种方法计算,并比较哪种方法较简便。
(2)教科书第53页“随堂练习”。
1、计算:⑴0×(-5÷6);⑵3×(-1÷3);⑶(-3)×0.3;⑷(-1÷6)×(-6÷7);2、计算:⑴(-3÷4)×(-8);⑵30×[(-1÷2)-(1÷3)];⑶(0.25-2÷3)×(-36);⑷8×(-4÷5)×1÷16。
活动目的:对有理数乘法法则的巩固和提高运算技能,对运算律的运用使计算简便。
活动的注意事项:例题讲解时,需对两种解法进行板书,以比较两种解法的过程,体现运算律可简化计算的作用,提高学生合理使用运算律的意识。
另外对体现环节的练习题不宜补充复杂的计算题,因为有理数运算重点是对运算法则和运算律的理解,所以切记因为小数、分数的繁杂运算冲淡学生的主题,况且对于复杂的计算,我们提倡使用计算器,而不能过分讲究运算技巧,最后还应关注学生在计算过程中的情感态度,培养学生认真细心的良好习惯。
第五环节:课堂小结活动内容:由学生进行课堂小结;⑴运算律的语言表述;⑵运算律的符号表示;⑶运算律的作用;活动目的:培养学生的口头表达能力,提高学生的课堂主人翁精神和积极参与意识。
活动的注意事项:学生在小结过程中,可能会有畏难情绪,教师要鼓励学生积极参与,并给予适时恰当的评价,特别要关注平时表现不积极不勇跃的同学,多给他们以帮助,鼓励和发言的机会,提高他们的自信。
第六环节:布置作业活动内容:教科书第54页知识技能1,联系拓广1、2。
活动目的:复习巩固检测本节知识,训练提高运算技能。
活动注意事项:联系拓广的第1题是乘法法则反过来思考,一方面培养学生逆向思维能力,从而进一步巩固乘法法则。
另一方面是训练学生文字表达能力,一定要认真批阅这个作业,并及时反馈,纠正不当说法;第2题是训练学生符号语言表达能力,同样要关注。
四、教学反思:1、要关注学生对有理数运算法则和运算律的理解水平,对法则和运算的学习评价,不应单纯考查记忆和具体计算,而应对运算的评价重点放在学生对算理的理解上,考察学生能否根据实际问题的特点选择合理简便的算法,2、本节习题中联系与拓广中两题带有“*”号,仅仅是面向学有余力有特殊数学学习需求的学生,并不要求所有学生都去完成它。
在实际情况中也正说明这一点,收回的作业,学生的解答和理解有很大的差异,既增添批改的难度,又出现一些思维上的负面影响,所以对今后的作业布置,一定要区别对待,有所选择。
3、本节课的设计中,教师是以组作者,引导者的身份出现在每一个环节,在这个过程中培养了学生观察、归纳、验证的能力。
并通过用自己的语言描述运算律,培养了学生的语言表达能力,用符号的语言描述运算律,发展了学生的符号感。
在学习活动中,学生获得了成功的体验,增强了自信。